Nonring Moiety Becomes Ring Patents (Class 585/358)
  • Patent number: 8993819
    Abstract: The present invention provides a process for preparing cycloheptene and derivatives thereof by ring-closing metathesis of unsymmetric 1,8-dienes whose C—C double bond at the 8 position is nonterminal. Cycloheptene and the cycloheptanone, cycloheptylamine, cycloheptanecarbaldehyde, cycloheptanecarboxylic acid and cycloheptanecarbonyl chloride conversion products thereof, and the derivatives thereof, are important synthesis units for active ingredient compounds. The ring-closing metathesis is preferably performed as a reactive distillation. The unsymmetric 1,8-dienes for the ring-closing metathesis can be obtained by catalytic decarbonylation or oxidative decarboxylation from the corresponding unsaturated carboxylic acids or carboxylic acid derivatives.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: March 31, 2015
    Assignee: BASF SE
    Inventors: Joaquim Henrique Teles, Michael Limbach, Richard Dehn, Stephan Deuerlein, Manuel Danz
  • Publication number: 20150080623
    Abstract: A catalytic process is provided which produces in a single reaction branched, cyclic and aromatic hydrocarbons, or cracked straight-chain hydrocarbons, from fatty acids in which the fatty acids are reacted over a multifunctional catalyst and undergo both decarboxylation and a further transformation (isomerization, cyclization, aromatization, or cracking) to form reaction products useful as fuels and for other applications that require a source of energy, or as feedstock for hydrocarbon-based commercial products such as surfactants, solvents and lubricants.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Inventors: Paul Ratnasamy, Moises A. Carron, Masoudeh Ahmadi
  • Publication number: 20140163268
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include reacting a triacylglycerides-containing oil-carbon dioxide mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides to a hydrocarbon or mixture of hydrocarbons comprising one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 12, 2014
    Applicant: LUMMUS TECHNOLOGY INC.
    Inventor: Marvin I. Greene
  • Patent number: 8450545
    Abstract: A process of modifying a zeolite catalyst to produce a modified zeolite catalyst wherein the modified zeolite catalyst has blocked pore sites. An oxygenated feed is flowed over the modified zeolite catalyst, wherein the oxygenated feed comprises hydrocarbons, methanol and dimethyl ether or a mixture thereof. The hydrocarbons, methanol and dimethyl ether in the oxygenated feed react with the modified zeolite catalyst to produce cyclic hydrocarbons, wherein the cyclic hydrocarbons produced has less than 10% durene and a median carbon number is C8.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: May 28, 2013
    Assignee: Phillips 66 Company
    Inventors: Glenn W. Dodwell, Joe D. Allison, Shetian Liu, Scott McQueen, Dennis G. Schultz, Byron G. Johnson, Madhu Anand, Melinda L. Johnson, Larry E. Reed, Brian C. Dunn
  • Publication number: 20130018205
    Abstract: The present invention provides a process for preparing cycloheptene and derivatives thereof by ring-closing metathesis of unsymmetric 1,8-dienes whose C—C double bond at the 8 position is nonterminal. Cycloheptene and the cycloheptanone, cycloheptylamine, cycloheptanecarbaldehyde, cycloheptanecarboxylic acid and cycloheptanecarbonyl chloride conversion products thereof, and the derivatives thereof, are important synthesis units for active ingredient compounds. The ring-closing metathesis is preferably performed as a reactive distillation. The unsymmetric 1,8-dienes for the ring-closing metathesis can be obtained by catalytic decarbonylation or oxidative decarboxylation from the corresponding unsaturated carboxylic acids or carboxylic acid derivatives.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 17, 2013
    Applicant: BASF SE
    Inventors: Joaquim Henrique TELES, Michael Limbach, Richard Dehn, Stephan Deuerlein, Manuel Danz
  • Publication number: 20130018213
    Abstract: Embodiments of methods for making renewable diesel by deoxygenating (decarboxylating/decarbonylating/dehydrating) fatty acids to produce hydrocarbons are disclosed. Fatty acids are exposed to a catalyst selected from a) Pt and MO3 on ZrO2 (M is W, Mo, or a combination thereof), or b) Pt/Ge or Pt/Sn on carbon, and the catalyst decarboxylates at least 10% of the fatty acids. In particular embodiments, the catalyst consists essentially of 0.7 wt % Pt and 12 wt % WO3, relative to a mass of catalyst, or the catalyst consists essentially of a) 5 wt % Pt and b) 0.5 wt % Ge or 0.5 wt % Sn, relative to a mass of catalyst. Deoxygenation is performed without added hydrogen and at less than 100 psi. Disclosed embodiments of the catalysts deoxygenate at least 10% of fatty acids in a fatty acid feed, and remain capable of deoxygenating fatty acids for at least 200 minutes to more than 350 hours.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Inventors: Richard T. Hallen, Karl O. Albrecht, Heather M. Brown, James F. White
  • Publication number: 20110245542
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4+ hydrocarbons, alcohols and/or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Application
    Filed: June 17, 2011
    Publication date: October 6, 2011
    Applicant: Virent Energy Systems, Inc.
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Publication number: 20070265184
    Abstract: Preparation of cyclododecatriene in a continuous or discontinuous process by trimerization of butadiene in the presence of a catalyst system and a solvent, the crude cyclododecatriene obtained being able to be isolated by means of distillation. The cyclooctadiene formed as by-product can likewise be isolated from the crude product.
    Type: Application
    Filed: March 20, 2007
    Publication date: November 15, 2007
    Applicant: DEGUSSA AG
    Inventors: Jurgen Herwig, Wilhelm Brugging, Martin Roos, Norbert Wilczok
  • Patent number: 7151199
    Abstract: Hydrocarbon or oxygenate conversion process in which a feedstock is contacted with a non zeolitic molecular sieve which has been treated to remove most, if not all, of the halogen contained in the catalyst. The halogen may be removed by one of several methods. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The hydrocarbon or oxygenate conversion processes include the conversion of oxygenates to olefins, the conversion of oxygenates and ammonia to alkylamines, the conversion of oxygenates and aromatic compounds to alkylated aromatic compounds, cracking and dewaxing.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: December 19, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc Roger Marc Martens, Stephen N. Vaughn, Albert Edward Schweizer, John K. Pierce, Shun Chong Fung
  • Patent number: 6552239
    Abstract: The present invention relates to a process for the preparation of cyclopropaneacetylene by reacting a ketophosphonate with a diazo-transfer reagent in the presence of non-nucleophilic base in an aprotic solvent to generate a reaction mixture containing a ketodiazophosphonate compound and then reacting the reaction mixture with cyclopropanecarboxaldehyde in a non-nucleophilic base and a protic solvent to yield cyclopropaneacetylene.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: April 22, 2003
    Assignee: Merck & Co., Inc.
    Inventor: Karel M. J. Brands
  • Patent number: 6388151
    Abstract: A method for synthesizing tetramethylcyclopentadiene from 2,3-dibromobutane is described. A 2-bromo-2-butene Grignard is reacted with an ethyl formate to produce a 3,5-dimethyl-2,5-heptadiene-4-ol magnesium bromide which is then quenched with acetic acid to produce 3,5-dimethyl-2,5-hepadiene-4-ol.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: May 14, 2002
    Assignee: Boulder Scientific Company
    Inventors: Jeffrey M. Sullivan, Richard D. Crawford
  • Publication number: 20010051756
    Abstract: The present invention relates to a method to prepare cyclopropenes.
    Type: Application
    Filed: April 4, 2001
    Publication date: December 13, 2001
    Inventor: Richard Martin Jacobson
  • Patent number: 6028237
    Abstract: The present invention relates generally to novel methods for the synthesis of cyclopropylacetylene which is a reagent in the asymmetric synthesis of (S)-6-chloro-4-cyclopropylethynyl-4-trifluoromethyl-1,4-dihydro-2H-3,1-ben zoxazin-2-one which is a useful human immunodeficiency virus (HIV) reverse transcriptase inhibitor.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: February 22, 2000
    Assignee: DuPont Pharmaceuticals Company
    Inventor: Rodney Lawrence Parsons, Jr.
  • Patent number: 5952537
    Abstract: The process of invention reacts an alkynyl halide with a mixture that includes a dialkylaminomagnesium halide or a bis(dialkylamino)magnesium compound to produce a cycloalkylacetylene compound. Preferably, the dialkylaminomagnesium halide compound is of the general formula R.sub.2 NMgX (where R is a linear, branched, or cyclic alkyl substituent or R.sub.2 N represents a heterocyclic alkyl amine and X is Cl, Br, or I) and the bis(dialkylamino)magnesium compound is of the general formula (R.sub.2 N).sub.2 Mg (where R is a linear, branched, or cyclic alkyl substituent or R.sub.2 N represents a heterocyclic alkylamine). In a preferred method of the invention, the reaction is conducted at moderate temperatures for a period of about 12 to 24 hours. The reaction mixture preferably includes tetrahydrofuran (THF), or a hydrocarbon, or a hydrocarbonether mixture.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: September 14, 1999
    Assignee: Wiley Organics, Inc.
    Inventors: Kurt R. Stickley, David B. Wiley
  • Patent number: 5723708
    Abstract: A method for producing cyclopentadienes which comprises the step of cyclodehydration of an unsaturated carbonyl compound having a specific chemical structure in a vapor phase in the presence of a specific solid acid catalyst. The cyclopentadienes of the invention can be produced in a high yield from inexpensive starting materials through a simplified reaction process and are useful as intermediate compounds for organic synthesis.
    Type: Grant
    Filed: September 27, 1995
    Date of Patent: March 3, 1998
    Assignee: Nippon Petrochemicals Company, Limited
    Inventors: Yasuo Matsumura, Kazuharu Suyama, Yoshihisa Inomata
  • Patent number: 5434324
    Abstract: Alkyl substituted cyclopentadienes are prepared by reacting cyclopentenones with a Grignard reagent followed by the acidification and dehydration of the resulting tertiary alcohol with an organic carboxylic acid.
    Type: Grant
    Filed: October 15, 1993
    Date of Patent: July 18, 1995
    Assignee: Albemarle Corporation
    Inventors: John Y. Lee, Meng-Sheng Ao
  • Patent number: 5329056
    Abstract: A process is provided for preparing an substituted cyclopentadiene by the steps of (a) reacting a vinyl ketone with a vinyl organometallic compound to form a divinyl tertiary alcohol and (b) dehydrating/cyclizing the tertiary alcohol such as with an acid and/or heat to form the substituted cyclopentadiene.
    Type: Grant
    Filed: January 19, 1993
    Date of Patent: July 12, 1994
    Assignee: Albemarle Corporation
    Inventor: Stephen E. Belmont
  • Patent number: 5194619
    Abstract: The compounds of the formula I or Ia ##STR1## in which R.sup.1 is alkyl, aryl, alkoxy, alkenyl, arylalkyl, alkylaryl, aryloxy, fluoroalkyl, halogenoaryl, alkynyl, trialkylsilyl or a heteroaromatic radical,R.sup.2, R.sup.3 and R.sup.4, in addition to hydrogen, have the meanings given under R.sup.1 andR.sup.5 is hydrogen, alkyl, fluoroalkyl or alkenyl, can be obtained in a one-stage process by reaction of a compound II ##STR2## with (substituted) cyclopentadiene in the presence of a base. The compounds I and Ia are suitable as ligands for metallocene complexes which are used as catalysts in olefin polymerization.
    Type: Grant
    Filed: February 14, 1992
    Date of Patent: March 16, 1993
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Dieter Reuschling, Jurgen Rohrmann, Gerhard Erker, Reiner Nolte, Michael Aulbach, Astrid Weiss
  • Patent number: 5089469
    Abstract: Described are isomeric mixtures of bisabolene prepared by dehydrating nerolidol using citric acid or phosphoric acid and then distilling the resulting product at particular temperature ranges and particular pressure ranges in order to prepare a composition of matter useful for augmenting or enhancing natural, dry, floral, opoponax aromas with floral, freesia, fruity, citrus, bergamot, mango and opoponax topnotes in perfume compositions, colognes and perfumed articles (e.g., solid or liquid anionic, cationic, nonionic, or zwitterionic detergents, fabric softener compositions, drier-added fabric softener articles, cosmetic powders and the like; and useful for repelling specific species of insects, namely, house flies Musca domestica L. (Diptera Muscidae)) and the species of mosquitoes, Aedes aegypti.
    Type: Grant
    Filed: April 25, 1991
    Date of Patent: February 18, 1992
    Assignee: International Flavors & Fragrances Inc.
    Inventors: Michael J. Zampino, Richard A. Wilson, Braja D. Mookherjee
  • Patent number: 4967033
    Abstract: The polyunsaturated compounds of formula ##STR1## having two conjugated double bonds in the endo- and exo- positions of the pentagonal cycle indicated by the dotted lines, and wherein symbols R.sup.1 and R.sup.2, when taken separately, represent respectively a. a linear or brached C.sub.1 to C.sub.4 alkyl radical and b. an hydrogen atom or a methyl radical, or, when taken together with the carbon atoms to which they are bonded form a polymethylenic cycle such as indicated by the dotted line, containing from 5 to 12 carbon atoms, and symbol R.sup.3 stands for an hydrogen atom or a methyl radical, n being an integer equal to 0 or 1, which are useful intermediate products for the preparation of odoriferous macrocyclic ketones, are prepared according to a process comprising a vapor phase cyclization of an enone of formula ##STR2## wherein the dotted line and the symbols n, R.sup.1, R.sup.2 and R.sup.
    Type: Grant
    Filed: January 31, 1990
    Date of Patent: October 30, 1990
    Assignee: Firmenich S.A.
    Inventor: Cyril Mahaim
  • Patent number: 4627911
    Abstract: A catalytic cracking process is described in which methanol is a coreactant with gas oil in combination with a small amount (catalyst/oil 0.01) of a dispersed, very fine, and highly active catalyst powder, such as ZSM-5B. The methanol is preferably admixed with the catalyst before admixture with the oil in order to protect the catalyst from adsorption of poisonous compounds (e.g., nitrogenous compounds) during the initial stages of the reaction, particularly if the methanol is insoluble in a non-polar hydrocarbon feed. The premixed materials are fed into a riser reactor. The residence time in the reactor is 6-15 seconds. Preferably, the catalyst is not regenerated. The quantity of methanol is maintained so that its exothermic reaction is approximately heat balanced with the endothermic catalytic cracking reaction.
    Type: Grant
    Filed: December 30, 1985
    Date of Patent: December 9, 1986
    Assignee: Mobil Oil Corporation
    Inventors: Nai Y. Chen, Thomas F. Degnan, Jr.
  • Patent number: 4568782
    Abstract: Disclosed is the vapor phase cyclodehydration of an aldehyde or ketone over a solid Lewis acid as catalyst to make indene or a substituted indene according to the equation: ##STR1##
    Type: Grant
    Filed: June 17, 1985
    Date of Patent: February 4, 1986
    Assignee: The Standard Oil Company
    Inventors: Marco Pagnotta, Mark C. Cesa, James D. Burrington
  • Patent number: 4472313
    Abstract: The invention provides a method of converting ethylenically unsaturated units of an olefinic substrate to corresponding cyclopropanyl units, comprising treating the olefinic substrate, in an ether medium, with zinc and diiodomethane and a catalytic amount of a metallo-hydride reducing agent. Preferred substrates are olefinic fatty acids or their functional derivatives, e.g. oleic acid esters.
    Type: Grant
    Filed: September 20, 1982
    Date of Patent: September 18, 1984
    Assignee: Sandoz, Inc.
    Inventors: Urs Giger, Oljan Repic
  • Patent number: 4179468
    Abstract: Acyclic terpenoid onium salts are cyclized in an acidic aqueous solution at a temperature of at least about 80.degree. C.
    Type: Grant
    Filed: June 19, 1978
    Date of Patent: December 18, 1979
    Assignee: SCM Corporation
    Inventors: Bernard J. Kane, Richard A. Von Genk