By C Removal, E.g., Cracking, Etc. Patents (Class 585/439)
  • Publication number: 20090098263
    Abstract: The invention concerns a device and a method for rotary fluidized bed for catalytic polymerization, drying and other treatments of solid particles or for catalytic transformation of fluids, wherein a cylindrical reactor (1), in which the fluids are injected (7) tangentially to its cylindrical wall, is divided into a succession of cylindrical chambers (Z1, Z2, Z3) by hollow discs (3), which are fixed to its cylindrical wall, which have central openings through which the fluids circulating in rotation inside the cylindrical chambers are sucked (10), which have lateral openings through which said fluids are evacuated through the cylindrical wall of the reactor and which have passages (27) for transferring the suspended solid particles in the rotary fluidized bed from one chamber to the next through said discs (3).
    Type: Application
    Filed: December 9, 2005
    Publication date: April 16, 2009
    Inventor: Axel de Broqueville
  • Patent number: 6627780
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: September 30, 2003
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6380448
    Abstract: The present invention relates to a method for recovering styrene monomers from polystyrene resins by using sulfate as a catalyst. The present invention makes possible to thermally decompose polystyrene resins at comparatively low temperatures, and to reduce facility costs, etc., and also makes possible to recover oil containing less ratio of low molecular weight components and a high content of styrene monomers from vapors obtained through thermal decomposition of polystyrene.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: April 30, 2002
    Assignee: San Kaihatsu Kabushiki Kaisha
    Inventors: Takumi Sato, Mitsuo Masunari
  • Publication number: 20020016251
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.
    Type: Application
    Filed: August 2, 2001
    Publication date: February 7, 2002
    Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
  • Patent number: 6090272
    Abstract: A process for producing catalyst compositions for converting a cracked gasoline feedstock to a product comprising incremental aromatics and lower olefins. The catalyst compositions produced thereby. A process for converting a cracked gasoline feedstock to a product comprising incremental aromatics and lower olefins.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: July 18, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 5502263
    Abstract: In the method for reclaiming styrene monomer from polystyrene, polystyrene is mixed with a solvent and heated to approximately 300.degree. C. to 400.degree. C. to depolymerize the polystyrene to produce a styrene monomer fraction and a heavier fraction of partial depolymerization products. The styrene fraction is separated from the heavier fraction to recover the styrene monomer and polystyrene partial depolymerization products. In a preferred embodiment, the solvent comprises a "styrene oil" which results from the incomplete depolymerization of polystyrene, at least a portion of which is recycled to mix with polystyrene. The method is useful in reclaiming styrene monomer from napalm, foamed polystyrene, and other polystyrene products. In the case of reclamation of napalm, the method also includes the steps of separating and recovering benzene and gasoline.
    Type: Grant
    Filed: January 10, 1995
    Date of Patent: March 26, 1996
    Inventors: Thomas E. Ponsford, Henry T. Ponsford
  • Patent number: 5406010
    Abstract: In the method for reclaiming styrene monomer from polystyrene, polystyrene is mixed with a solvent and heated to approximately 300.degree. C. to 400.degree. C. to depolymerize the polystyrene to produce a styrene monomer fraction and a heavier fraction of partial depolymerization products. The styrene fraction is separated from the heavier fraction to recover the styrene monomer and polystyrene partial depolymerization products. In a preferred embodiment, the solvent comprises a "styrene oil" which results from the incomplete depolymerization of polystyrene, at least a portion of which is recycled to mix with polystyrene. The method is useful in reclaiming styrene monomer from napalm, foamed polystyrene, and other polystyrene products. In the case of reclamation of napalm, the method also includes the steps of separating and recovering benzene and gasoline.
    Type: Grant
    Filed: January 28, 1993
    Date of Patent: April 11, 1995
    Inventors: Thomas E. Ponsford, Henry T. Ponsford
  • Patent number: 5079385
    Abstract: A process for converting solid plastic materials, preferably waste materials, into usable lower molecular weight hydrocarbonaceous materials by reacting such plastic materials at elevated temperatures in effective contact with an acidic catalyst comprising at least one zeolite having acid activity.
    Type: Grant
    Filed: August 17, 1989
    Date of Patent: January 7, 1992
    Assignee: Mobil Oil Corp.
    Inventor: Margaret M. Wu
  • Patent number: 5030784
    Abstract: The instant invention relates to a process for converting methyl- and/or ethyl-substituted benzene or naphthalene and butadiene to 4-aryl-1-butene or 4-aryl-1-pentene and propylene by:a) reacting a methyl- and/or ethyl-substituted benzene or naphthalene and 1,3-butadiene in the presence of an alkali metal catalyst,b) reacting the butenylated reaction product of step a) with ethylene in the presence of of a disproportionation catalyst, andc) separating from the reaction product of step b) product 4-aryl-1-butene or 4-aryl-1-pentene and propylene.
    Type: Grant
    Filed: February 26, 1990
    Date of Patent: July 9, 1991
    Assignee: Shell Oil Company
    Inventor: Lynn H. Slaugh
  • Patent number: 5026939
    Abstract: A method for producing alkylstyrene which is characterized in that 1,2-di(substituted phenyl)ethane is brought into contact with an acid catalyst at 200.degree. C. to 650.degree. C. in the presence of an inert gas to crack it into alkylstyrene and alkylbenzene. The method of the invention has advantages in that the operation of reaction and separation of reaction mixture are quite easy, the lowering of catalytic activity is small, and unreacted starting material can be reused.
    Type: Grant
    Filed: May 5, 1988
    Date of Patent: June 25, 1991
    Assignee: Nippon Petrochemicals Company, Limited
    Inventors: Isoo Shimizu, Yasuo Matsumura, Yoshihisa Inomata
  • Patent number: 5008480
    Abstract: The instant invention relates to a process for converting toluene and butadiene to styrene and 1-pentene by:(a) reacting touene and 1,3-butadiene in the presence of an alkali metal catalyst,(b) contacting the butenylated reaction product of step (a) with a double bond isomerization catalyst at a temperature sufficient to cause double isomerization,(c) reacting the isomerized product of step (b) with ethylene in the presence of a disproportionation catalyst, and(d) separating from the reaction product of step (c) product styrene and 1-pentene.
    Type: Grant
    Filed: February 26, 1990
    Date of Patent: April 16, 1991
    Assignee: Shell Oil Company
    Inventor: Lynn H. Slaugh
  • Patent number: 4855518
    Abstract: A method for producing p-alkylstyrene which is characterized in that side reaction scarcely occurs, catalyst and unreacted material are easily recovered for the reuse, the p-position selectivity is excellent and yield of aimed product is high. In the method, monoalkylbenzene having an alkyl group with 3 or more carbon atoms is reacted with acetaldehyde in the presence of hydrogen fluoride catalyst under the conditions of a temperature of 0.degree. C. or lower, a molar ratio of 2 to 100 in "alkylbenzene/acetaldehyde", the other molar ratio of 1.7 to 300 in "hydrogen fluoride/acetaldehyde", the proportion of hydrogen fluoride to the sum of hydrogen fluoride and water in the reaction system of 65% by weight or higher, and the concentration of acetaldehyde in the reaction system of 1.0% by weight or lower to obtain 1,1-bis(p-alkylphenyl)ethane, and then subjecting it to catalytic cracking at a temperature in the range of 200.degree. to 650.degree. C. in the presence of an acid catalyst.
    Type: Grant
    Filed: July 19, 1988
    Date of Patent: August 8, 1989
    Assignee: Nippon Petrochemicals Company, Limited
    Inventors: Isoo Shimizu, Yuuichi Tokumoto
  • Patent number: 4855519
    Abstract: A method for producing arylethylene comprising four steps of: (I) bringing 1,1-diarylethane into contact with an acid catalyst in the presence of an inert gas to crack said compound into arylethylenes and alkylbenzenes; (II) separating the reaction mixture obtained in the above cracking step (I) into at least a fraction mainly containing 1,1-diarylethane; (III) bringing said fraction mainly containing 1,1-diarylethane into contact with hydrogen gas in the presence of a hydrogenation catalyst; and (IV) re-cracking hydrogenated fraction obtained in the preceding hydrogenation step (III) by bringing it into said cracking step (I).Particularly, this method is useful for producing p-isobutylstyrene which is a starting material for preparing a valuable medicine of ibuprofen.
    Type: Grant
    Filed: November 14, 1988
    Date of Patent: August 8, 1989
    Assignee: Nippon Petrochemicals Company
    Inventors: Isoo Shimizu, Hitoshi Mitsuyuki, Kazumichi Uchida, Yuuichi Tokumoto
  • Patent number: 4827065
    Abstract: A method for producing p-isobutylstyrene which is characterized in that starting materials are inexpensive, processes are easy to be done and products are highly pure. The method comprises the step of catalytically cracking 1,1-bis(p-isobutylphenyl)ethane at temperatures in the range of 200.degree. to 650.degree. C. in the presence of a protonic acid catalyst and/or a solid acid catalyst to produce p-isobutylstyrene and isobutylbenzene, and at least a portion of said isobutylbenzene is recycled to produce said 1,1-bis(p-isobutylphenyl)ethane by reaction with acetaldehyde in the presence of sulfuric acid.
    Type: Grant
    Filed: July 10, 1985
    Date of Patent: May 2, 1989
    Assignee: Nippon Petrochemicals Company, Limited
    Inventors: Isoo Shimizu, Ryotaro Hirano, Yasuo Matsumura, Hideki Nomura, Kazumichi Uchida, Atsushi Sato
  • Patent number: 4300007
    Abstract: A method for preparing C.sub.3 -C.sub.4 olefins and vinylaromatic compounds, viz. styrene, vinyltoluenes or vinylxylenes which comprises alkylation of toluene or methyl derivatives thereof with a C.sub.2 -C.sub.3 olefin into the methyl group. The resulting alkylaromatic compounds are subjected to conversion to the desired products in the presence of ethylene on a catalyst consisting of chromium oxide, tungsten oxide and an oxide of an alkali or alkali-earth metal supported by a carrier.The method according to the present invention makes it possible to increase the yield of vinylaromatic compounds, obtain individual isomers of vinyltoluene or vinylxylene and efficiently utilize the part of the alkyl radical of the alkylaromatic compound lost in the prior art method.
    Type: Grant
    Filed: October 5, 1977
    Date of Patent: November 10, 1981
    Inventors: Sergei A. Polyakov, Aron L. Shapiro
  • Patent number: 4250344
    Abstract: A process for making styrene by the cracking of beta-phenethyl acetate wherein the beta-phenethyl acetate is derived from the esterification of beta-phenethyl alcohol. The latter is derived from the homologation of benzyl alcohol-benzyl acetate mixtures. The esterification of the beta-phenethyl alcohol may be partial because it has been found that up to 20% by weight of beta-phenethyl alcohol may be fed to the cracking step and also converted to styrene. Benzyl alcohol and benzyl acetate can also be fed to the cracking step because it has been found that they are essentially inert at cracking conditions.
    Type: Grant
    Filed: October 25, 1978
    Date of Patent: February 10, 1981
    Assignee: Chem Systems Inc.
    Inventors: Martin B. Sherwin, Jimmy Y. Peress, Kenneth J. Gwozdz