Catalyst Utilized Patents (Class 570/165)
  • Publication number: 20110112340
    Abstract: The invention provides a process for the preparation of 2,3,3,3-tetrafluoropropene (1234yf) comprising (a) contacting 1,1,1-trifluoro-2,3-difluoropropane (243db) with hydrogen fluoride (HF) in the presence of a zinc/chromia catalyst to produce a compound having the formula CF3CHFCH2X, wherein X is Cl or F, and (b) dehydrohalogenating the compound of formula CF3CHFCH2X to produce 1234yf.
    Type: Application
    Filed: April 9, 2009
    Publication date: May 12, 2011
    Inventors: John W. Smith, Claire Mcguiness, Andrew P. Sharratt
  • Publication number: 20110060171
    Abstract: The present invention relates to a process for the manufacture of pentafluoroethane. It more particularly relates to a process for the manufacture of pentafluoroethane by gas-phase fluorination of perchloroethylene (PER) in the presence of a catalyst, characterized in that (i) the reaction of the PER with HF is carried out with an HF/PER molar ratio of greater than or equal to 20 and a pressure of greater than 5 bar absolute, and that (ii) the stream leaving this reaction step is recycled directly to the reaction step after separation of pentafluoroethane and of HCl.
    Type: Application
    Filed: October 10, 2007
    Publication date: March 10, 2011
    Applicant: Arkema France
    Inventors: Béatrice Boussand, Emmanuel Guiraud
  • Publication number: 20100331583
    Abstract: The invention provides an improved process to manufacture 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) by reacting 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) with hydrogen fluoride, in the presence of a fluorination catalyst, where by using 2-chloro-3,3,3,-trifluoropropene (HCFO-1233xf) of high purity, the need to add an oxidizing agent (typically chlorine) to keep the catalyst active can be avoided. The HCFC-244bb is then used as an intermediate in the production of 2,3,3,3-tetrafluoropropene-1 (HFO-1234yf).
    Type: Application
    Filed: June 28, 2010
    Publication date: December 30, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Robert C. Johnson, Daniel C. Merkel
  • Publication number: 20100286456
    Abstract: The process for recovering pentafluoroethane of the invention includes bringing a mixed gas containing pentafluoroethane and a non-condensable gas into contact with a chlorinated solvent, and allowing the chlorinated solvent to absorb pentafluoroethane contained in the mixed gas. The process for the production of pentafluoroethane of the invention uses the recovering process.
    Type: Application
    Filed: July 27, 2006
    Publication date: November 11, 2010
    Applicant: SHOWA DENKO K.K.
    Inventor: Kazunari KAGA
  • Publication number: 20100280292
    Abstract: The present invention relates to a process for producing pentafluoroethane. More particularly, the subject of the invention is a continuous process for producing pentafluoroethane comprising (i) a step of fluorinating perchloroethylene (PER) with hydrofluoric acid, in the gas phase, in the presence of a catalyst, (ii) a step of separating the products issuing from step (i) in order to give a fraction of light products and a fraction of heavy products, comprising hydrofluoric acid, unreacted perchloroethylene and under-fluorinated products, and (iii) a step of pretreating the fraction of heavy products before recycling to step (i).
    Type: Application
    Filed: May 21, 2007
    Publication date: November 4, 2010
    Inventor: Bertrand Collier
  • Patent number: 7786334
    Abstract: A process is described for the preparation of 2-chloro-1,1,1-difluoroethane by the reaction of 1,2-dichloro-1,1-difluoroethane with hydrogen fluoride. in the presence of a fluorination catalyst. The process utilizes a rate enhancing reagent that is trichloroethylene, is 1-fluoro-1,2,3-trichloroethane or an aromatic rate enhancing reagent having the formula where R is C1 to C6 linear or branched alkyl substituted with at least one halo group, halo or nitro and R? is C1 to C6 linear or branched alkyl substituted with at least one halo group.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 31, 2010
    Inventor: Randolph K. Belter
  • Patent number: 7781626
    Abstract: The invention relates to azeotropic and azeotrope-like mixtures of 1,1,1,3,3-pentafluorobutane (HFC-365) and hydrogen fluoride and a process for separating the azeotrope-like mixtures. The compositions of the invention are useful as an intermediate in the production of HFC-365. The latter is useful as a nontoxic, zero ozone depleting fluorocarbon useful as a solvent, blowing agent, refrigerant, cleaning agent and aerosol to propellant.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: August 24, 2010
    Assignee: Honeywell International Inc
    Inventors: Hang T. Pham, Rajiv R. Singh, Hsueh S. Tung
  • Publication number: 20100210884
    Abstract: The present invention relates to a process for producing pentafluoroethane. More particularly, the subject of the invention is a continuous process for producing pentafluoroethane comprising (i) a step of fluorinating perchloroethylene (PER) with hydrofluoric acid, in the gas phase, in the presence of a catalyst, (ii) a step of separating the products issuing from step (i) in order to give a fraction of light products and a fraction of heavy products, comprising hydrofluoric acid, unreacted perchloroethylene and under-fluorinated products, and (iii) a step of pretreating the fraction of heavy products before recycling to step (i).
    Type: Application
    Filed: May 21, 2007
    Publication date: August 19, 2010
    Applicant: Arkema France
    Inventors: Béatrice Boussand, Sylvain Perdrieux
  • Publication number: 20100197981
    Abstract: A process is disclosed for making CH2ClCF2CClF2. The process involves reacting CH2ClF with CClF?CF2 in an addition reaction zone in the presence of an aluminum halide composition having a bulk formula of AlClxBryF3-x-y wherein the average value of x is 0 to 3, the average value of y is 0 to 3?x, provided that the average values of x and y are not both 0. Also disclosed is a process for making CH2FCF2CF3 that involves reacting the CH2ClCF2CClF2 with HF in a fluorination reaction zone in the presence of a fluorination catalyst. Also disclosed is a process for making CHF?CFCF3 that involves dehydrofluorinating the CH2FCF2CF3.
    Type: Application
    Filed: September 5, 2007
    Publication date: August 5, 2010
    Inventor: Allen Capron Sievert
  • Publication number: 20100191025
    Abstract: The present invention relates to a process for preparing (hydro)(chloro)fluoroolefins comprising at least one step of fluorination in the liquid phase of a (hydro)haloalkane or of a (hydro)haloalkene in the presence of at least one ionic liquid as a catalyst. The ionic liquids are derivatives of Lewis acids based on aluminum, titanium, niobium, tantalum, tin, antimony, nickel, zinc or iron.
    Type: Application
    Filed: May 13, 2008
    Publication date: July 29, 2010
    Applicant: Arkema France
    Inventor: Sylvain Perdrieux
  • Publication number: 20100163780
    Abstract: A process for the production of dichlorotrifluoroethane is described. The process comprises reacting perchloroethylene with hydrogen fluoride (HP) at elevated temperature in the vapour phase in at least one reactor in the presence of a fluorination catalyst. The process is operated so that 30 weight % or more of the perchloroethylene reactant that is fed to the at least one reactor remains unreacted having passed through the or each reactor. The dichlorotrifluoroethane may be purified and then used as it is or used to prepare pentafluoroethane.
    Type: Application
    Filed: December 18, 2006
    Publication date: July 1, 2010
    Inventors: Clive Robert Giddis, Paul Hendry Stewert
  • Publication number: 20100168482
    Abstract: A process is disclosed for making CF3CF2CH3, CF3CF?CH2 and/or CF3CCl?CH2. The process involves reacting at least one starting material selected from the group consisting of halopropanes of the formula CX3CH2CH2X, halopropenes of the formula CX3CH?CH2 and halopropenes of the formula CX2?CHCH2X, wherein each X is independently F or Cl, with HF and Cl2 in a reaction zone to produce a product mixture comprising HF, HCl, CF3CF2CH3, CF3CF?CH2, and CF3CCl?CH2; and recovering the CF3CF2CH3, CF3CF?CH2 and/or CF3CCl?CH2 from the product mixture. Also disclosed is a process for making CF3CH2CHF2, CF3CH?CHF, and/or CF3CH?CHCl.
    Type: Application
    Filed: October 31, 2007
    Publication date: July 1, 2010
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert
  • Publication number: 20100168483
    Abstract: A process for the production of pentafluoroethane is described. The process comprises reacting perchloroethylene with hydrogen fluoride in the vapour phase in a first reactor or a first plurality of reactors in the presence of a fluorination catalyst to produce a composition comprising dichlorotrifluoroethane, hydrogen chloride, unreacted hydrogen fluoride and perchloroethylene. This composition is subjected to a separation step to yield a purified composition comprising at least 95 weight % of dichlorotrifluorethane and less than 0.5 weight % of compounds having the formula C2C16-XFX, where x is an integer of from 0 to 6, base the total weight of organic compounds in the composition. The composition from the separation step is then reacted with hydrogen fluoride in the vapour phase in a second reactor or a second plurality of reactors in the presence of a fluorination catalyst to produce a composition comprising pentafluoroethane and less than 0.
    Type: Application
    Filed: December 18, 2006
    Publication date: July 1, 2010
    Inventors: Clive Robert Giddis, Paul Hendry Stewert
  • Patent number: 7714177
    Abstract: Disclosed is a process for the synthesis of 1,3,3,3-tetrafluoropropene comprising: a) reacting a compound of the formula (I) CHFX2 with a compound of formula (II) CH2?CF2 to produce a reaction product comprising a compound of formula (III) CHXFCH2CXF2, wherein each X is independently selected from the group consisting of chlorine, bromine and iodine; and (b) exposing said compound of formula (III) to reaction conditions effective to convert said compound to 1,3,3,3-tetrafluoropropene.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: May 11, 2010
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Haridasan K. Nair, Hsueh S. Tung, Michael Van Der Puy
  • Patent number: 7659436
    Abstract: A process for the manufacture of CF3CH2CHF2 and/or CF3CH2CF3 is disclosed. The process involves (a) reacting HF and at least one halopropene of the formula CX3CCI?CCIX (where each X is independently F or Cl) to produce a product including both CF3CCI?CF2 and CF3CHCICF3; (b) reacting CF3CCI?CF2 and/or CF3CHCICF3 produced in (a) with hydrogen to produce a product including CF3CH2CHF2 and/or CF3CH2CF3; and (c) recovering CF3CH2CHF2 and/or CF3CH2CF3 from the product produced in (b). In (a), the CF3CCI?CF2 and CF3CHCICF3 are produced in the presence of a fluorination catalyst comprising at least one chromium-containing component selected from (i) a crystalline alpha-chromium oxide where at least 0.05 atom % of the chromium atoms in the alpha-chromium oxide lattice are replaced by divalent copper, and (ii) a chromium-containing composition of (i) which has been treated with a fluorinating agent.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: February 9, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Velliyur Nott Mallikarjuna Rao, H. David Rosenfeld, Allen Capron Sievert, Shekhar Subramoney
  • Patent number: 7659435
    Abstract: A process is disclosed for the manufacture of CF3CH2CHF2 and CF3CHFCH2F. The process involves (a) reacting hydrogen fluoride, chlorine, and at least one halopropene of the formula CX3CCl?CClX (where each X is independently F or Cl) to produce a product including both CF3CCl2CClF2 and CF3CClFCCl2F; (b) reacting CF3CCl2CClF2 and CF3CClFCCl2F produced in (a) with hydrogen to produce a product including both CF3CH2CHF2, and CF3CHFCH2F; and (c) recovering CF3CH2CHF2 and CF3CHFCH2F from the product produced in (b). In (a), the CF3CCl2CF3 and CF3CClFCClF2 are produced in the presence of a chlorofluorination catalyst including (i) a crystalline alpha-chromium oxide where at least 0.05 atom % of the chromium atoms in the alpha-chromium oxide lattice are replaced by divalent copper, and/or (ii) a chromium-containing composition of (i) which has been treated with a fluorinating agent.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: February 9, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Velliyur Nott Mallikarjuna Rao, H. David Rosenfeld, Allen Capron Sievert, Shekhar Subramoney
  • Publication number: 20090326284
    Abstract: The invention relates to a method for producing pentafluoroethane, and especially to a method comprising (i) a step during which perchloroethylene and optionally 2,2-dichloro-1,1,1-trifluoroethane and/or 2-chloro-1,1,1,2-tetrafluoroethane react(s) with hydrofluoric acid in a gaseous phase in the presence of a catalyst in an adiabatic multi-stage reactor, and optionally (ii) a step of separating the flow produced in step (i) in order to obtain a fraction of light products and a fraction of heavy products.
    Type: Application
    Filed: May 9, 2007
    Publication date: December 31, 2009
    Applicant: Arkema France
    Inventors: Bertrand Collier, Géraldine Cavallini, Béatrice Boussand
  • Publication number: 20090270662
    Abstract: A process for the production of dichlorotrifluoroethane is described. The process comprises reacting perchloroethylene with hydrogen fluoride in the vapour phase at elevated temperature in at least one reactor in the presence of a fluorination catalyst to produce a composition comprising dichlorotrifluoroethane, hydrogen chloride, unreacted perchloroethylene and unreacted hydrogen fluoride. The composition that is produced is subjected to a separation step to recover a first fraction comprising dichlorotrifluoroethane and a second fraction comprising perchloroethylene and hydrogen fluoride. The second fraction is further separated into a hydrogen fluoride-rich fraction and a perchloroemylene-containing, organic-rich fraction which are then recycled. The dichlorotrifluoroethane that is recovered may be used to prepare pentafluoroethane.
    Type: Application
    Filed: December 18, 2006
    Publication date: October 29, 2009
    Applicant: INEOS FLUOR HOLDINGS LIMITED
    Inventors: Clive Robert Giddis, Paul Hendry Stewert
  • Publication number: 20090259079
    Abstract: A process for the production of dichlorotrifluoroethane is described. The process comprises reacting perchloroethylene with hydrogen fluoride (HF) at elevated temperature in the vapour phase in at least one reactor in the presence of a fluorination catalyst. The process is operated so that the increase in temperature across the or each reactor from the inlet side to the outlet side is controlled. The dichlorotrifluoroethane may be purified and then used as it is or used to prepare pentafluoroethane.
    Type: Application
    Filed: December 18, 2006
    Publication date: October 15, 2009
    Applicant: INEOS FLUOR HOLDINGS LIMITED
    Inventors: Clive Robert Giddis, Paul Hendry Stewert
  • Publication number: 20090209792
    Abstract: A chromia-based fluorination catalyst comprising at least one additional metal selected from zinc, nickel, aluminium and magnesium in which from 0.1 to 8.0% by weight of the catalyst is in the form of one or more crystalline compounds of chromium and/or one or more crystalline compounds of the at least one additional metal. The catalyst can be used in processes for producing a fmorinated hydrocarbon.
    Type: Application
    Filed: April 10, 2006
    Publication date: August 20, 2009
    Inventors: Andrew P. Sharratt, John D. Scott
  • Patent number: 7566809
    Abstract: Process for the separation of a mixture comprising at least one hydrofluoroalkane and hydrogen fluoride, according to which a hydrofluoroalkane/hydrogen fluoride mixture is reacted with at least one chlorinated or chlorofluorinated precursor of the hydrofluoroalkane. Process for the preparation of a hydrofluoroalkane comprising such a separation, in combination with a catalytic reaction stage. Azeotropic compositions.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: July 28, 2009
    Assignee: Solvay S.A.
    Inventors: Alain Lambert, Vincent Wilmet
  • Publication number: 20090182178
    Abstract: A process is described for the preparation of 2-chloro-1,1,1-difluoroethane by the reaction of 1,2-dichloro-1,1-difluoroethane with hydrogen fluoride. in the presence of a fluorination catalyst. The process utilizes a rate enhancing reagent that is trichloroethylene, is 1-fluoro-1,2,3-trichloroethane or an aromatic rate enhancing reagent having the formula where R is C1 to C6 linear or branched alkyl substituted with at least one halo group, halo or nitro and R? is C1 to C6 linear or branched alkyl substituted with at least one halo group.
    Type: Application
    Filed: March 20, 2009
    Publication date: July 16, 2009
    Inventor: Randolph K. Belter
  • Publication number: 20090062577
    Abstract: A process for the manufacture of 1,1,1,3,3-pentafluoropropane, which comprises reacting 1,1,1,3,3,3-hexafluoropropane with a source of hydrogen.
    Type: Application
    Filed: March 22, 2007
    Publication date: March 5, 2009
    Applicant: SOLVAY (SOCIETE ANONYME)
    Inventors: Johannes Eicher, Stefan Mross
  • Patent number: 7491857
    Abstract: An aminated oligonucleotide probe is provided, in which the amino group possesses improved reactivity. The present invention relates to an oligonucleotide probe, which is represented by general formula 1: (wherein R1 is a hydrogen atom or a protecting group for an amino group, R2 and R3 are each independently a divalent organic group, and A is an oligonucleotide).
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: February 17, 2009
    Assignees: National Institute of Advanced Industrial Science and Technology, DNA Chip Research Inc.
    Inventors: Yasuo Komatsu, Naoshi Kojima, Kosuke Sato, Ken Nonaka, Yumi Fujinawa
  • Publication number: 20090018376
    Abstract: A process is described for the preparation of 2-chloro-1,1,1-difluoroethane by the reaction of 1,2-dichloro-1,1-difluoroethane with hydrogen fluoride. in the presence of a fluorination catalyst. The process utilizes a rate enhancing reagent that is trichloroethylene, is 1-fluoro-1,2,3-trichloroethane or an aromatic rate enhancing reagent having the formula where R is C1 to C6 linear or branched alkyl substituted with at least one halo group, halo or nitro and R? is C1 to C6 linear or branched alkyl substituted with at least one halo group.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 15, 2009
    Inventor: Randolph K. Belter
  • Publication number: 20090018377
    Abstract: A process is described for the preparation of a reaction stream comprising 2-chloro-1,1,1-difluoroethane substantially free of oligomeric tars. The process proceeds in a first step by reacting trichloroethylene with hydrogen fluoride in the presence of a hydrofluorination catalyst at a temperature from about ?5° to about 30° C. for a time sufficient to form a reaction mixture comprising 1,1,2-trichloro-1-fluoroethane substantially free of trichloroethylene. In the second step of the process, the reaction mixture is then reacted with hydrogen fluoride in the presence of a hydrofluorination catalyst at a temperature of from about 100° to about 175° C. for a time sufficient to form a reaction stream of 2-chloro-1,1,1-difluoroethane substantially free of oligomeric tars.
    Type: Application
    Filed: November 13, 2007
    Publication date: January 15, 2009
    Inventor: C. Bradford Boyce
  • Patent number: 7468466
    Abstract: A process for producing hexafluoroethane, comprising a step of distilling a crude hexafluoroethane containing chlorine compounds each having two carbon atoms to distill out hexafluoroethane as a top flow from the top of a distillation column and separate a hexafluoroethane mixture containing the chlorine compounds as a bottom flow from the bottom, and a step of contacting the bottom flow with hydrogen fluoride in the gas phase at a temperature of 300 to 500° C. in the presence of a fluorination catalyst to fluorinate the chlorine compounds. This process provides hexafluoroethane which can be used mainly as a cleaning gas in the production process of a semiconductor device.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: December 23, 2008
    Assignee: Show A Denko K.K.
    Inventors: Hiromoto Ohno, Tatsuharu Arai
  • Patent number: 7468467
    Abstract: Process for obtaining a hydrofluoroalkane which is purified of organic impurities, according to which the hydrofluoroalkane containing organic impurities is subjected to at least one purification treatment chosen from (a) a treatment with chlorine in the presence of a initiator (b) a reaction with hydrogen fluoride (c) a distillation in which the purified hydrofluoroalkane is removed from the top of the distillation column or from the side (d) an extractive distillation (e) an adsorption onto a solid adsorbent (f) a reaction with a compound containing oxygen, and (g) a reaction with a compound containing oxygen and a gas-phase reaction with a reagent capable of reacting with at least some of the organic impurities, with the exception of a reaction with elemental chlorine.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: December 23, 2008
    Assignee: Solvay S.A.
    Inventors: Vincent Wilmet, Francine Janssens, Lionel Casaubon Seignour, Philippe Krafft, Alain Lambert, Olivier Buyle
  • Publication number: 20080207964
    Abstract: A catalyst composition is disclosed that includes chromium, oxygen, and gold as essential constituent elements. The amount of gold in the composition is from about 0.05 atom % to about 10 atom % based on the total amount of chromium and gold. Also disclosed is a process for changing the fluorine distribution (i.e., content and/or arrangement) in a hydrocarbon or halogenated hydrocarbon in the presence of the catalyst composition; and methods for preparing said catalyst composition. One preparation method involves; (a) co-precipitating a solid by adding ammonium hydroxide (aqueous ammonia) to an aqueous solution of a soluble gold salt and a soluble chromium salt that contains at least three moles of nitrate per mole of chromium in the solution and has a gold content of from about 0.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 28, 2008
    Inventors: Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert, H. David Rosenfeld, Shekhar Subramoney
  • Patent number: 7405333
    Abstract: A improved process is described for the preparation of a substantially pure, liquefied stream of 1,1,1,2-tetrafluoroethane by the catalyzed reaction of trichloroethylene with hydrogen fluoride to form the intermediate 2-chloro-1,1,1-trifluoroethane and then reacting said intermediate 2-chloro-1,1,1-trifluoroethane with hydrogen fluoride, in the presence of a hydrofluorination catalyst to form a reaction stream containing 1,1,1,2-tetrafluoroethane. The improvement comprises liquefying the by-product hydrogen chloride formed in the preparation of the intermediate 2-chloro-1,1,1-trifluoroethane and countercurrently passing said liquefied hydrogen chloride thru the reaction stream containing 1,1,1,2-tetrafluoroethane thereby forming a substantially pure, liquefied stream of 1,1,1,2-tetrafluoroethane and an effluent comprising gaseous hydrogen chloride.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: July 29, 2008
    Assignee: Norphlet Chemicals, Inc.
    Inventor: Ronnie D. Jackson
  • Patent number: 7371905
    Abstract: A process for producing fluorinated C1 HFCs comprising fluorinating a reactive organic compound to produce a reaction product comprising at least the desired C1 HFC, unreacted reactive organic compound and a byproduct having a boiling point between the boiling point of said desired hydrofluorocarbon compound and said reactive organic compound; and removing from the reaction product at least a substantial portion of the byproduct to produce a high purity product stream.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: May 13, 2008
    Assignee: Honeywell International Inc.
    Inventors: Rajat S. Basu, Lawrence F. Mullan, Peter H. Scheidle, Steven J. Bass, Addison M. Smith
  • Patent number: 7361795
    Abstract: The invention relates to azeotropic and azeotrope-like mixtures of 1,1,1,3,3-pentafluorobutane (HFC-365) and hydrogen fluoride and a process for separating the azeotrope-like mixtures. The compositions of the invention are useful as an intermediate in the production of HFC-365. The latter is useful as a nontoxic, zero ozone depleting fluorocarbon useful as a solvent, blowing agent, refrigerant, cleaning agent and aerosol to propellant.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: April 22, 2008
    Assignee: Honeywell International, Inc.
    Inventors: Hang T. Pham, Rajiv R. Singh, Hsueh S. Tung
  • Publication number: 20080091053
    Abstract: A process for the manufacture of haloalkanes, or more particularly to a process for the manufacture of 1,1,1,3,3-pentachloropropane (HCC-240fa) and/or and/or 1,1,1,3-tetrachloropropane (HCC-250fb). The process includes (a) mixing a catalyst, co-catalyst and a haloalkane starting material under conditions suitable to produce a homogeneous mixture; (b) reacting the homogeneous mixture with a haloalkene and/or alkene starting material under conditions suitable to produce a haloalkane product stream; and (c) recovering a haloalkane product from said product stream.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 17, 2008
    Inventors: Hsueh Sung Tung, Ian Shankland
  • Patent number: 7345209
    Abstract: Disclosed is a process for the synthesis of 1,3,3,3-tetrafluoropropene that comprises, in one preferred embodiment, providing a compound of the formula CF3CH2CHFX, wherein X is a selected from the group consisting of chlorine, bromine and iodine, and exposing said compound to reaction conditions effective to convert said compound to 1,3,3,3-tetrafluoropropene. Other processes for forming 1,3,3,3-tetrafluoropropene are also disclosed.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 18, 2008
    Assignee: Honeywell International Inc.
    Inventors: Sudip Mukhopadhyay, Haridasan K. Nair, Hsueh S. Tung, Michael Van Der Puy
  • Patent number: 7329786
    Abstract: Methods and materials are provided for the production of essentially isomerically pure perhalogenated and partially halogenated compounds. One embodiment of the present invention provides a process for the production of essentially isomerically pure CFC-216aa. Other embodiments include processes for the production of CFC-217ba and HFC-227ea. Particular embodiments of the present invention provide separation techniques for the separation of chlorofluorocarbons from HF, from other chlorofluorocarbons, and the separation of isomers of halogenated compounds. Still other embodiments of the present invention provide catalytic synthetic techniques that demonstrate extended catalyst lifetime. In other embodiments, the present invention provides catalytic techniques for the purification of isomeric mixtures.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: February 12, 2008
    Assignee: Great Lakes Chemical Corporation
    Inventors: Yuichi Iikubo, Stephen Owens, Mitchel Cohn, Stephan M. Brandstadter, Vicki E. Hedrick, Janet K. Boggs, John Chengping Chien, Julie Sacarias, Vimal Sharma
  • Patent number: 7317071
    Abstract: Processes for producing a fluoromonomer from a fluoropolymer, among which one that can be carried out more simply is a process wherein thermal decomposition of a fluoropolymer is preformed by means of a rotary kiln (5) so as to produce a fluoromonomer, the process comprising feeding a fluoropolymer and steam (3) into a rotary kiln and heating the fluoropolymer.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: January 8, 2008
    Assignee: Daikin Industries, Ltd.
    Inventors: Takuya Ichida, Yukio Homoto
  • Publication number: 20070299286
    Abstract: A process for the activation of a fluorination catalyst in which a catalyst precursor compound, supported or unsupported is first dried and thereafter activated by exposure to an activating agent at a pressure greater that about 100 psig and a temperature grater than about 100° C. The process is particularly suited to the activation of chromium (III) compounds, such as Cr2O3. The resulted dry, high-pressure activated catalyst was found to provide increase fluorination conversion, with higher selectivity of the desired product.
    Type: Application
    Filed: June 21, 2006
    Publication date: December 27, 2007
    Inventor: Maher Y. Elsheikh
  • Patent number: 7294747
    Abstract: Process for the manufacture of 1,1-difluoroethane by liquid-phase fluorination of 1,2-dichloroethane using hydrofluoric acid in the presence of a Lewis acid as catalyst and of FeCl3 as cocatalyst. Process for the manufacture of 1,1-difluoroethylene employing it.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: November 13, 2007
    Assignee: Arkema France
    Inventor: Phillipe Bonnet
  • Patent number: 7223892
    Abstract: Process for the separation of a mixture comprising at least one hydrofluoroalkane and hydrogen fluoride, according to which a hydrofluoroalkane/hydrogen fluoride mixture is reacted with at least one chlorinated or chlorofluorinated precursor of the hydrofluoroalkane. Process for the preparation of a hydrofluoroalkane comprising such a separation, in combination with a catalytic reaction stage. Azeotropic compositions.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: May 29, 2007
    Assignee: Solvay S.A.
    Inventors: Alain Lambert, Vincent Wilmet
  • Patent number: 7183448
    Abstract: A mixture comprising at least 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene is subjected to a distillation operation, and thereby, a distillate comprising an azeotropic composition consisting substantially of 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene is obtained and a bottom product comprising 1,1,1,3,3-pentafluoropropane or 1,1,1-trifluoro-3-chloro-2-propene which each is separated and purified.
    Type: Grant
    Filed: November 10, 1999
    Date of Patent: February 27, 2007
    Assignee: Daikin Industries, Ltd.
    Inventors: Tatsuo Nakada, Masayoshi Imoto, Takashi Shibanuma
  • Patent number: 7179949
    Abstract: Process for obtaining a hydrofluoroalkane which is purified of organic impurities, according to which the hydrofluoroalkane containing organic impurities is subjected to at least one purification treatment chosen from (a) a treatment with chlorine in the presence of a initiator (b) a reaction with hydrogen fluoride (c) a distillation in which the purified hydrofluoroalkane is removed from the top of the distillation column or from the side (d) an extractive distillation (e) an adsorption onto a solid adsorbent (f) a reaction with a compound containing oxygen, and (g) a reaction with a compound containing oxygen and a gas-phase reaction with a reagent capable of reacting with at least some of the organic impurities, with the exception of a reaction with elemental chlorine.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: February 20, 2007
    Assignee: Solvay (Societe Anonyme)
    Inventors: Vincent Wilmet, Francine Janssens, Lionel Casaubon Seignour, Philippe Krafft, Alain Lambert, Olivier Buyle
  • Patent number: 7176338
    Abstract: The invention relates to a process for preparing 1,1,1-trifluoro-2,2-dichloroethane (F123). This process consists in placing 1,1,1-trifluoro-2-chloroethane (F133a) in contact with chlorine in the presence of hydrogen fluoride and a fluorination catalyst. F133a may be obtained by fluorination of trichloroethylene, and the F123 may be subsequently fluorinated to F125.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: February 13, 2007
    Assignee: Atofina
    Inventors: Béatrice Boussand, Eric Jorda
  • Patent number: 7145046
    Abstract: Inorganic and organic compounds containing fluorine can be produced, for example, from corresponding chlorine-containing compounds by chlorine/fluorine exchange using fluorinating agents. Monocyclic or bicyclic compounds containing at least two nitrogen atoms, at least one of which is incorporated into the ring system, can be used as catalysts or fluorinating agents for chlorine/fluorine exchange reactions to produce sulfurylchlorofluoride, sulfurylfluoride or a carboxylic acid fluoride. It is likewise possible to carry out HF addition to unsaturated carbon-carbon bonds or chlorine/fluorine exchange at carbon atoms. For example, monochloro or dichloro malonic acid esters can be converted to difluoro malonic acid esters. Work-up of the reaction mixture can be simplified by using suitable solvents which force the reaction mixture to exist in two phases.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: December 5, 2006
    Assignee: Solvay Fluor und Derivate GmbH
    Inventors: Max Braun, Carsten Brosch
  • Patent number: 7112708
    Abstract: A process for the production of difluoromethane (HFC-32), 1,1,1-trifluoroethane (HFC-143a) and 1,1-difluoroethane (HFC-152a).
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: September 26, 2006
    Assignee: Honeywell International Inc.
    Inventors: Daniel C Merkel, Hsuehsung Tung, Ian Shankland
  • Patent number: 7102040
    Abstract: The invention provides an apparatus useful in fluorinating organic compounds, or more particularly to a reactor system suitable for the fluorination of organic compounds on a commercial scale. The apparatus is also useful in chemical reactions including heating or cooling.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: September 5, 2006
    Assignee: Honeywell International Inc.
    Inventors: Yuon Chiu, Merwyn E. Howells, Stephen A. Cottrell
  • Patent number: 7094934
    Abstract: In a process for producing a hydrogen-containing fluorinated hydrocarbon in which a halogenated hydrocarbon reaction raw material, which includes a chlorinated alkene and/or a hydrogen-containing chlorinated alkane, is subjected to a fluorination reaction with hydrogen fluoride in a liquid phase in a reactor in the presence of a fluorination catalyst to obtain a reaction mixture which includes the hydrogen-containing fluorinated hydrocarbon, the reactor to be used has a portion which is able to contact with the reaction mixture, at least a part of this portion being made of an alloy material of 18 to 20% by weight of chromium, 18 to 20% by weight of molybdenum, 1.5 to 2.2% by weight of at least one element selected from niobium and tantalum and the balance of nickel.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: August 22, 2006
    Assignee: Daikin Industries, Ltd.
    Inventors: Noriaki Shibata, Tatsuo Nakada, Takashi Shibanuma
  • Patent number: 7074434
    Abstract: Process for the separation of a mixture comprising at least one hydrofluoroalkane and hydrogen fluoride, according to which a hydrofluoroalkane/hydrogen fluoride mixture is reacted with at least one chlorinated or chlorofluorinated precursor of the hydrofluoroalkane. Process for the preparation of a hydrofluoroalkane comprising such a separation, in combination with a catalytic reaction stage. Azeotropic compositions.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: July 11, 2006
    Assignee: Solvay (Societe Anonyme)
    Inventors: Alain Lambert, Vincent Wilmet
  • Patent number: 7074973
    Abstract: A process for the preparation of pentafluoroethane is disclosed which involves contacting a mixture comprising hydrogen fluoride and at least one starting material selected from haloethanes of the formula CX3CHX2 and haloethanes of the formula CX2?CX2, where each X is independently selected from the group consisting of F and Cl (provided that no more than four of X are F), with a fluorination catalyst in a reaction zone to produce a product mixture comprising HF, HCl, pentafluoroethane, underfluorinated halogenated hydrocarbon intermediates and less than 0.2 mole percent chloropentafluoroethane based on the total moles of halogenated hydrocarbons in the product mixture. The process is characterized by the fluorination catalyst comprising (i) a crystalline cobalt-substituted alpha-chromium oxide where from about 0.05 atom % to about 6 atom % of the chromium atoms in the alpha-chromium oxide lattice are replaced by trivalent cobalt (Co+3) and/or (ii) a fluorinated crystalline oxide of (i).
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: July 11, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mario J. Nappa, Velliyur Nott Mallikarjuna Rao, H. David Rosenfeld, Shekhar Subramoney, Munirpallam A. Subramanian, Allen C. Sievert
  • Patent number: 7071368
    Abstract: A process for producing 1,1,1-trifluoroethane (HFC-143a) which process comprises reacting hydrogen fluoride with vinylidene chloride along with one or more of 1,1,-dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,1-difluoroethane (HCFC-142b) and 1,1,1-trichloroethane (HCC-140a) in the presence of pentavalent antimony as a fluorination catalyst under conditions to produce 1,1,1-trifluoroethane (HFC-143a), generally in yields of 90% or more.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: July 4, 2006
    Assignee: Honeywell International Inc.
    Inventors: Daniel C. Merkel, Hsueh Sung Tung, Robert C. Johnson
  • Patent number: 7067707
    Abstract: Process for the manufacture of pentafluoroethane, according to which tetrafluoroethylene is subjected to reaction with an organic nitrogenous base hydrofluoride at a temperature of greater than 100° C. and not exceeding 160° C.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: June 27, 2006
    Assignee: Solvay (Societe Anonyme)
    Inventors: Eberhard Piepho, Vincent Wilmet, Olivier Buyle