Using H Acceptor Or Cr-, Mo-, Or W-containing Catalyst Patents (Class 585/433)
  • Patent number: 10882026
    Abstract: There is disclosed a process for producing chlorine by feeding hydrogen chloride and oxygen into catalyst beds which are formed in the reaction tubes of a fixed-bed multitubular reactor and which contain catalysts for use in oxidation of hydrogen chloride, and this process is characterized in that the catalyst beds in one reaction zone in the fixed-bed multitubular reactor are catalyst beds formed by packing catalysts of a plurality of production lots; and in that the catalysts of the plurality of production lots satisfy the following condition (I): Condition (I): a value of AB is smaller than 1.20 (with the proviso that A and B are values of three significant figures, having a relationship of A?B), wherein the pore volume of a catalyst of one production lot optionally selected from the plurality of production lots is A [ml/g], and the pore volume of another one production lot is B [ml/g].
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: January 5, 2021
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Kohei Seki
  • Patent number: 9091433
    Abstract: The invention relates to a catalyst comprising a monolith composed of a catalytically inert material with low BET surface area and a catalyst layer which has been applied to the monolith and comprises, on an oxidic support material, at least one noble metal selected from the group consisting of the noble metals of group VIII of the Periodic Table of the Elements, optionally tin and/or rhenium, and optionally further metals, wherein the thickness of the catalyst layer is 5 to 500 micrometers.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: July 28, 2015
    Assignee: BASF SE
    Inventors: Godwind Tafara Peter Mabande, Soo Yin Chin, Goetz-Peter Schindler, Gerald Koermer, Dieter Harms, Burkhard Rabe, Howard Furbeck, Oliver Seel
  • Patent number: 8772557
    Abstract: Processes are disclosed that achieve a high conversion of lignin to aromatic hydrocarbons, and that may be carried out without the addition of a base. Depolymerization and deoxygenation, the desired lignin convention steps to yield aromatic hydrocarbons, are carried by contacting a mixture of lignin and a solvent (e.g., a lignin slurry) with hydrogen in the presence of a catalyst. A preferred solvent is a hydrogen transfer solvent such as a single-ring or fused-ring aromatic compound that beneficially facilitates depolymerization and hinders coke formation. These advantages result in favorable overall process economics for obtaining fuel components and/or chemicals from renewable sources.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 8, 2014
    Assignee: UOP LLC
    Inventors: John Qianjun Chen, Mark Blaise Koch
  • Patent number: 8524963
    Abstract: Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: September 3, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: R. Thomas Baker, Alfred P. Sattelberger, Hongbo Li
  • Publication number: 20120271078
    Abstract: In a dehydrogenation process a hydrocarbon stream comprising at least one non-aromatic six-membered ring compound and at least one five-membered ring compound is contacted with a dehydrogenation catalyst comprising: (i) a support; (ii) a first component comprising at least one metal component selected from Group 1 and Group 2 of the Periodic Table of Elements; and (iii) a second component comprising at least one metal component selected from Groups 6 to 10 of the Periodic Table of Elements, wherein the catalyst composition exhibits an oxygen chemisorption of greater than 50%. The contacting is conducted under conditions effective to convert at least a portion of the at least one non-aromatic six-membered ring compound in the hydrocarbon stream to benzene and to convert at least a portion of the at least one five-membered ring compound in the hydrocarbon stream to paraffins.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 25, 2012
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Terry E. Helton, Teng Xu
  • Publication number: 20110124935
    Abstract: [Task] In a method for producing an aromatic compound by a catalytic reaction using a lower hydrocarbon as a raw material, yields of hydrogen and the aromatic compound are to be improved, and a stable catalytic activity is to be maintained. [Solving Means] Molybdenum or a molybdenum compound is supported on metallosilicate, and then a carbonization treatment is conducted, thereby obtaining a lower-hydrocarbon aromatizing catalyst. A reaction gas containing a lower hydrocarbon is brought into contact with this catalyst, thereby producing an aromatic compound. Upon this, while allowing a non-oxidizing gas (except hydrocarbon gas) to flow, a temperature rising is conducted to a catalytic reaction temperature. When it reaches the catalytic reaction temperature, the reaction gas is allowed to flow, and the reaction gas is brought into contact with the catalyst, thereby obtaining an aromatic compound such as benzene or naphthalene.
    Type: Application
    Filed: May 19, 2009
    Publication date: May 26, 2011
    Inventor: Takuya Hatagishi
  • Publication number: 20080249343
    Abstract: Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 9, 2008
    Inventors: R. Thomas Baker, Alfred P. Sattelberger, Hongbo Li
  • Patent number: 6677494
    Abstract: The invention relates to a process for the production of aromatic compounds from a hydrocarbon fraction with a catalyst the preferably circulates in a moving bed. In the process, a hydrocarbon feedstock that is treated by a hydrogen-rich gas is transformed. In a particular embodiment, regenerative reforming is conducted, such as for production of BTX (butene, toluene, xylenes) with continuous regeneration of the catalyst. The invention also pertains to the related device for carrying out the process.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: January 13, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Francois-Xavier Brunet, Olivier Clause, Jean-Marie Deves, Eric Sanchez, Frederic Hoffmann
  • Publication number: 20010014645
    Abstract: There is provided a catalyst exhibiting a high activity and less catalytic deterioration, as well as a high selectivity, suitable for use in allowing aromatic hydrocarbons of 9 or more carbon atoms to react, and thereby converting them into toluene and aromatic hydrocarbons of 8 carbon atoms more useful as gasoline bases, and a conversion method using the catalyst. The catalyst is used for converting aromatic hydrocarbons of 9 or more carbon atoms in a material oil containing a component with a boiling point exceeding 210° C. into toluene and aromatic hydrocarbons of 8 carbon atoms in the presence of hydrogen, and contains a carrier containing one or more than one zeolites in which the maximum pore diameter of micropores is in a range of 0.6 to 1.0 nm; and one or more than one metals selected from the Group VIA metals of the Periodic Table or compounds thereof.
    Type: Application
    Filed: March 1, 2001
    Publication date: August 16, 2001
    Inventors: Katuhiko Ishikawa, Eiji Yasui, Fumio Haga, Toshio Waku, Toshiyuki Enomoto
  • Patent number: 6028027
    Abstract: Catalysts comprising iron and potassium and, if desired, further elements, which catalysts are suitable for dehydrogenating hydrocarbons to give the corresponding olefinically unsaturated hydrocarbons, are prepared by calcining a finely divided dry or aqueous mixture of an iron compound with a potassium compound and, if desired, compounds of further elements in a first step that agglomerates having a diameter of from 5 to 50 .mu.m and formed from smaller individual particles are obtained and, in a second step, preferably after shaping, calcining it at from 300 to 1000.degree. C., with the maximum calcination temperature in the second step preferably being at least 30.degree. below the calcination temperature in the first step. The catalysts thus prepared are useful, in particular, for dehydrogenating ethylbenzene to give styrene.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: February 22, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Baier, Christopher William Rieker, Otto Hofstadt, Wolfgang Buchele, Wolfgang Jurgen Popel, Hermann Petersen, Norbert Neth
  • Patent number: 5744671
    Abstract: The invention relates to a process for the preparation of an alkyl benzene by catalytic dehydrogenation of the corresponding alkenyl cyclohexene in the gas phase in the presence of a diluent. A characteristic feature is that at least a part of the alkyl cyclohexane in the reaction product is used as diluent. Hydrogen can be used as an additional diluent according to the invention.
    Type: Grant
    Filed: May 5, 1995
    Date of Patent: April 28, 1998
    Assignee: DSM N.V.
    Inventors: Henri J. H. Beelen, Geert I. V. Bonte, Michiel Cramwinckel, Henricus A. M. Duisters, Johan G. D. Haenen
  • Patent number: 5347027
    Abstract: The present invention provides an electroless process for making a catalyst in a liquid or gaseous medium comprising contacting a base metal with a chemical cleaning agent and simultaneously or sequentially treating said base metal under reducing conditions with a noble metal-containing material, the catalyst prepared using the process, and a method of using the catalyst.
    Type: Grant
    Filed: April 22, 1993
    Date of Patent: September 13, 1994
    Assignee: OSi Specialties, Inc.
    Inventors: James S. Ritscher, Wei T. Yang, George M. Omietanski, Robert L. Ocheltree, Earl E. Malson
  • Patent number: 4827070
    Abstract: An isobutylbenzene (IBB) is produced from an isobutenylcyclohexane (IBCH) by contacting at elevated temperature the IBCH in the presence of a molecular oxygen-containing gas with a catalyst comprising a supported transition metal in the form of the elemental metal and/or a compound thereof, for example palladium supported on alumina.
    Type: Grant
    Filed: March 7, 1988
    Date of Patent: May 2, 1989
    Assignee: BP Chemicals Limited
    Inventors: Alexander G. Kent, Derek K. MacAlpine
  • Patent number: 4530756
    Abstract: A process is provided for conducting organic compound conversion over a catalyst composition comprising a crystalline zeolite having a high initial silica-to-alumina mole ratio, said zeolite being prepared by calcining the zeolite, contacting said calcined zeolite with solid aluminum fluoride, and coverting said aluminum fluoride contacted material to hydrogen form.
    Type: Grant
    Filed: February 17, 1984
    Date of Patent: July 23, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Clarence D. Chang, Joseph N. Miale
  • Patent number: 4490568
    Abstract: By-product effluent streams from pyrolytic hydrocarbon cracking processes, containing monoolefins and diolefins, are treated to hydrogenate the olefins and to aromatize the aliphatics, with a catalyst essentially comprising a calcined TEA-silicate.
    Type: Grant
    Filed: October 3, 1983
    Date of Patent: December 25, 1984
    Assignee: Union Carbide Corporation
    Inventors: Daniel C. Garska, Edith M. Flanigen
  • Patent number: 4446013
    Abstract: The catalytic reforming of a feedstock which contains a derivative of cyclopentane or which contains organic compounds which are convertible to a derivative of cyclopentane is carried out in the presence of a hydrogrel of zinc titanate and a suitable acidic material. Also, the attrition resistance of zinc titanate is improved by incorporating the zinc titanate into a hydrogel structure.
    Type: Grant
    Filed: November 22, 1982
    Date of Patent: May 1, 1984
    Assignee: Phillips Petroleum Company
    Inventor: Arthur W. Aldag, Jr.
  • Patent number: 4429175
    Abstract: This invention provides a process for selective conversion of vinylcyclohexene to ethylbenzene and hydrogen in the presence of a palladium on non-acidic zeolite catalyst.In the catalyst preparation, the catalyst is calcined first in air and then in a hydrocarbon type environment. Without the two step calcination procedure, the catalyst has a lower level of activity and selectivity.The process proceeds as an oxygen-assisted dehydrogenation reaction which yields recoverable hydrogen byproduct, rather than as an oxydehydrogenation reaction which yields water byproduct.
    Type: Grant
    Filed: October 27, 1982
    Date of Patent: January 31, 1984
    Assignee: El Paso Products Company
    Inventor: John L. Cihonski
  • Patent number: 4339622
    Abstract: Vinyl cyclohexene is converted to styrene or ethylbenzene at 170.degree. C.-360.degree. C. in the presence of copper chromite catalyst.
    Type: Grant
    Filed: January 5, 1979
    Date of Patent: July 13, 1982
    Assignee: Texaco, Inc.
    Inventors: John A. Patterson, Wheeler C. Crawford, James R. Wilson
  • Patent number: 4322556
    Abstract: Aniline may be prepared by reaction of nitrobenzene and vinylcyclohexene at 170.degree. C.-300.degree. C., typically 200.degree. C., in the presence of a homogeneous catalyst typified by IrCl(CO)(Ph.sub.3 P).sub.2.
    Type: Grant
    Filed: September 26, 1980
    Date of Patent: March 30, 1982
    Assignee: Texaco Inc.
    Inventors: John A. Patterson, Wheeler C. Crawford, James R. Wilson
  • Patent number: 4316856
    Abstract: Molybdenum-promoted antimony phosphates also containing at least one of tellurium and bismuth have been found to exhibit significant catalytic activity in various oxidation-type reactions.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: February 23, 1982
    Assignee: The Standard Oil Co.
    Inventors: Andrew T. Guttmann, Robert K. Grasselli
  • Patent number: 4316855
    Abstract: Certain multiply promoted Sn-Sb oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxydehydrogenation of olefins to diolefins.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: February 23, 1982
    Assignee: The Standard Oil Co.
    Inventors: Robert K. Grasselli, Dev D. Suresh, James F. Brazdil, Frances I. Ratka
  • Patent number: 4292455
    Abstract: A multi-stage dehydrogenation process for preparing indene and substituted indenes from indene precursors more saturated than indene is described. The process comprises the steps of(a) contacting said indene precursor in a first dehydrogenation zone with a dehydrogenation catalyst at an elevated temperature to form an intermediate product,(b) advancing the product of the first dehydrogenation zone to a second dehydrogenation zone,(c) contacting said product in the second dehydrogenation zone with a second dehydrogenation catalyst at an elevated temperature, and(d) recovering indene or a substituted indene from said second zone.The process of the invention results in yields of indene which are enhanced when compared to single stage, essentially isothermal processes using a single catalyst.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: September 29, 1981
    Assignee: The Standard Oil Co.
    Inventors: Joseph P. Bartek, Rimoydas L. Cepulis, Robert K. Grasselli
  • Patent number: 4292456
    Abstract: An oxydehydrogenation process for producing indene and substituted indenes from indene precursors more saturated than indene is described and comprises contacting said precursor with oxygen and a catalyst comprising cobalt oxide and molybdenum oxide at an elevated temperature above about 300.degree. C. Preferably the reaction is conducted at a temperature of about 500.degree.-650.degree. C. for a period of from 0.1 to about 30 seconds.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: September 29, 1981
    Assignee: The Standard Oil Co.
    Inventor: Oliver A. Kiikka
  • Patent number: 4291181
    Abstract: A dehydrogenation process for producing indene and substituted indenes from tetrahydroindene or substituted tetrahydroindene is described and comprises contacting said tetrahydroindene or substituted tetrahydroindene with a catalyst comprising cobalt oxide and molybdenum oxide at an elevated temperature for a period of from about 0.1 to 30 seconds. The tetrahydroindene and substituted tetrahydroindenes may be prepared from cyclopentadiene or dicyclopentadiene and a butadiene.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: September 22, 1981
    Assignee: Standard Oil Company
    Inventors: Oliver A. Kiikka, George S. Li
  • Patent number: 4291180
    Abstract: A process for the co-production of indene and styrene from a mixture of cyclopentadiene or dicyclopentadiene and butadiene is disclosed. The process comprises the steps of reacting cyclopentadiene or dicyclopentadiene with butadiene in a Diels-Alder reaction to form a mixture of tetrahydroindene, vinylcyclohexene and vinylnorbornene followed by the recovery of the tetrahydroindene and vinylcyclohexene, and the oxydehydrogenation of the tetrahydroindene/vinylcyclohexene mixture utilizing a composite catalyst comprising cobalt oxide and molybdenum oxide.
    Type: Grant
    Filed: December 28, 1979
    Date of Patent: September 22, 1981
    Assignee: Standard Oil Company
    Inventor: Oliver A. Kiikka
  • Patent number: 4237070
    Abstract: A nitrohydrocarbon, typified by nitrobenzene, is reacted with a hydrocarbon such as 4-vinyl-1-cyclohexene at 70.degree. C.-360.degree. C. and 0-500 psig to give product stream containing aniline, ethylbenzene, and styrene; heterogeneous catalyst contains Group VIII noble metal, Group I B metal and optionally Group VI B metal, typically 0.5% platinum and 5% cuprous oxide on gamma alumina.
    Type: Grant
    Filed: September 20, 1978
    Date of Patent: December 2, 1980
    Assignee: Texaco Inc.
    Inventors: John A. Patterson, Wheeler C. Crawford, James R. Wilson