With Preliminary Diverse Conversion Patents (Class 585/254)
  • Patent number: 11479520
    Abstract: A system and a method are provided for producing aromatics. Such a system includes a cracker unit configured to convert a light alkane into an olefin-containing hydrocarbon comprising at least one alkene, and an aromatization unit. The light alkane is selected from the group consisting of methane, ethane, propane, butane, and a combination thereof. The cracker unit is configured to at least partially feed the olefin-containing hydrocarbon into the aromatization unit. Such an olefin-containing hydrocarbon comprises at least 40 wt. % of the at least one alkene. The aromatization unit is used to convert the olefin-containing hydrocarbon therein into a product stream, which includes an aromatic hydrocarbon selected from the group consisting of benzene, toluene, xylenes, and a combination thereof.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: October 25, 2022
    Assignees: China Energy Investment Corporation Limited, National Institute of Clean-and-Low-Carbon Energy
    Inventors: Joshua Miles, Hui Wang, Junjun Shan, Jihong Cheng, Anthony Ku, Lisa Nguyen
  • Patent number: 11459589
    Abstract: The invention provides a method for producing a terpene or a precursor thereof by microbial fermentation. Typically, the method involves culturing a recombinant bacterium in the presence of a gaseous substrate whereby the bacterium produces a terpene or a precursor thereof, such as mevalonic acid, isopentenyl pyrophosphate, dimethylallyl pyrophosphate, isoprene, geranyl pyrophosphate, farnesyl pyrophosphate, and/or farnesene. The bacterium may comprise one or more exogenous enzymes, such as enzymes in mevalonate, DXS, or terpene biosynthesis pathways.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: October 4, 2022
    Assignee: LanzaTech NZ, Inc.
    Inventor: Michael Koepke
  • Patent number: 10647931
    Abstract: The invention concerns a process for the production of middle distillates, comprising at least one step for the catalytic oligomerization of a feed comprising olefins containing 3 to 9 carbon atoms, in which the reaction section comprises at least two reactors which are positioned in series and which can be permutated, each containing at least one oligomerization catalyst for the oligomerization reactions, said catalysts being identical or different, and in which the reactor which is the furthest downstream in the direction of movement of said feed comprising olefins contains the catalyst with a period of service which is shorter than the period of service of the catalysts present in the other reactors and is operated at an average temperature (WABTn) which is lower than the average temperature (WABTn?1) of the reactor directly preceding it, the difference between said average temperatures being at least 10° C. (WABTn?1?WABTn?10° C.).
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: May 12, 2020
    Assignee: AXENS
    Inventors: Annick Pucci, Marielle Gagniere
  • Patent number: 10647623
    Abstract: Processes and an apparatus for reducing heavy oxygenate recycle for an MTO reaction zone. After separating product and water from the MTO reaction effluent, an oxygenate rich stream is passed to a conversion zone in which methanol in the oxygenate rich stream is converted into DME. A DME rich stream is separated from heavy oxygenates and is recycled back to the MTO reaction zone. The conversion zone may include a reactive distillation column, or the conversion zone may include a reactor vessel and a separate separation vessel.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: May 12, 2020
    Inventor: John J. Senetar
  • Patent number: 10550731
    Abstract: Steam may be generated using an apparatus that creates shockwaves in a supersonic gaseous vortex. The apparatus includes a chamber configured to receive, pressurize, and heat fuel gas and/or oxygen containing gas. One or more inlets positioned at a first end of the chamber and arranged to emit fuel gas, oxygen containing gas, or water as one or more jet streams tangentially to an internal surface of the chamber may create a gaseous vortex rotating about a longitudinal axis within the chamber. The inlet(s) may include one or more inlet nozzles structured to accelerate the one or more fuel gas, oxygen-containing gas, or water to a supersonic velocity and adjustably control frequency of shockwaves emitted into the gaseous vortex. Water can be injected into the chamber to stabilize internal chamber temperature where it may be converted into steam. An outlet may be configured to emit product gases and/or steam from the chamber.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: February 4, 2020
    Assignee: LLT International (Ireland) Ltd.
    Inventors: Peter Lansell, David Lowe
  • Patent number: 10329399
    Abstract: Disclosed herein is a system for recovering olefins from a vent stream comprising an absorber; and a stripper; where the absorber and the stripper are in a recycle loop; and where the absorber is operative to treat a vent stream with a solvent to remove more than 99 wt % of a halogenated by-product contained in the vent stream and to recover 90 to 95 wt % of olefin molecules present in the vent stream; and where the stripper is operative to remove more than 99 wt % of the halogenated by-products present in the solvent; and where the solvent is recycled to the absorber.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: June 25, 2019
    Assignee: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: John G. Pendergast, Jr., Johnny W. Masey, Robert D. Swindoll, Yujun Liu
  • Patent number: 10059641
    Abstract: Systems and methods are provided for converting alkane while generating improved yields of desirable aromatics and/or improved selectivity for forming desired aromatics, such as para-xylene (p-xylene). Aromatics generated during the aromatic formation process can be alkylated to form xylenes with improved yield and/or improved selectivity.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: August 28, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, Glenn C. Wood
  • Patent number: 9976098
    Abstract: Disclosed is a method for producing a quality lubricant base oil (meeting the standard of Group III or higher) comprising: decarbonylating mixed fatty acids derived from oils and fats of biological origin to produce mixed olefins; oligomerizing the mixed olefins to produce an olefinic lubricant base oil; and performing hydrogenation to remove olefins from the olefinic lubricant base oil.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: May 22, 2018
    Assignees: SK INNOVATION CO., LTD., SK LUBRICANTS CO., LTD.
    Inventors: Hee Jung Jeon, Ja Hyun Yang, Tae Jin Kim, Young Hwan Lee, Jong Chan Lee, Wan Seop Kwon, Jin Hee Ok
  • Patent number: 9862655
    Abstract: Methods and systems for producing jet-range hydrocarbons are disclosed herein. In an exemplary embodiment, a method for producing jet-range hydrocarbons includes the steps of combining a first stream including C4 olefinic hydrocarbons and a second stream including C5-C8 olefinic hydrocarbons to produce a third stream including C4-C8 hydrocarbons, oligomerizing the third stream including C4-C8 olefinic hydrocarbons to produce a fourth stream including C4-C20 olefinic hydrocarbons, and separating C5-C8 hydrocarbons from the fourth stream including C4-C20 olefinic hydrocarbons to produce the second stream including C5-C8 olefinic hydrocarbons and a fifth stream including C9-C20 olefinic hydrocarbons. The method further includes the step of hydrogenating the fifth stream including C9-C20 olefinic hydrocarbons to produce a sixth stream including C9-C20 paraffinic jet-range hydrocarbons.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: January 9, 2018
    Assignee: UOP LLC
    Inventors: Geoffrey William Fichtl, James M. Anderson, Michael J. McCall
  • Patent number: 9346734
    Abstract: The invention relates to processes for removing aromatics from the reactants that are fed to a carbonylation reactor. The aromatics are removed using a guard bed that comprises an adsorbent.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: May 24, 2016
    Assignee: CELANESE INTERNATIONAL CORPORATION
    Inventors: G. Paull Torrence, Ronald David Shaver, Yaw-Hwa Liu
  • Patent number: 9314784
    Abstract: The process for producing an olefin dimer of the present invention includes a first step of carrying out a dimerization reaction of an olefin in the presence of a solid phosphoric acid catalyst in which phosphoric acid is supported on inorganic support particles at a reaction temperature of 55 to 300° C. by introducing into a reactor an olefin-containing raw material containing water in an amount of 10 ppm by mass or more and less than the saturated water content at the reaction temperature, thereby preparing a reaction product containing an olefin dimer, a second step of washing the reaction product prepared in the first step at a temperature of 50° C. or higher using an alkaline substance-containing water adjusted to pH 8 to 13 and a third step of washing the reaction product after the alkaline washing in the second step with water at a temperature of 0 to 110° C., thereby preparing an olefin dimer.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: April 19, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Nobuhiro Kimura, Tatsuo Hamamatsu
  • Patent number: 9212108
    Abstract: A process for increasing the production of monoalkylbenzenes is presented. The process includes utilizing a transalkylation process to convert dialkylbenzenes to monoalkylbenzenes. The feed to the transalkylation process has alkylated toluenes and alkylated ethylbenzenes and other alkylated aromatics having small alkyl groups with less than 8 carbons removed to improve the efficiency of the transalkylation process. The recycled dialkylbenzenes and a portion of the recycled benzene are converted to monoalkylbenzenes.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: December 15, 2015
    Assignee: UOP LLC
    Inventors: Stephen W. Sohn, Mark G. Riley, Michael A. Moore
  • Patent number: 9040757
    Abstract: In one embodiment, the present application discloses methods to selectively synthesize higher alcohols and hydrocarbons useful as fuels and industrial chemicals from syngas and biomass. Ketene and ketonization chemistry along with hydrogenation reactions are used to synthesize fuels and chemicals. In another embodiment, ketene used to form fuels and chemicals may be manufactured from acetic acid which in turn can be synthesized from synthesis gas which is produced from coal, biomass, natural gas, etc.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 26, 2015
    Assignee: PIONEER ENERGY
    Inventors: John Henri, Jan Zygmunt, Mark Bergren, Robert Zubrin
  • Publication number: 20150141656
    Abstract: Methods of producing OLED materials containing fluorene ring systems in which two alkyl substituents at the 9-position of fluorene ring are alkyl substituted through key intermediates generically represented by the formula: where X represents a substituent that increases the acidity of the hydrogen atoms on the adjoining methylene group (which is immediately adjacent the fluorene ring systems 9-position).
    Type: Application
    Filed: May 9, 2013
    Publication date: May 21, 2015
    Inventor: Gene Carl Koch
  • Publication number: 20150119542
    Abstract: An electrochemical conversion method for converting at least a portion of a first mixture comprising hydrocarbon to C2+ unsaturates by repeatedly applying an electric potential difference, V(?1), to a first electrode of an electrochemical cell during a first time interval ?1; and reducing the electric potential difference, V(?1), to a second electric potential difference, V(?2), for a second time interval ?2, wherein ?2??1. The method is beneficial, among other things, for reducing coke formation in the electrochemical production of C2+ unsaturates in an electrochemical cell. Accordingly, a method of reducing coke formation in the electrochemical conversion of such mixtures and a method for electrochemically converting carbon to C2+ unsaturates as well as an apparatus for such methods are also provided.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 30, 2015
    Inventors: Walter Weissman, Sumathy Raman, Mark A. Greaney
  • Publication number: 20150119544
    Abstract: The invention relates to processes for converting a mixture of hydrocarbon and sulfur-containing molecules such as mercaptan into products comprising acetylene, ethylene, and hydrogen sulfide, to processes utilizing the acetylene and ethylene resulting from the conversion, and to equipment useful for such processes.
    Type: Application
    Filed: May 31, 2012
    Publication date: April 30, 2015
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Robert D. Denton, Gary D. Mohr
  • Publication number: 20150094505
    Abstract: A method for producing a lubricant base oil that has a predetermined boiling point range, the method including a first step of bringing a feedstock containing a first hydrocarbon oil having a boiling point in the above boiling point range and a second hydrocarbon oil having a lower boiling point than the boiling point range into contact with a hydroisomerization catalyst, wherein the catalyst contains a support that includes a zeolite having a one-dimensional porous structure including a 10-membered ring and a binder, and platinum and/or palladium supported on the support.
    Type: Application
    Filed: March 29, 2013
    Publication date: April 2, 2015
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Marie Iwama, Kazuaki Hayasaka, Yoshiyuki Nagayasu
  • Publication number: 20150094504
    Abstract: Methods are provided for producing a jet fuel composition from a feedstock including a natural oil. The methods include reacting the feedstock with a low-weight olefin in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product. The methods further include hydrogenating the metathesized product under conditions sufficient to form a jet fuel composition.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Applicant: ELEVANCE RENEWABLE SCIENCES, INC.
    Inventors: Melvin L. Luetkens, JR., Steven A. Cohen, Chander Balakrishnan
  • Publication number: 20150094494
    Abstract: An alkylating process such as hydroalkylating process comprising feeding a gas material and a liquid material into the reactor, distributing the liquid material to the upper surface of a bed of a catalyst substantially uniformly. The substantial uniform distribution of the liquid material to the upper surface allows for substantially uniform distribution of liquid reaction medium in the bed, thereby preventing hot spot and undesirable continuous liquid zone, both of which can cause the production of undesired by-products. The invention is particularly useful for the hydroalkylation reaction of benzene in making cyclohexylbenzene, which can be used for making cyclohexanone and phenol.
    Type: Application
    Filed: September 4, 2014
    Publication date: April 2, 2015
    Inventors: Gabor Kiss, Keith H. Kuechler
  • Publication number: 20150073184
    Abstract: Butadiene is made from a butene rich feed, passing a superheated butene rich feed including superheated steam and oxygen at a temperature of at least about 343° C. (650° F.) over a catalyst bed having a depth of over about 69 cm (27 inches) of granules of ferritic oxidative dehydrogenation catalyst. Inlet conditions being controlled such that the oxidative dehydrogenation reactions initially occur in the lower most layers of catalyst. Process control includes monitoring the temperature throughout the bed and increasing the inlet temperature in response to a drop in the temperature in the active layer, when the active layer of oxidative dehydrogenation catalyst begins to become deactivated so that the reaction zone moves upwardly in the oxidative dehydrogenation bed.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 12, 2015
    Inventors: Liana Caciula, Joseph G. Duff, Sirisha Chada, Elizabeth Ballard, Cecil G. McFarland
  • Patent number: 8975461
    Abstract: The present invention in its various embodiments is directed to methods for preparing a renewable jet fuel blendstock, and blendstocks prepared by such methods, comprising fermenting a biomass-derived feedstock to form one or more C2-C6 alcohols such as isobutanol, catalytically dehydrate and oligomerize the alcohols to form higher molecular weight olefins (e.g., C8-C16 olefins), hydrogenating at least a portion of the higher molecular weight olefins to form a renewable jet fuel blendstock comprising C12 and C16 alkanes which meet or exceed the requirements of ASTM D7566-10a for hydroprocessed synthesized paraffinic kerosene (SPK).
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 10, 2015
    Assignee: Gevo, Inc.
    Inventors: Matthew W. Peters, Joshua D. Taylor
  • Patent number: 8975460
    Abstract: A process is proposed for preparing acetylene by the Sachsse-Bartholomé process by combustion of a natural gas/oxygen mixture in one or more burners to obtain a cracking gas which is cooled in two or more stages in burner columns, each burner having one or more burner columns assigned thereto, and said cracking gas being quenched with pyrolysis oil in the first cooling stage, to obtain a low boiler fraction comprising benzene, toluene and xylene from the one or more burner columns, which is cooled with direct cooling water and separated in a phase separator into an aqueous phase and an organic phase which comprises benzene, toluene and xylene and is fully or partly introduced to the top of the one or more burner columns as a return stream, wherein the organic phase comprising benzene, toluene and xylene from the phase separator, prior to full or partial recycling to the top of the one or more burner columns, is supplied to a selective hydrogenation over a catalyst which comprises at least one platinum group m
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: March 10, 2015
    Assignee: BASF SE
    Inventors: Lucia Königsmann, Maximilian Vicari, Thomas Heidemann, Dirk Groβschmidt, Jürgen Michel
  • Publication number: 20150065764
    Abstract: A process for the production of hydrocarbon products from a feed comprising at least one non-pre-treated bio-oil, comprising a first step for hydroreforming in the presence of hydrogen and a hydroreforming catalyst, used alone or as a mixture, to obtain at least one liquid effluent comprising at least one aqueous phase and at least one organic phase, a second step in which at least a portion of the organic phase of the effluent obtained from the first hydroreforming step is recycled to the first hydroreforming step with a recycle ratio equal to the ratio of the mass flow rate of said organic phase to the mass flow rate of the non-pre-treated bio-oil in the range 0.05 to 2 and in which the hydrocarbon effluent obtained from the hydrotreatment and/or hydrocracking step is not recycled to said first hydroreforming step.
    Type: Application
    Filed: February 26, 2013
    Publication date: March 5, 2015
    Inventors: Antoine Daudin, Alain Quignard, Olivier Thinon
  • Publication number: 20150065765
    Abstract: A process for purifying a hydrocarbon feed, using a first adsorption unit with first and second adsorption columns respectively filled with first and second adsorbent solids by simultaneously: a) treating the liquid phase hydrocarbon feed in the first adsorption column by contact with the first adsorbent solid to adsorb at least a portion of impurities present and to produce hydrocarbon effluent which is depleted in impurities; b) treating a secondary liquid hydrocarbon feed constituted either by a fraction of the hydrocarbon feed or by a fraction of the hydrocarbon effluent and depleted in impurities to purify the secondary liquid hydrocarbon feed; c) heating the treated secondary liquid hydrocarbon feed from step b); d) regenerating the second adsorbent solid of the second adsorption column which comprises impurities with the secondary hydrocarbon feed heated in step c) to desorb the impurities to produce an effluent with impurities.
    Type: Application
    Filed: March 11, 2013
    Publication date: March 5, 2015
    Applicant: AXENS
    Inventors: Isabelle Villechange, Tom Frising
  • Publication number: 20150057478
    Abstract: A method for producing a hydroisomerization catalyst includes a first step of preparing a support precursor by heating a mixture containing an ion-exchanged zeolite and a binder, the ion-exchanged zeolite being prepared by ion-exchanging an organic template-containing zeolite which contains an organic template and has a one-dimensional pore structure including a 10-membered ring in a solution containing ammonium ions and/or protons, at a temperature of 250 to 350° C. under N2 atmosphere, and a second step of preparing a hydroisomerization catalyst, which is prepared by calcining a catalyst precursor, the catalyst precursor being prepared based on the support precursor containing a platinum salt and/or a palladium salt, at a temperature of 350 to 400° C. in an atmosphere containing molecular oxygen, the hydroisomerization catalyst containing a support which includes a zeolite and carries platinum and/or palladium.
    Type: Application
    Filed: March 29, 2013
    Publication date: February 26, 2015
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yoshiyuki Nagayasu, Kazuaki Hayasaka, Mayumi Yokoi, Koshi Takahama
  • Patent number: 8957266
    Abstract: Provided are processes for making one or more unsaturated oligomeric acids and one or more saturated hydrocarbons. In one form, a process for making one or more saturated hydrocarbons includes oligomerizing one or more unsaturated carboxylic acids having from 4 to 38 carbon atoms in the presence of a molecular sieve catalyst to form one or more unsaturated oligomeric acids including less than 90% by weight of cyclic oligomers, and hydrogenating the one or more unsaturated oligomeric acids via contact with hydrogen in the presence of a hydrogenation catalyst to form one or more saturated hydrocarbons. The oligomerizing of unsaturated fatty acids is from renewable biological sources to form dimer acids. The one or more saturated hydrocarbons are useful as lubricant base oils.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: February 17, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, Margaret May-Som Wu, David Lawrence Stern
  • Publication number: 20150044129
    Abstract: The invention relates to a method for processing coke oven gas, said coke oven gas containing hydrogen, wherein the coke oven gas is at least partially integrated into a method for producing dimethyl ether in conjunction with a gas containing carbon monoxide and/or carbon dioxide, whereby a DME-containing product gas is formed. At the outset of the method for the formation of dimethyl ether, a ratio of hydrogen to carbon monoxide, weighted with the carbon dioxide concentration (formula (I)), of 0.9 to 1.1 is set, wherein the DME-containing product gas is integrated into a method for converting dimethyl ether to olefins, whereby an olefin-containing product gas is formed, and wherein olefins, in particular ethylene and/or propylene, is/are separated from the olefin-containing product gas by means of separating methods.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 12, 2015
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventors: Nicole Schodel, Ernst Haidegger, Holger Schmigalle, Volker Goke, Harald Schmaderer
  • Publication number: 20150025266
    Abstract: In one embodiment, the present application discloses methods to selectively synthesize higher alcohols and hydrocarbons useful as fuels and industrial chemicals from syngas and biomass. Ketene and ketonization chemistry along with hydrogenation reactions are used to synthesize fuels and chemicals. In another embodiment, ketene used to form fuels and chemicals may be manufactured from acetic acid which in turn can be synthesized from synthesis gas which is produced from coal, biomass, natural gas, etc.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 22, 2015
    Applicant: Pioneer Energy, Inc.
    Inventors: John Henri, Jan Zygmunt, Mark Berggren, Robert Zubrin
  • Patent number: 8937186
    Abstract: Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes removing at least a portion of acids from a hydrocarbon stream. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process. The method according to certain aspects includes controlling the level of acids in the hydrocarbon stream by use of adsorbents or basic solutions.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: January 20, 2015
  • Publication number: 20150011813
    Abstract: A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100° C. and up to 550° C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 8, 2015
    Inventors: Chaitanya K. Narula, Brian H. Davison
  • Publication number: 20150011808
    Abstract: A method/fuels for making high-density, high-octane fuels, the high-density, high-octane including, dimerizirig terpene monomer(s), crude mixture of terpene(s), and/or oxygenated terpenoid(s) with at least one heterogeneous dimerization acid catalyst at temperatures ranging from about 25° C. to about 160° C. to produce a mixture of residual/isomerized monomer(s) cymene(s), and terpene dimer(s), hydrogenating the mixture of residual/isomerized monomer(s), p-cymene(s), and terpene dimer(s) with at least one heterogenous catalyst(s) under a hydrogen atmosphere to produce a hydrogenated mixture of cymene(s), saturated cyclic molecules of terpene(s), other aromatic(s), and/or saturated terpene dimer(s), and isolating the hydrogenated mixture of cymene(s), saturated cyclic terpene(s), other aromatic(s), and saturated terpene dimer(s) by fractional distillation to yield a high boiling fraction composed of terpene dimers and mixture low boiling fraction composed of hydrogenated monomer(s) and cymenes.
    Type: Application
    Filed: February 4, 2014
    Publication date: January 8, 2015
    Inventors: Benjamin G. Harvey, Heather A. Meylemans, Michael E. Wright
  • Publication number: 20140378719
    Abstract: A method can include reacting a stream including one or more C3 to C10 alkanes with bromine in a bromination reactor to form a bromination reactor discharge stream that includes alkylbromides and HBr. The method further includes coupling the alkylbromides in a coupling reactor to form a coupling reactor effluent comprising alkylbromides having between 5 and about 1000 carbon atoms, olefins having between 5 and about 1000 carbon atoms and HBr. The method also includes hydrogenating the alkylbromides having between 5 and about 1000 carbon atoms and olefins having between 5 and about 1000 carbon atoms to form alkanes having between 5 and about 1000 carbon atoms and HBr.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Jeffrey H. Sherman, Peter Stoimenov
  • Publication number: 20140364664
    Abstract: Various substantially styrene-, methylstyrene- and ethylbenzene-free C6-C9 aromatic hydrocarbon blends are produced from a hydrocarbon feed stream containing C5-C9 aromatic hydrocarbons including styrene, methylstyrene and sulphur compounds by first separating the stream into a distillate containing C5-C7 hydrocarbons, and a bottoms fraction containing C8 and C9 hydrocarbons; and converting the styrene and methylstyrene to their corresponding ethers by reacting with a C1-C3 lower alcohol in the presence of a selective acidic etherification catalyst. The effluent may be sent to a gasoline pool for blending or the effluent is separated by distillation into an ether stream and either a C8 or a C8-C9 aromatic hydrocarbon rich stream. The C5-C7 distillate is hydrogenated.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventors: Karl Tze-Tang CHUANG, Tzong-Bin LIN, Cheng-Tsung HONG, Yung-Sheng HO, Kuang-Yeu WU
  • Publication number: 20140343335
    Abstract: Fouling rate inhibition for a hydrogenation reactor. A hydrocarbon hydrogenation method comprises passing a liquid feedstream through a magnetic field to separate magnetically susceptible particles, and introducing the magnetically lean stream into a fixed catalyst bed under hydrogenation conditions to saturate carbon-carbon double bonds in the hydrocarbon. Also, a hydrogenation reactor system comprises a magnetic conditioning zone, an inlet flow path to introduce a magnetically lean stream from the magnetic conditioning zone into a fixed catalyst bed and an outlet flow path from an outlet end of the catalyst bed to withdraw reactor effluent.
    Type: Application
    Filed: March 28, 2014
    Publication date: November 20, 2014
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Jerome Pellette, Kirk C. Nadler, Jeffrey M. Sharp, II
  • Patent number: 8889935
    Abstract: A process for preparing 1-butene and a 1,3-butadiene derivative, containing the steps of a) non-oxidatively catalytically dehydrogenating a feedstock gas stream containing n-butane, hydrogen, other low-boiling secondary constituents and high boilers, to form a product mixture containing unreacted n-butane, 1-butene, 2-butenes, 1,3-butadiene, hydrogen, other low-boiling secondary constituents and high boilers; b) removing hydrogen, other low boilers and high boilers, to give a product mixture containing n-butane, 1-butene, two 2-butenes and 1,3-butadiene; c) reacting some of the 1,3-butadiene obtained in the removing b), to form a derivative; d) removing the 1,3-butadiene derivative obtained in the reacting c); e) selectively hydrogenating the 1,3-butadiene not derivatized in the reacting c), to form 1-butene; and f) distillatively removing 1-butene from the hydrocarbon stream obtained in the hydrogenating e), to leave a residual stream.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: November 18, 2014
    Assignee: Evonik Degussa GmbH
    Inventor: Dietrich Maschmeyer
  • Publication number: 20140316177
    Abstract: A modified catalyst is described which can be used as a dehydration/hydrogenation catalyst in a multistage catalyst system for the catalysed production of saturated hydrocarbons from carbon oxides and hydrogen. The modified catalyst comprises: an acidic substrate comprising an M1-zeolite or M1-silicoalumino phosphate (SAPO) catalyst, where M1 is a metal; and a modifier including a metal M2. M2 comprises an alkali metal or alkaline earth metal. In examples described the modifier includes a Group II metal, for example Ca.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 23, 2014
    Applicants: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES, BP P.L.C.
    Inventors: Qingjie Ge, Xiangang Ma, Chuanyan Fang, Hengyong Xu
  • Publication number: 20140296588
    Abstract: A method of producing butene from an oxygenate-containing feedstock is described. The oxygenate-containing feedstock is converted to olefins and separated. The C4 isoolefins are then etherified and separated. The normal C4 olefins can be used to produce butadiene.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Applicant: UOP LLC
    Inventors: Andrea G. Bozzano, Steven L. Krupa, Timothy Foley
  • Publication number: 20140296570
    Abstract: The invention relates to a process for converting hydrocarbons into products containing aldehydes and/or alcohols. The invention also relates to producing olefins from the aldehyde and alcohol, to polymerizing the olefins, and to equipment useful for these processes.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 2, 2014
    Applicant: Exxonmobile Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz
  • Publication number: 20140288338
    Abstract: The present invention relates to the field of biomass derived fuels. It further relates to thermochemical production of liquids (biooils) from biomass. Specifically the present invention relates to methods of upgrading biooil. More specifically it relates to a method for upgrading biooil comprising contacting a dispersed mixture of hydrocarbon liquids, biooil, and partially upgraded biooil, with a transition metal containing catalyst and hydrogen gas at a temperature of around 330° C. and a pressure of about 1700 psi (11.7 MPa) for a period of time sufficient to reduce the oxygen content of the biooil such that it separates on cooling into an aqueous phase and an organic phase, and optionally, to further subject the organic phase to hydrotreating, hydrocracking or catalytic cracking to produce a mixture of hydrocarbons boiling in the range of gasoline, diesel and jet fuel.
    Type: Application
    Filed: June 4, 2014
    Publication date: September 25, 2014
    Applicants: IFP ENERGIES NOUVELLES, DYNAMOTIVE ENERGY SYSTEMS
    Inventors: Desmond RADLEIN, Alain QUIGNARD
  • Publication number: 20140256992
    Abstract: In one embodiment, the present application discloses methods to selectively synthesize higher alcohols and hydrocarbons useful as fuels and industrial chemicals from syngas and biomass. Ketene and ketonization chemistry along with hydrogenation reactions are used to synthesize fuels and chemicals. In another embodiment, ketene used to form fuels and chemicals may be manufactured from acetic acid which in turn can be synthesized from synthesis gas which is produced from coal, biomass, natural gas, etc.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: PIONEER ENERGY
    Inventors: John Henri, Jan Zygmunt, Mark Bergren, Robert Zubrin
  • Publication number: 20140256999
    Abstract: Algae oil feeds comprise a wide range of molecular species forming a complex mixture of molecules having varying sizes and therefore varying boiling points, comprise high nitrogen, oxygen, and fatty acid content, but comprise low sulfur, saturated hydrocarbons, and triglycerides. The wide range of molecular species in the algae oil feeds, very unusual compared to conventional refinery feedstocks and vegetable oils, may be upgraded into fuels by conventional refining approaches such as thermal and/or catalytic-hydroprocessing. Hydrotreating at high pressure over large-pore catalyst, and optionally followed by FCC cracking, has shown a beneficial product slate including coke yield. Thermal treatment prior to hydrotreating may improve hydrotreating feedstock quality.
    Type: Application
    Filed: October 29, 2012
    Publication date: September 11, 2014
    Inventors: Stilianos G. Roussis, Richard J. Cranford, Daniel J. Sajkowski
  • Publication number: 20140221710
    Abstract: A feedstream comprising paraxylene and styrene is contacted, in the presence of hydrogen, with a catalyst comprising at least one metal, selected from one or more metals selected from Groups 8-10.
    Type: Application
    Filed: January 27, 2014
    Publication date: August 7, 2014
    Inventors: Tan-Jen Chen, John Di-Yi Ou, Jeevan S. Abichandani, Glenn Allen Heeter
  • Publication number: 20140221711
    Abstract: A system and process to make cyclic, saturated hydrocarbons from aromatic hydrocarbon intermediates from catalyzed nonoxidative dehydroaromatization (DHA) of methane. The system includes two reaction zones, one containing a dehydroaromatization catalyst and a second containing a hydrogenation catalyst. Methane reacts in the first reaction zone with the DHA catalyst resulting in aromatic hydrocarbons concomitantly produced with hydrogen gas. The hydrogen gas is removed and introduced to the second reaction zone with the aromatic hydrocarbon to reductively produce saturated, cyclic hydrocarbons.
    Type: Application
    Filed: April 9, 2014
    Publication date: August 7, 2014
    Applicant: Ceramatec, Inc.
    Inventor: Pallavi Chitta
  • Publication number: 20140221709
    Abstract: A process for upgrading residuum hydrocarbons is disclosed. The process may include: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventors: Mario C. Baldassari, Ujjal K. Mukherjee, Ann-Marie Olsen, Marvin I. Greene
  • Publication number: 20140221684
    Abstract: The present disclosure includes a system and method for co-producing a first product and a second product. The system may include a first electrochemical cell, at least one second reactor, and an acidification chamber. The method and system for co-producing a first product and a second product may include co-producing a carboxylic acid and at least one of an alkene, alkyne, aldehyde, ketone, or an alcohol while employing a recycled halide salt.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur
  • Publication number: 20140213835
    Abstract: One exemplary embodiment can be a process for alkylating and hydrogenating a light cycle oil. The process can include passing the light cycle oil, one or more C2-C6 alkenes, and hydrogen through a reaction vessel containing an alkylation zone and a hydrogenation zone. Generally, the hydrogen is at least partially comprised from a hydrocarbon product stream from a fluid catalytic cracking zone.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicant: UOP LLC
    Inventors: Deng-Yang Jan, Vasant P. Thakkar, Christopher P. Nicholas
  • Publication number: 20140206915
    Abstract: The present invention relates to a new process which comprises the steps of hydrotreating, paraffin disproportionation and hydroisomerization to convert biological hydrocarbonaceous oxygenated oils comprising triglycerides into biologically-derived paraffinic jet/diesel fuels, solvents and base oils. A combination of conventional hydrogenation/dehydrogenation catalysts, such as Pt/Al2O3, and conventional olefin metathesis catalysts, such as WO3/SiO2, or inexpensive variations thereof, is generally employed in the paraffin disproportionation step.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 24, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Cong-Yan Chen, Dennis John O'Rear, Thomas Francis Finger, Stephen Joseph Miller, Alexander Kuperman
  • Patent number: 8785702
    Abstract: A process for making diesel and turbine fuels including, providing an effective amount of branched olefins, adding active heterogeneous acid catalyst(s) to said branched olefins to produce a solvent-free mixture, heating said solvent-free mixture greater than about 100° C. for a desired amount of time depending on various conditions, to produce C16 dimers/catalyst mixture, removing said catalysts from said dimers/catalyst mixture, and adding hydrogenation catalyst(s) to said dimers under hydrogen atmosphere to produce a mixture of stable fuels.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: July 22, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Benjamin G. Harvey, Roxanne L. Quintana, Michael E. Wright
  • Publication number: 20140200376
    Abstract: The disclosure provides for hydrocarbon production by hydrogenation and oligomerizaton and, more particularly, to catalysis of alkanes and alkenes by a tandem transfer hydrogenation and oligomerization.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 17, 2014
    Applicant: California Institute of Technology
    Inventors: David Leitch, Jay A. Labinger, John E. Bercaw, Yan Choi Lam
  • Patent number: 8766028
    Abstract: The invention disclosed relates to a process for refining a hydrocarbon feed to make substantially styrene-free C6-C8 aromatic hydrocarbons (BTX). The hydrocarbon feed, for example, unhydrotreated pyrolysis gasoline, is distilled to make a BTX rich stream containing styrene which is fractionated to separate C6 and C7 hydrocarbons from C8 hydrocarbons including styrene. Styrene in the C8 hydrocarbons reacts in the presence of a selective etherification catalyst with a C1-C3 lower alkyl alcohol to form the corresponding styrene ether, which is then separated by distillation into a styrene ether stream and a C8 hydrocarbons rich stream. The C8 hydrocarbons rich stream is then re-mixed with the C6 and C7 hydrocarbons, and sent to hydrogenation reactors to remove sulphur and olefinic hydrocarbons to form substantially styrene-free BTX.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: July 1, 2014
    Assignees: AMT International Inc., CPC Corporation
    Inventors: Kuang-Yeu Wu, Adam T. Lee, Karl Tze-Tang Chuang, Hung-Chung Shen, Tzong-Bin Lin