And Preliminary Isomerization Or Polymerization Patents (Class 585/332)
  • Patent number: 11584890
    Abstract: Provided is a continuous process for converting waste plastic into recycle for polypropylene polymerization. The process comprises selecting waste plastics containing polyethylene and/or polypropylene, and passing the waste plastics through a pyrolysis reactor to thermally crack at least a portion of the polyolefin waste and produce a pyrolyzed effluent. The pyrolyzed effluent is separated into offgas, a naphtha/diesel fraction, a heavy fraction, and char. Pyrolysis oil and wax, comprising naphtha/diesel and heavy fractions, is passed to a refinery FCC unit. A liquid petroleum gas C3 olefin/paraffin mixture is recovered from the FCC unit. The C3 paraffins and C3 olefins are separated into different fractions with the C3 olefin fraction passed to a propylene polymerization reactor, and the C3 paraffin fraction passed optionally to a dehydrogenation unit to produce additional propylene.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: February 21, 2023
    Assignee: Chevron U.S.A. Inc.
    Inventor: Hye-Kyung Timken
  • Patent number: 10866836
    Abstract: Provided are a method, an apparatus, and an electronic device for request scheduling of hybrid edge computing, wherein the request scheduling method includes: obtaining situations of a topological structure, computing resources and communication resources of a communication network; determining the number of hybrid edge servers placed in the communication network; dividing a problem of an optimal request scheduling path of the hybrid edge server into sub-problems of Mixed-Integer Non-Linear Programming (MINLP) models according to the situations of the topological structure, the number, the computing resources and the communication resources of the network; establishing the MINLP model according to the sub-problems respectively; converting the MINLP model into a Mixed-Integer Linear Programming (MILP) equation; and solving the MILP equation to obtain a placement node of the hybrid edge server and a target server for processing communication requests.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: December 15, 2020
    Inventor: Deke Guo
  • Patent number: 10023533
    Abstract: A process for converting light paraffins to heavier paraffinic hydrocarbon fluids is disclosed. The process involves: (1) oxidation of iso-paraffins to alkyl hydroperoxides and alcohols; (2) conversion of the alkyl hydroperoxides and alcohols to dialkyl peroxides; and (3) radical-initiated coupling of paraffins and/or iso-paraffins using the dialkyl peroxides as radical initiators, thereby forming heavier hydrocarbon products. Fractionation of the heavy hydrocarbon products can then be used to isolate fractions for use as hydrocarbon fluids.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: July 17, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: Kun Wang
  • Patent number: 9783739
    Abstract: A Fischer-Tropsch synthesis process (10) includes feeding gaseous reactants (20) including at least CO, H2 and CO2into a reactor (14) holding an iron-based catalyst. The H2 and CO are fed in a H2:CO molar ratio of at least 2:1 and the CO2 and CO are fed in a CO2:CO molar ratio of at least 0.5:1. The reactor (14) is controlled at an operating temperature in the range from about 260° C. to about 300° C. A liquid product (22) and a gaseous product (24) including hydrocarbons, CO, H2, water and CO2 are withdrawn from the reactor (14).
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: October 10, 2017
    Assignee: Sasol Technology Propietary Limited
    Inventor: Frederick Gideon Botes
  • Patent number: 9688626
    Abstract: A process for converting light paraffins (especially C3-C5) to middle distillate and higher boiling range liquid hydrocarbons by (1) oxygen or air oxidation of iso-paraffins to alkyl hydroperoxides; (2) conversion of alkyl hydroperoxides to dialkyl peroxides; (3) radical coupling of paraffins using the dialkyl peroxides as radical initiators forming heavier hydrocarbon products; and (4) fractionation of the heavy hydrocarbon products. The net reaction is catalytically converting light paraffins to heavier hydrocarbons using oxygen or air to effect the conversion.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: June 27, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, Suzzy Chen Hsi Ho, William N. Olmstead
  • Patent number: 9683176
    Abstract: Process and plant for conversion of a feed hydrocarbon stream to liquid hydrocarbon products in a small scale GTL plant, comprising the use of a cryogenic air separation unit (ASU), optionally together with vacuum pressure swing adsorption (VPSA), an autothermal reformer (ATR) or catalytic partial oxidation (CPO), and pressure swing adsorption (PSA) unit to produce a synthesis gas for downstream Fischer-Tropsch (FT) synthesis for production of liquid hydrocarbons.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: June 20, 2017
    Assignee: Haldor Topsøe A/S
    Inventor: Thomas Sandahl Christensen
  • Patent number: 9637423
    Abstract: An integrated process for converting low-value paraffinic materials to high octane gasoline and high-cetane diesel light is disclosed. The process involves: (1) oxidation of an iso-paraffin to alkyl hydroperoxide and alcohol; (2) converting the alkyl hydroperoxide and alcohol to dialkyl peroxide; (3) converting low-octane, paraffinic gasoline molecules using the dialkyl peroxides as radical initiators, thereby forming high-cetane diesel, while the dialkyl peroxide is converted to an alcohol; (4) converting the alcohol to an olefin; and (5) alkylating the olefin with iso-butane to form high-octane alkylate. The net reaction is thus conversion of iso-paraffin to high-octane gasoline alkylate, and conversion of low-octane paraffinic gasoline to high-cetane diesel.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 2, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kun Wang, Shamel Merchant
  • Patent number: 9637424
    Abstract: A process for converting light paraffins to a high octane gasoline composition is disclosed. The process involves: (1) oxidation of iso-paraffins to alkyl hydroperoxides and alcohol; (2) conversion of the alkyl hydroperoxides and alcohol to dialkyl peroxides; and (3) radical coupling of iso-paraffins using the dialkyl peroxides as radical initiators, thereby forming gasoline-range molecules. Fractionation of the gasoline-range molecules can then be used to isolate high octane gasoline fractions having a road octane number [(RON+MON)/2] greater than 110.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 2, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Kun Wang
  • Publication number: 20150073188
    Abstract: Methods of optimal refinery design utilizing a thermochemical based superstructure are provided. Methods of producing liquid fuels utilizing a refinery selected from a thermochemical based superstructure are provided. Thermochemical based superstructures are provided. Refineries are provided.
    Type: Application
    Filed: March 1, 2013
    Publication date: March 12, 2015
    Inventors: Christodoulos A. Floudas, Richard C. Baliban, Josephine A. Elia
  • Publication number: 20150005542
    Abstract: Processes for the disproportionation and isomerization of a C5 hydrocarbon feed using a liquid catalyst comprising an ionic liquid and a halocarbon carbocation promoter are described. The ionic liquid is unsupported, and the reactions occur at temperatures below about 200° C.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Stuart Smith, Alakananda Bhattacharyya, Dana K. Sullivan
  • Publication number: 20150005541
    Abstract: Processes for the disproportionation and isomerization of a C7 hydrocarbon feed using a liquid catalyst comprising an ionic liquid and a carbocation promoter are described. The ionic liquid is unsupported, and the reactions occur at temperatures below about 200° C.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Stuart Smith, Alakananda Bhattacharyya
  • Publication number: 20150005545
    Abstract: Processes for the disproportionation and isomerization of a C5 hydrocarbon feed using a liquid catalyst comprising an ionic liquid and a carbocation promoter are described. The ionic liquid is unsupported, and the reactions occur at temperatures below about 200° C.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Stuart Smith, Alakananda Bhattacharyya
  • Publication number: 20150005544
    Abstract: Processes for the disproportionation and isomerization of a C7 hydrocarbon feed using a liquid catalyst comprising an ionic liquid and a carbocation promoter are described. The ionic liquid is unsupported, and the reactions occur at temperatures below about 200° C.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Stuart Smith, Alakananda Bhattacharyya
  • Publication number: 20150005540
    Abstract: Processes for the disproportionation and isomerization of a hydrocarbon feed using a liquid catalyst comprising an ionic liquid and a carbocation promoter are described. The ionic liquid is unsupported, and the reactions occur at temperatures below about 200° C.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Stuart Smith, Alakananda Bhattacharyya
  • Publication number: 20150005543
    Abstract: Processes for the disproportionation and isomerization of a hydrocarbon feed using a liquid catalyst comprising an ionic liquid and a carbocation promoter are described. The ionic liquid is unsupported, and the reactions occur at temperatures below about 200° C.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Stuart Smith, Alakananda Bhattacharyya
  • Patent number: 8728301
    Abstract: Integrated isomerization and ionic liquid catalyzed alkylation processes may comprise integrating ionic liquid alkylation and n-butane isomerization using a common distillation unit for separating an n-butane containing fraction from at least one of an alkylation hydrocarbon phase from an ionic liquid alkylation reactor and an isomerization hydrocarbon stream from an isomerization unit. The n-butane containing fraction may undergo isomerization to provide an isomerization reactor effluent comprising the isomerization hydrocarbon stream. An isobutane containing fraction, separated from at least one of the alkylation hydrocarbon phase and the isomerization hydrocarbon stream, may be recycled from the distillation unit to the ionic liquid alkylation reactor.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: May 20, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: Hye Kyung Cho Timken
  • Patent number: 8524962
    Abstract: A process for producing a feedstock for gasolines having very little aromatic concentrations is disclosed. The present process uses by-product olefins and alkanes to produce an alkylate for use in gasoline blending.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: September 3, 2013
    Assignee: UOP LLC
    Inventors: John J. Senetar, David A. Wegerer, Gavin P. Towler
  • Patent number: 8495880
    Abstract: Embodiments of a system are disclosed that include a heat source, an endothermic process module, and a fuel source configured to supply fuel to the endothermic process module and to receive isomerized fuel from the endothermic process module. A controller includes logic instructions operable to receive information regarding temperature of fuel received by the endothermic process module, and regulate application of heat from the heat source to the fuel at the endothermic process module. The endothermic process module includes a catalyst that increases the thermal carrying capacity of the fuel by isomerizing fuel from the fuel source.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: July 30, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: Edward H. Allen
  • Patent number: 8471084
    Abstract: The process converts FCC olefins to heavier compounds. The heavier compounds are more easily separated from the unconverted paraffins. The heavier compounds can be recycled to an FCC unit or delivered to a separate FCC unit. Suitable conversion zones are oligomerization and aromatic alkylation zones.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: June 25, 2013
    Assignee: UOP LLC
    Inventors: Joao Jorge da Silva Ferreira Alves, James E. Rekoske, Christopher P. Nicholas
  • Publication number: 20130012745
    Abstract: The invention relates to method for producing hydrocarbon components comprising isoparaffins from feedstock of biological origin comprising linear unsaturated fatty acids to produce diesel fuel components comprising the steps of a) converting at least part of linear unsaturated fatty acids comprised in the feedstock to corresponding branched fatty acids, and b) hydrodeoxygenating the said branched fatty acids and remaining linear fatty acids to corresponding isoparaffins and n-paraffins. The invention further relates to an arrangement for implementing the method of the invention.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Applicant: UPM-Kymmene Corporation
    Inventors: Pekka KNUUTTILA, Jaakko NOUSIAINEN
  • Patent number: 8350108
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to paraffins useful as liquid fuels. The process involves the conversion of water soluble oxygenated hydrocarbons to oxygenates, such as alcohols, furans, ketones, aldehydes, carboxylic acids, diols, triols, and/or other polyols, followed by the subsequent conversion of the oxygenates to paraffins by dehydration and alkylation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: January 8, 2013
    Assignee: Virent, Inc.
    Inventors: Randy D. Cortright, Paul G. Blommel, Michael J. Werner, Matthew R. Vanstraten
  • Patent number: 8319001
    Abstract: A process for reacting an iso-pentane, comprising: a) partially converting an olefinic feedstock comprising at least 15 wt % iso-pentene to make a converted olefinic feedstock, wherein the iso-pentene is reduced and an amount of 2-pentene is retained; and b) alkylating the iso-pentane with the converted olefinic feedstock to make a naphtha and a middle distillate.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 27, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventor: Sven Hommeltoft
  • Patent number: 8319000
    Abstract: A process for reacting an iso-pentane, comprising: alkylating the iso-pentane with a converted olefinic feedstock comprising at least 5 wt % C5 olefins, wherein the C5 olefins in the converted olefinic feedstock are predominantly 2-pentene, to make a naphtha and a middle distillate, and wherein a formation of iso-butane during the alkylating is less than 35 wt % of an amount of olefins in the converted olefinic feedstock.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 27, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventor: Sven Hommeltoft
  • Patent number: 8314278
    Abstract: Disclosed herein is a process for producing isoprene that includes reacting a mixed C4 metathesis feed stream comprising isobutylene and at least one of 1-butene and 2-pentene in a first metathesis reactor in the presence of a first metathesis catalyst under conditions sufficient to produce an intermediate product stream comprising at least 30 wt. % 2-methyl-2-pentene based upon the olefin content of fresh feed in the mixed C4 feed stream, and at least one of ethylene and propylene, separating the 2-methyl-2-pentene, subjecting the separated 2-methyl-2-pentene to pyrolysis to produce a reaction product stream comprising isoprene, and separating the isoprene into an isoprene product stream using fractionation. A system used in producing isoprene is also disclosed.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: November 20, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Robert J Gartside, Shane R Kleindienst
  • Patent number: 8299311
    Abstract: A process for reacting an iso-pentane with an olefinic feedstock, comprising: a) partially converting one or more olefins in the olefinic feedstock with an ionic liquid catalyst to make a converted olefinic feedstock, wherein linear internal olefins remain unconverted; and b) alkylating the converted olefinic feedstock with the iso-pentane. A process, comprising: alkylating an iso-pentane with a converted olefinic feedstock comprising at least 5 wt % C5 olefins, wherein the C5 olefins in the converted olefinic feedstock are predominantly 2-pentene, to make a naphtha and a middle distillate, and wherein a formation of iso-butane during the alkylating is low. Also a process, comprising: a) partially converting an olefinic feedstock comprising at least 15 wt % iso-pentene to make a converted olefinic feedstock, wherein the iso-pentene is reduced and an amount of 2-pentene is retained; and b) alkylating the iso-pentane with the converted olefinic feedstock to make a naphtha and a middle distillate.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: October 30, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventor: Sven Ivar Hommeltoft
  • Patent number: 8288601
    Abstract: A process for reacting an iso-alkane, comprising: a) partially converting one or more olefins in an olefinic feedstock to make a converted olefinic feedstock, wherein the converting is different from isomerization; b) isolating from the converted olefinic feedstock: i. an enriched feed that has linear internal olefins, and ii. products having a boiling point of 150° C. or higher; and c) alkylating the iso-alkane with the enriched feed to make an alkylate gasoline blending component.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: October 16, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Sven Ivar Hommeltoft, Hye Kyung Cho Timken, Steve Sarup Mathur
  • Publication number: 20120226083
    Abstract: A process for reacting an iso-alkane, comprising: a) partially converting one or more olefins in an olefinic feedstock to make a converted olefinic feedstock, wherein the converting is different from isomerization; b) isolating from the converted olefinic feedstock: i. an enriched feed that has linear internal olefins, and ii. products having a boiling point of 150° C. or higher; and c) alkylating the iso-alkane with the enriched feed to make an alkylate gasoline blending component.
    Type: Application
    Filed: May 14, 2012
    Publication date: September 6, 2012
    Applicant: Chevron U.S.A. Inc.
    Inventors: Sven Ivar Hommeltoft, Hye Kyung Cho Timken, Steve Sarup Mathur
  • Patent number: 8247628
    Abstract: A process for reacting an iso-alkane, comprising: a) partially converting one or more olefins in an olefinic feedstock with an ionic liquid catalyst to make a converted olefinic feedstock; and b) alkylating the iso-alkane with the converted olefinic feedstock, wherein a reaction heat that is evolved during the alkylating is at least 20% less than if the alkylating step is done with the iso-alkane and the olefinic feedstock without the partially converting step. Also, a process for reacting an iso-alkane, comprising: a) partially converting one or more olefins in an olefinic feedstock to make a converted olefinic feedstock, wherein the converting is different from isomerization; b) isolating from the converted olefinic feedstock: i. an enriched feed that has linear internal olefins, and ii. products having a boiling point of 150° C. or higher; and c) alkylating the iso-alkane with the enriched feed to make an alkylate gasoline blending component.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 21, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Sven Ivar Hommeltoft, Hye-Kyung C. Timken, Steve S. Mathur
  • Patent number: 8198494
    Abstract: A process for producing alkylate comprising contacting a first hydrocarbon stream comprising at least one olefin having from 2 to 6 carbon atoms which contains 1-butene with an isomerization catalyst under conditions favoring the isomerization of 1-butene to 2-butene so the isomerized stream contains a greater concentration of 2-butene than the first hydrocarbon stream and contacting the isomerized stream and a second hydrocarbon stream comprising at least one isoparaffin having from 4 to 6 carbon atoms with an acidic ionic liquid catalyst under alkylation conditions to produce an alkylate stream, wherein the alkylate stream has a RON that is increased from 5 to 32 numbers compared to a comparison alkylate stream made from the first hydrocarbon stream without the step of contacting with the isomerization catalyst.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: June 12, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Hye Kyung C. Tlmken
  • Patent number: 8178736
    Abstract: Disclosed herein is a process for producing isoprene that includes reacting a mixed C4 metathesis feed stream comprising isobutylene and at least one of 1-butene and 2-pentene in a first metathesis reactor in the presence of a first metathesis catalyst under conditions sufficient to produce an intermediate product stream comprising at least 30 wt. % 2-methyl-2-pentene based upon the olefin content of fresh feed in the mixed C4 feed stream, and at least one of ethylene and propylene, separating the 2-methyl-2-pentene, subjecting the separated 2-methyl-2-pentene to pyrolysis to produce a reaction product stream comprising isoprene, and separating the isoprene into an isoprene product stream using fractionation. A system used in producing isoprene is also disclosed.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: May 15, 2012
    Assignee: Lummus Technology Inc.
    Inventors: Robert J Gartside, Shane R Kleindienst
  • Patent number: 8178737
    Abstract: A process for producing propylene from ethylene and a feed stream comprising 1-butene, 2-butene, n-butane, and isobutane is disclosed. A butenes stream (1-butene and 2-butene) is produced from the feed stream by removing the paraffins. The butenes stream is reacted in the presence of an isomerization catalyst to produce an isomerized stream with increased concentration of 2-butene. The isomerized stream is reacted with ethylene in the presence of a metathesis catalyst to produce a reaction mixture comprising propylene; the propylene may be isolated from the reaction mixture by distillation. The removal of paraffins from the feed stream improves the catalyst productivity and the plant throughput.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: May 15, 2012
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: David W. Leyshon
  • Patent number: 8153854
    Abstract: A process for producing an alkylate having a low Reid vapor pressure, the process including: contacting a C6+-containing hydrocarbon stream with a mixture of isopentane and isobutane in the presence of an acid catalyst in an alkylation reactor to form a dilute alkylate product, wherein the C6+-containing hydrocarbon stream includes at least one of oligomers of C3 to C5 olefins and a dilute alkylate produced by contacting an isoparaffin with at least one of C3 to C5 olefins and oligomers of C3 to C5 olefins; fractionating the dilute alkylate product to form an isobutane-rich fraction, a n-butane-rich fraction, a fraction containing isopentane, and an alkylate product having a Reid vapor pressure less than 0.35 bar (5 psi); recycling at least a portion of the fraction containing isopentane to the alkylation reactor.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: April 10, 2012
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein, William M. Cross, Jr.
  • Patent number: 8143469
    Abstract: The invention relates to a process for producing saturated C5-C28 hydrocarbons, suitable as diesel fuels, kerosenes and gasolines, comprising the steps where feedstock derived from starting material of biological origin, is subjected to a condensation step and subsequently subjected to a combined hydrodefunctionalization and isomerization step.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: March 27, 2012
    Assignee: Neste Oil Oyj
    Inventors: Eija Koivusalmi, Rami Piilola, Pekka Aalto
  • Publication number: 20120053380
    Abstract: A process comprising contacting an olefin feed from a Fischer-Tropsch condensate with an isoparaffin, an acidic chloroaluminate ionic liquid catalyst, and a Brönsted acid; whereby a base oil is produced by concurrent oligomerization and alkylation.
    Type: Application
    Filed: November 4, 2011
    Publication date: March 1, 2012
    Applicant: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Rusell Roland Krug, Stephen Joseph Miller
  • Patent number: 8124819
    Abstract: A process for oligomerization of isobutene, the process including: feeding a hydrocarbon stream comprising n-butane, 1-butene, 2-butene, isobutane, and isobutene to a catalytic distillation reactor system comprising a hydroisomerization catalyst; feeding hydrogen to the catalytic distillation reactor system; concurrently in the catalytic distillation reactor system: contacting the 1-butene with the hydrogen in the presence of the hydroisomerization catalyst to convert at least a portion of the 1-butene to 2-butene; separating the isobutane and the isobutene from the n-butane and the 2-butene; recovering the isobutane and the isobutene from the catalytic distillation reactor system as an overheads fraction; recovering the n-butane and the 2-butene from the catalytic distillation reactor system as a bottoms fraction; contacting the overheads fraction in an oligomerization reaction system with an oligomerization catalyst to convert a portion of the isobutene to oligomers.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: February 28, 2012
    Assignee: Catalytic Distillation Technologies
    Inventor: Mitchell E. Loescher
  • Patent number: 8124821
    Abstract: We provide a process, comprising: a. oligomerizing propylene in ionic liquid; b. optionally alkylating the oligomer; to make a base oil having: i. a kinematic viscosity at 100° C. of 2.9 mm2/s or greater, ii. a viscosity index from 25 to 90, and iii. a low cloud point. We provide a process, comprising: oligomerizing a feed comprising propylene and propane to make a base oil having: i. from 45 to 70 wt % hydrocarbons boiling at 900° F. or higher, ii. a viscosity index from 25 to 90, and iii. a low cloud point. We provide a process, comprising: a. mixing longer chain alpha olefins with propylene; b. oligomerizing the feed, to make a base oil having: i. a kinematic viscosity at 100° C. greater than 10 mm2/s; ii. a viscosity index from 50 to 90; iii. a low pour point; and iv. a low cloud point.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: February 28, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Stephen J. Miller
  • Patent number: 8119848
    Abstract: A process for treating an alkylation feedstock comprising olefins, n-alkanes, iso-alkanes, and impurities including one or more of butadiene, oxygenates, nitrogen-containing compounds, and sulfur-containing compounds, the process including: contacting an alkylation feedstock containing at least one of oxygenates and nitrogen-containing compounds with water to produce a hydrocarbon fraction having a reduced concentration of the at least one of oxygenates and nitrogen-containing compounds and an aqueous fraction comprising at least a portion of the at least one of oxygenates and nitrogen-containing compounds; separating water from the hydrocarbon fraction having a reduced concentration to produce a hydrocarbon fraction having a reduced water content; contacting the hydrocarbon fraction having a reduced water content with an oligomerization catalyst in a first oligomerization reaction zone under oligomerization conditions to react at least a portion of the olefins to form a reactor effluent comprising olefin oli
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: February 21, 2012
    Assignee: Catalytic Distillation Technologies
    Inventors: William M. Cross, Jr., Lawrence A. Smith, Jr., Gary G. Podrebarac
  • Patent number: 8115040
    Abstract: A composition of a superior lubricant or lubricant component having a very high VI, a low cloud point, a difference between the T90 and T10 boiling points of at least 250° F. by SIMDIST, and a very low Bromine Number.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: February 14, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Russell R. Krug
  • Publication number: 20110263914
    Abstract: A method for producing synthetic fluids from TGFA's harvested from genetically modified seed crops in which all of the fatty acids in the TGFA's from the seeds of a crop have the same carbon atom chain length, preferably C12 or C14, and the synthetic fluids produced by the method. The TGFA's are hydroprocessed to cleave the fatty acids from the glycol backbone and to hydrodeoxygenate and isomerize the fatty acids to form single carbon chain length isoparaffins having a controlled degree of branching with minimum cracking. Controlled mixtures of hydrocarbon components, in which each hydrocarbon component of the mixture has a different single carbon atom chain length, are produced.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 27, 2011
    Applicant: Accelergy Corporation
    Inventor: Rocco A. Fiato
  • Patent number: 7973205
    Abstract: We provide a process to make a lubricant component, comprising: a. oligomerizing a feed comprising one or more olefins in an ionic liquid oligomerization zone, at oligomerization conditions, to form an oligomer; and b. alkylating the oligomer in the presence of an isoparaffin, in an ionic liquid alkylation zone, at alkylation conditions including a molar ratio of one or more olefins and one or more isoparaffins of at least 0.8, to form an alkylated oligomeric product that is a lubricant component having a kinematic viscosity at 100° C. of at least 6.9 mm2/s, a VI of at least 134, a cloud point less than or equal to ?28° C., and a Bromine Number of less than or equal to 6.1.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: July 5, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Russell R. Krug
  • Patent number: 7973204
    Abstract: We provide a process for making a base oil, comprising: a) selecting an olefin feed produced by thermal cracking of a waxy feed; b) oligomerizing the olefin feed in an ionic liquid oligomerization zone at a set of oligomerization conditions to form an oligomer; and c) alkylating the oligomer in the presence of an isoparaffin, in an ionic liquid alkylation zone, at a set of alkylation conditions to form an alkylated oligomeric product having a kinematic viscosity at 100° C. of 6.9 mm2/s or greater, a VI of at least 134, and a Bromine Number of less than 4. We provide a process to make base oil from an olefin feed produced in a FCC unit. We also provide a process to make two or more viscosity grades of base oil from an olefin feed produced by thermal cracking of a waxy feed.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: July 5, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Russell R. Krug, Stephen J. Miller
  • Publication number: 20110144399
    Abstract: A process for producing alkylate comprising contacting a first hydrocarbon stream comprising at least one olefin having from 2 to 6 carbon atoms which contains 1-butene with an isomerization catalyst under conditions favoring the isomerization of 1-butene to 2-butene so the isomerized stream contains a greater concentration of 2-butene than the first hydrocarbon stream and contacting the isomerized stream and a second hydrocarbon stream comprising at least one isoparaffin having from 4 to 6 carbon atoms with an acidic ionic liquid catalyst under alkylation conditions to produce an alkylate stream, wherein the alkylate stream has a RON that is increased from 5 to 32 numbers compared to a comparison alkylate stream made from the first hydrocarbon stream without the step of contacting with the isomerization catalyst.
    Type: Application
    Filed: February 21, 2011
    Publication date: June 16, 2011
    Inventors: Saleh Elomari, Hye Kyung C. Timken
  • Publication number: 20110105811
    Abstract: A process to produce an alkylate distillate blending component in one embodiment comprising: providing at least one olefinic C5+ product which was produced by conversion of synthesis gas in a Fischer Tropsch process; and alkylating the olefinic C5+ product in the presence of an acidic ionic liquid alkylation catalyst with hydrocarbons selected from the group consisting of isoparaffins, cycloparaffins, and their mixtures to form an alkylate distillate blending component is described.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventors: Dennis J. O'Rear, Sven Ivar Hommeltoft, Steve S. Mathur, Jerome F. Mayor, Hye-Kyung Timken
  • Patent number: 7915468
    Abstract: A process for producing alkylate comprising contacting a first hydrocarbon stream comprising at least one olefin having from 2 to 6 carbon atoms which contains 1-butene with an isomerization catalyst under conditions favoring the isomerization of 1-butene to 2-butene so the isomerized stream contains a greater concentration of 2-butene than the first hydrocarbon stream and contacting the isomerized stream and a second hydrocarbon stream comprising at least one isoparaffin having from 3 to 6 carbon atoms with an acidic ionic liquid catalyst under alkylation conditions to produce an alkylate stream is disclosed.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 29, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung C. Timken, Saleh Elomari
  • Patent number: 7902412
    Abstract: A process for producing a feedstock for gasolines having very little aromatic concentrations is disclosed. The present process uses by-product olefins and alkanes to produce an alkylate for use in gasoline blending.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: March 8, 2011
    Assignee: UOP LLC
    Inventors: John J. Senetar, David A. Wegerer, Gavin P. Towler
  • Patent number: 7816572
    Abstract: A process for producing propylene and isoprene from a feed stream comprising 1-butene and isobutene is disclosed. The feed stream is reacted in a catalytic distillation reactor containing an olefin isomerization catalyst to produce an overhead stream comprising 2-butene and isobutene and a bottoms stream comprising 2-butene. The overhead stream is reacted in the presence of a metathesis catalyst to produce propylene and isoamylenes. Isoprene is produced by dehydrogenation of isoamylenes.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: October 19, 2010
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: David W. Leyshon, Thomas S. Zak
  • Publication number: 20100204531
    Abstract: We provide a process to make a lubricant component, comprising: a. oligomerizing a feed comprising one or more olefins in an ionic liquid oligomerization zone, at oligomerization conditions, to form an oligomer; and b. alkylating the oligomer in the presence of an isoparaffin, in an ionic liquid alkylation zone, at alkylation conditions including a molar ratio of one or more olefins and one or more isoparaffins of at least 0.8, to form an alkylated oligomeric product that is a lubricant component having a kinematic viscosity at 100° C. of at least 6.9 mm2/s, a VI of at least 134, a cloud point less than or equal to ?28° C., and a Bromine Number of less than or equal to 6.1.
    Type: Application
    Filed: April 20, 2010
    Publication date: August 12, 2010
    Inventors: Saleh Elomari, Russell R. Krug
  • Publication number: 20100076233
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to paraffins useful as liquid fuels. The process involves the conversion of water soluble oxygenated hydrocarbons to oxygenates, such as alcohols, furans, ketones, aldehydes, carboxylic acids, diols, triols, and/or other polyols, followed by the subsequent conversion of the oxygenates to paraffins by dehydration and alkylation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 25, 2010
    Inventors: Randy D. Cortright, Paul G. Blommel, Michael J. Werner, Matthew R. Vanstraten
  • Publication number: 20090306444
    Abstract: We provide a process for making a fuel or lubricant component, comprising: performing alkylation and oligomerization by contacting a stream comprising one or more olefins and one or more isoparaffins, wherein a molar ratio of the one or more olefins to the one or more isoparaffins in the stream is at least 0.8, an acidic chloroaluminate ionic liquid catalyst, and a halohalide; and recovering the fuel or lubricant component having a Bromine Number of less than 4. We provide a process comprising performing concurrent alkylation and oligomerization. We also provide a process for making a lubricant component having a kinematic viscosity at 100° C. of at least 6.9 mm2/s, a VI of at least 134, a cloud point less than or equal to ?28° C., and a Bromine Number of less than or equal to 6.1.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 10, 2009
    Inventors: Saleh Elomari, Russell R. Krug
  • Publication number: 20090270666
    Abstract: A process for making a base oil, comprising: selecting a feed from a Fischer-Tropsch condensate; oligomerizing the feed in an ionic liquid; and alkylating the oligomer in the presence of an isoparaffin, in an ionic liquid alkylation zone, to form a product having: a kinematic viscosity at 100° C. of 6.9 mm2/s or greater, a VI of at least 134, and a Bromine Number of less than 4. A process comprising: oligomerizing at least one olefin in a feed from a Fischer-Tropsch condensate, wherein an olefin fraction in the olefin feed comprises greater than 50 wt % C4+ olefins, and alkylating the oligomerized product to form a base oil product. A process comprising contacting an olefin feed from a Fischer-Tropsch condensate with an isoparaffin, an acidic chloroaluminate ionic liquid catalyst, and a Brönsted acid; whereby a base oil is produced by concurrent oligomerization and alkylation.
    Type: Application
    Filed: July 6, 2009
    Publication date: October 29, 2009
    Inventors: Saleh Elomari, Russell R. Krug, Stephen J. Miller