Plural Stage Or With Preliminary Treatment Of Feed Patents (Class 585/424)
  • Publication number: 20140323766
    Abstract: In a process for producing cyclohexylbenzene, benzene is reacted with cyclohexene in a first reaction zone under conditions effective to produce a reaction product comprising cyclohexylbenzene and at least one polycyclohexylbenzene. At least a portion of the reaction product and a stripping agent comprising at least one C1 to C11 hydrocarbon or hydrogen are then separately supplied to a separation device and separated into at least a first fraction rich in cyclohexylbenzene and a second fraction rich in the at least one polycyclohexylbenzene.
    Type: Application
    Filed: November 21, 2011
    Publication date: October 30, 2014
    Inventors: Christopher L. Becker, James R. Lattner, Charles Morris Smith, Kun Wang
  • Patent number: 8138384
    Abstract: In a process for converting methane to alkylated aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst under conditions effective to convert said methane to aromatic hydrocarbons and produce a first effluent stream comprising aromatic hydrocarbons and hydrogen. At least a portion of said aromatic hydrocarbon from said first effluent stream is then contacted with an alkylating agent under conditions effective to alkylate said aromatic hydrocarbon and produce an alkylated aromatic hydrocarbon having more alkyl side chains than said aromatic hydrocarbon prior to the alkylating.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: March 20, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Gary D. Mohr, Matthew J. Vincent
  • Patent number: 7019184
    Abstract: The present invention provides a process for natural gas in the form, e.g., of stranded gas or associated gas to transportable liquids. More particularly, the present invention provides a process in which the gas is non-oxidatively converted to aromatic liquid, preferably in proximity to the welihead, which may be onshore or offshore. In one aspect, the present invention provides integration of separation of wellhead fluids into associated gas and crude with blending of the aromatic liquid derived from the gas with the crude. Alternatively, or in combination, in another aspect, the present invention provides integration of conversion of byproduct hydrogen to power with non-oxidative conversion of gas to aromatic liquid.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: March 28, 2006
    Assignee: Conocophillips Company
    Inventors: Joe D. Allison, Neil Meldrum, Doug S. Jack, Marc J. Ledoux
  • Patent number: 4950823
    Abstract: A process and apparatus are disclosed for the production of gasoline from a C.sub.4.sup.- fuel gas containing ethene and propene and catalytic reformate containing C.sub.6 to C.sub.8 aromatics. The C.sub.4.sup.- fuel gas is contacted with debutanized catalytic reformate over a zeolite catalyst under process conditions to convert ethene and propene in the C.sub.4.sup.- fuel gas to C.sub.5.sup.+ aliphatic and aromatic hydrocarbon gasoline and to convert C.sub.6 to C.sub.8 aromatics in the reformate to C.sub.7 to C.sub.11 aromatic hydrocarbon gasoline. Reformer fractionation system containing debutanizer column and separator stabilizes effluent gasoline and recycles unconverted light aromatics.
    Type: Grant
    Filed: July 3, 1989
    Date of Patent: August 21, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Mohsen N. Harandi, Hartley Owen
  • Patent number: 4925996
    Abstract: A process is disclosed for converting a feedstock containing ethylene to produce heavier hydrocarbons in the gasoline or distillate boiling range including the steps of contacting the olefins feedstock with a first siliceous crystalline molecular sieve at an elevated temperature and relatively low pressure under conditions which maximize the conversion of ethylene to C.sub.3 -C.sub.4 olefins and C.sub.5 + hydrocarbons, separating C.sub.3 -C.sub.4 olefins from the C.sub.5 + hydrocarbons, and contacting the separated C.sub.3 -C.sub.4 olefins with a second siliceous crystalline molecular sieve at moderate temperatures under conditions favorable for conversion of the C.sub.3 -C.sub.4 olefins to heavier hydrocarbons in the gasoline or distillate boiling range.
    Type: Grant
    Filed: December 16, 1985
    Date of Patent: May 15, 1990
    Assignee: Atlantic Richfield Company
    Inventor: Harry Mazurek
  • Patent number: 4808764
    Abstract: A process for introducing a exothermic reactant vapor stream to an adiabatic catalyst zone comprising the steps of: preheating a volatile liquid exothermic reactant stream below its autogenous temperature under process pressure; contacting the preheated liquid reactant stream in a saturator unit with a hot diluent gas to vaporize the reactant stream in gaseous mixture with the diluent stream; directing the gaseous mixture from the saturator unit to the catalyst zone for exothermic conversion of the reactant under substantially adiabatic reaction conditions in the presence of diluent gas; recovering reaction products and diluent gas from the catalyst zone; separating diluent gas from the products, compressing and recycling the diluent gas to the saturator unit.
    Type: Grant
    Filed: April 13, 1983
    Date of Patent: February 28, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Dietmar R. A. Fremuth, Alan E. Rogers, John C. Zahner
  • Patent number: 4713424
    Abstract: A continuous, liquid phase method for producing a polymer having a predetermined number of conjugated diene units per molecule in which (a) a first monomer stream is contacted with an organo-lithium compound, in a manner to intimately mix increments of monomer, containing the predetermined number of moles of conjugated diene, with each mole of organo-lithium and continuously mix and move the mixture through a first, elongated reaction zone to react the predetermined number of moles of conjugated diene with one mole of organo-lithium, (b) mixing the effluent from (a) with an alkyl-substituted aromatic hydrocarbon, an organo-alkali metal of potassium, rubidium or cesium and a tertiary amine to form a complex-initiator of the aromatic hydrocarbon, the alkali metal and the amine, (c) mixing the effluent from (b) with a second stream of monomer, in a manner to intimately mix increments of monomer, containing the predetermined number of moles of conjugated diene, with each mole of complex-initiator and continuously
    Type: Grant
    Filed: November 5, 1984
    Date of Patent: December 15, 1987
    Assignee: Phillips Petroleum Company
    Inventor: Ronald E. Brown
  • Patent number: 4554393
    Abstract: A process for the production of aromatic compounds from low-molecular weight predominantly paraffinic feedstock which comprises contacting the feedstock in a first reactor with a dehydrogenation catalyst to produce a first reaction product containing alkenes; contacting said first reaction product in a second reactor with a crystalline aluminosilicate catalyst to produce a second reaction product containing aromatics; and separating an aromatic-rich fraction therefrom. In a preferred embodiment the feedstock consists essentially of propane and/or butane.
    Type: Grant
    Filed: April 18, 1983
    Date of Patent: November 19, 1985
    Assignees: The Broken Hill Proprietary Company Limited, Commonwealth Scientific and Industrial Research Organisation
    Inventors: Sandra Liberts, Jack G. Creer, Thomas Mole
  • Patent number: 4528412
    Abstract: A hydrocarbon conversion process for the production of C.sub.6 -C.sub.8 aromatic hydrocarbons from C.sub.3 and C.sub.4 aliphatic hydrocarbons is disclosed. This dehydrocyclodimerization process is characterized by the integrated product recovery steps employed to separate hydrogen and products from the reactor effluent. Following partial condensation of the reactor effluent stream, the resultant vapor is subjected to liquid absorption (scrubbing) followed by autorefrigeration to yield lighter gas streams. Liquids from the various steps are separated via fractionation.
    Type: Grant
    Filed: October 11, 1984
    Date of Patent: July 9, 1985
    Assignee: UOP Inc.
    Inventor: Paul C. Steacy
  • Patent number: 4511747
    Abstract: In the conversion of light olefins to heavier hydrocarbons, an improved recovery technique is provided for selectively removing unreacted light olefins from a catalytic reactor effluent. This system is useful in converting ethene-rich feedstocks to gasoline and/or distillate products, particularly in oligomerization processes employing shape selective siliceous catalysts such as ZSM-5 type zeolites. By recycling gasoline-range hydrocarbons as a sorbent liquid, unreacted C.sub.2.sup.+ components may be absorbed from reactor effluent vapor and returned for further contact with the catalyst.
    Type: Grant
    Filed: February 1, 1984
    Date of Patent: April 16, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Bernard S. Wright, Chung H. Hsia, Hartley Owen
  • Patent number: 4456779
    Abstract: An improved continuous process for converting lower olefinic hydrocarbon feedstock to C.sub.5.sup.+ liquid hydrocarbons by contacting vapor phase olefinic feedstream with acid zeolite catalyst in the presence of recycled diluent stream rich in C.sub.3 -C.sub.4 hydrocarbons in an enclosed reactor at elevated temperature and pressure. The improved technique comprises a system for cooling reactor effluent to recover a heavier hydrocarbon stream containing a mixture of C.sub.3 -C.sub.4 hydrocarbons and C.sub.5.sup.+ hydrocarbons and debutanizing the heavier hydrocarbons below reactor pressure to obtain a C.sub.5.sup.+ product stream and a condensed C.sub.3 -C.sub.4 hydrocarbon stream. Operating efficiencies are realized in the heat exchange system by reboiling the debutanized C.sub.5.sup.+ hydrocarbon product stream with hot reactor effluent, and by recycling and combining at least a portion of the condensed C.sub.3 -C.sub.4 hydrocarbon stream to dilute liquid olefin hydrocarbon feedstock.
    Type: Grant
    Filed: April 26, 1983
    Date of Patent: June 26, 1984
    Assignee: Mobil Oil Corporation
    Inventors: Hartley Owen, Susan K. Marsh, Bernard S. Wright