With Preliminary Treatment Of Feed Patents (Class 585/448)
  • Patent number: 10487022
    Abstract: In a process and system for treatment of feed stocks comprising alkylating agent and metal salts, the metal salts are removed from the feedstock by an efficient combination of separations processes. The processes may take place in one or more stages, each stage taking place in one or more vessels. Such treatment processes may remove 99.9% or more of metal salts from a feedstock, while recovering 99.9% or more of the alkylating agent from the feedstock for use in an alkylation reaction, especially of aromatics such as toluene and benzene. Preferred alkylating agents include methanol and mixtures of carbon monoxide and hydrogen, for methylation of toluene and/or benzene. The methylation proceeds over an aluminosilicate catalyst and preferably yields para-xylene with 75% or greater selectivity.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: November 26, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert G. Tinger, Indulis J. Eilands, John R. Porter, Larry L. Iaccino
  • Patent number: 10138180
    Abstract: In a process for producing styrene, benzene is alkylated with ethylene to produce ethylbenzene and at least some of the ethylbenzene is dehydrogenated to produce styrene, together with benzene and toluene as by-products. At least part of the benzene by-product is passed through a bed of an adsorbent comprising at least one of an acidic clay, alumina, an acidic ion exchange resin and an acidic molecular sieve to remove basic nitrogenous impurities therefrom and produce a purified benzene by-product, which is then recycled to the alkylation step.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 27, 2018
    Assignee: BADGER LICENSING LLC
    Inventors: Brian Maerz, Vijay Nanda, Maruti Bhandarkar, Matthew Vincent
  • Patent number: 9120715
    Abstract: A process for the alkylation of an aromatic substrate can include providing an alkylation reaction zone containing an alkylation catalyst, and introducing a feedstock including an aromatic substrate and an alkylating agent into an inlet of the alkylation reaction zone and into contact with the alkylation catalyst. The alkylation reaction zone can be operated at temperature and pressure conditions to cause alkylation of the aromatic substrate in the presence of the alkylation catalyst to produce an alkylation product including a mixture of the aromatic substrate and monoalkylated and polyalkylated aromatic components. The alkylation product can be withdrawn from the alkylation reaction zone. Nitrogen containing compounds in the aromatic substrate, alkylating agent, or both can be monitored in a range 15 wppb to 35 wppm by dry colorimetry. The process can include transalkylation of polyalkylated aromatic components in a transalkylation reaction zone containing a transalkylation catalyst.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: September 1, 2015
    Assignee: TOTAL PETROCHEMICALS FRANCE
    Inventor: Jean-Bernard Cary
  • Publication number: 20150148577
    Abstract: A process is presented for the separation of iso-olefins from a hydrocarbon mixture comprising paraffins and olefins. The process includes an adsorption separation system, wherein the adsorbent is selected according to the properties of the material that is desired to be adsorbed. The process also includes a selection of a desorbent, which can comprise a mixture, to provide for an enhanced recovery of the adsorbed material and a separation of the iso-olefins from paraffins.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: UOP LLC
    Inventors: Santi Kulprathipanja, Stephen W. Sohn
  • Publication number: 20150148576
    Abstract: A process is presented for the separation of iso-olefins from a hydrocarbon mixture comprising paraffins and olefins. The process includes an adsorption separation system, wherein the adsorbent is selected according to the properties of the material that is desired to be adsorbed. The process also includes a selection of a desorbent, which can comprise a mixture, to provide for an enhanced recovery of the adsorbed material and a separation of the iso-olefins from paraffins.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: UOP LLC
    Inventors: Santi Kulprathipanja, Stephen W. Sohn
  • Patent number: 9029621
    Abstract: A process for oligomerizing isobutene comprises contacting a feedstock comprising isobutene with a catalyst comprising a MCM-22 family molecular sieve under conditions effective to oligomerize the isobutene, wherein said conditions including a temperature from about 45° C. to less than 140° C. The isobutene may be a component of a hydrocarbon feedstock containing at least one additional C4 alkene. In certain aspects, isobutene oligomers are separated from a first effluent of the oligomerization to produce a second effluent comprising at least one n-butene. The second effluent can be contacted with an alkylation catalyst to produce sec-butylbenzene.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: May 12, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Jane Chi-Ya Cheng, Jihad Mohammed Dakka, Jon Edmond Stanat
  • Patent number: 9029622
    Abstract: Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with acidic clay to produce a hydrocarbon effluent stream having a lower weakly basic nitrogen compound content relative to the hydrocarbon feed stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: May 12, 2015
    Assignee: UOP LLC
    Inventors: Mark G. Riley, Wugeng Liang, Deng-Yang Jan, Adam Gross
  • Patent number: 9024104
    Abstract: Disclosed is a method for removing weakly basic nitrogen compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with a basic catalyst to convert a portion of the weakly basic nitrogen compounds to basic nitrogen compounds. The method also includes contacting the hydrocarbon feed stream with an acidic adsorbent to adsorb the basic nitrogen compounds from the stream. The hydrocarbon feed stream comprises an aromatic compound and a weakly basic nitrogen compound.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: May 5, 2015
    Assignee: UOP LLC
    Inventors: Mark G. Riley, Wugeng Liang, Deng-Yang Jan, Adam Gross
  • Patent number: 8993820
    Abstract: The present invention provides an improved process for producing an alkylated aromatic compound from an at least partially untreated alkylatable aromatic compound having catalyst poisons, wherein said alkylatable aromatic compound stream is treated to reduce catalyst poisons with a treatment composition having a surface area/surface volume ratio of greater than or equal to 30 in?1 (12 cm?1) in a treatment zone separate from an alkylation reaction zone under treatment conditions including a temperature of from about 30° C. to about 300° C. to form an effluent comprising said treated alkylatable aromatic compound.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 31, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda, Terry E. Helton
  • Publication number: 20150038752
    Abstract: Systems and methods for producing aromatic products are provided. An aromatic stream is provided with aromatic compounds and olefins. The olefins are reacted with aromatic compounds to form colored bodies, and the aromatic stream is distilled to produce an overhead stream and reboiler stream. The colored bodies are in the reboiler stream, and the reboiler stream is passed through an absorbent to remove the colored bodies.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: UOP LLC
    Inventors: Jon Eric Prudhom, Jason L. Noe
  • Patent number: 8895793
    Abstract: The process converts ethylene in a dilute ethylene stream and dilute benzene in an aromatic containing stream via alkylation to heavier hydrocarbons. The catalyst may be a zeolite such as UZM-8. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, and hydrogen and selectively converts benzene. At least 40 wt-% of the ethylene in the dilute ethylene stream and at least 20 wt-% of the benzene in the dilute benzene stream can be converted to heavier hydrocarbons.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: November 25, 2014
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Alakananda Bhattacharyya
  • Patent number: 8889943
    Abstract: The present invention relates to a method and system for recovering aromatics from a naphtha feedstock obtained from a crude petroleum, natural gas condensate, or petrochemical feedstock. The method and system comprise the steps of recovering an aromatics fraction from the feedstock prior to reforming.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: November 18, 2014
    Inventor: William George Rhodey
  • Patent number: 8877996
    Abstract: Disclosed is a process for the production of alkylated aromatics by contacting a feed stream comprising an alkylatable aromatic, an alkylating agent and trace amounts of water and impurities in the presence of a first catalyst and an alkylation catalyst wherein such water and impurities are removed in order to improve the cycle length of such alkylation catalysts. Water and at least a portion of impurities are removed in a dehydration zone. A reaction zone having a first catalyst which, in some embodiments is a large pore molecular sieve, acts to remove another portion of impurities, such as nitrogenous and other species. An alkylation zone having an alkylation catalyst which, in some embodiments is a medium pore molecular sieve or a MCM-22 family material, acts to remove additional impurities, and to alkylate the alkylatable aromatic compound.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 4, 2014
    Assignees: ExxonMobil Chemical Patents Inc., Technip Process Technology, Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda, Maruti Bhandarkar, Brian Maerz, Terry E. Helton
  • Patent number: 8865958
    Abstract: A method of producing an alkylaromatic by the alkylation of an aromatic with an alkylating agent, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed. The method includes using an H-beta catalyst to minimize process upsets due to alkylation catalyst deactivation and the resulting catalyst regeneration or replacement. The H-beta catalyst can be used in a preliminary alkylation reactor that is located upstream of the primary alkylation reactor. The H-beta catalyst used in a preliminary alkylation reactor can reduce the deactivation of the catalyst in the primary alkylation reactor.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: October 21, 2014
    Assignee: Fina Technology, Inc.
    Inventor: James R. Butler
  • Patent number: 8853481
    Abstract: A method for alkylation of a feedstock is described. The method includes contacting the feedstock comprising at least one alkylatable aromatic compound and an alkylating agent with a first alkylating catalyst composition under alkylating conditions, the first alkylating catalyst composition comprising UZM-8 zeolite and a binder, the first alkylating catalyst composition having less than 50 wt% UZM-8 zeolite; wherein a total alkylated selectivity at a temperature and a molar ratio of alkylatable aromatic compound to alkylating agent is greater than 99.0%.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: October 7, 2014
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Robert J. Schmidt, Pelin Cox
  • Patent number: 8802910
    Abstract: A process for the alkylation of an aromatic substrate can include providing an alkylation reaction zone containing an alkylation catalyst, and introducing a feedstock including an aromatic substrate and an alkylating agent into an inlet of the alkylation reaction zone and into contact with the alkylation catalyst. The alkylation reaction zone can be operated at temperature and pressure conditions to cause alkylation of the aromatic substrate in the presence of the alkylation catalyst to produce an alkylation product including a mixture of the aromatic substrate and monoalkylated and polyalkylated aromatic components. The alkylation product can be withdrawn from the alkylation reaction zone. Nitrogen containing compounds in the aromatic substrate, alkylating agent, or both can be monitored in a range 15 wppb to 35 wppm by dry colorimetry. The process can include transalkylation of polyalkylated aromatic components in a transalkylation reaction zone containing a transalkylation catalyst.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: August 12, 2014
    Assignee: Total Petrochemicals France
    Inventor: Jean-Bernard Cary
  • Patent number: 8802911
    Abstract: A method of producing an alkylaromatic by the alkylation of an aromatic with an alkylating agent, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed. The method includes using an H-beta catalyst to minimize process upsets due to alkylation catalyst deactivation and the resulting catalyst regeneration or replacement. The H-beta catalyst can be used in a preliminary alkylation reactor that is located upstream of the primary alkylation reactor. The H-beta catalyst used in a preliminary alkylation reactor can reduce the deactivation of the catalyst in the primary alkylation reactor.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: August 12, 2014
    Assignee: Fina Technology, Inc.
    Inventor: James R. Butler
  • Publication number: 20140171710
    Abstract: We provide a method for making hydrocarbon products with reduced organic halide contamination, comprising: a. separating an effluent from an ionic liquid catalyzed hydrocarbon conversion reaction into: i. a hydrocarbon fraction comprising an organic halide contaminant and from greater than zero to less than 5000 wppm olefins; and ii. a used ionic liquid catalyst fraction comprising a used ionic liquid catalyst; and b. contacting the hydrocarbon fraction with an aromatic hydrocarbon reagent and an ionic liquid catalyst to reduce a level of the organic halide contaminant to from greater than zero to 20 wppm in a finished hydrocarbon product.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Cedrick Mahieux, Sven Ivar Hommeltoft
  • Patent number: 8747785
    Abstract: The apparatus converts ethylene in a dilute ethylene stream and dilute benzene in an aromatic containing stream via alkylation to heavier hydrocarbons. The catalyst may be a zeolite such as UZM-8. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, and hydrogen and selectively converts benzene. At least 40 wt-% of the ethylene in the dilute ethylene stream and at least 20 wt-% of the benzene in the dilute benzene stream can be converted to heavier hydrocarbons.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Alakananda Bhattacharyya
  • Publication number: 20140121431
    Abstract: A method for alkylation of a feedstock is described. The method includes contacting the feedstock comprising at least one alkylatable aromatic compound and an alkylating agent with a first alkylating catalyst composition under alkylating conditions, the first alkylating catalyst composition comprising UZM-8 zeolite and a binder, the first alkylating catalyst composition having less than 50 wt % UZM-8 zeolite; wherein a total alkylated selectivity at a temperature and a molar ratio of alkylatable aromatic compound to alkylating agent is greater than 99.0%.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: UOP LLC
    Inventors: Deng-Yang Jan, Robert J. Schmidt, Pelin Cox
  • Patent number: 8637720
    Abstract: Alkylation systems and methods of minimizing alkylation catalyst regeneration are discussed herein. The alkylation systems generally include a preliminary alkylation system adapted to receive an input stream including an alkyl aromatic hydrocarbon and contact the input stream with a first preliminary alkylation catalyst disposed therein to form a first output stream. The first preliminary alkylation catalyst generally includes a Y zeolite. The systems further include a first alkylation system adapted to receive the first output stream and contact the first output stream with a first alkylation catalyst disposed therein and an alkylating agent to form a second output stream.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: January 28, 2014
    Assignee: Fina Technology, Inc.
    Inventors: James T. Merrill, Marcus Ledoux
  • Patent number: 8629311
    Abstract: Disclosed is a process for the production of alkylated aromatics by contacting a feed stream comprising an alkylatable aromatic, an alkylating agent and trace amounts of water and impurities in the presence of first and second alkylation catalysts wherein the water and impurities are removed in order to improve the cycle length of such alkylation catalysts. Water and a portion of impurities are removed in a dehydration zone. A first alkylation zone having a first alkylation catalyst which, in some embodiments is a large pore molecular sieve, acts to remove a larger portion of impurities, such as nitrogenous and other species, and to alkylate a smaller portion of the alkylatable aromatic compound. A second alkylation zone, which in some embodiments is a medium pore molecular sieve, acts to remove a smaller portion of impurities, and to alkylate a larger portion of the alkylatable aromatic compound.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: January 14, 2014
    Assignees: Stone & Webster, Inc., ExxonMobil Chemical Patents Inc.
    Inventors: Matthew J. Vincent, Vijay Nanda, Maruti Bhandarkar, Brian Maerz, Terry E. Helton
  • Publication number: 20140005454
    Abstract: Alkylation systems and methods of minimizing alkylation catalyst regeneration are described herein. The alkylation systems generally include a preliminary alkylation system adapted to receive an input stream including an alkyl aromatic hydrocarbon and contact the input stream with a preliminary alkylation catalyst disposed therein to form a first output stream. The preliminary alkylation catalyst generally includes a zeolite catalyst having a SiO2/Al2O3 ratio of less than about 25. The alkylation systems further include a first alkylation system adapted to receive the first output stream and contact the first output stream with a first alkylation catalyst disposed therein and an alkylating agent to form a second output stream.
    Type: Application
    Filed: August 29, 2013
    Publication date: January 2, 2014
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: James R. Butler, Xin Xiao, James T. Merrill
  • Publication number: 20130324774
    Abstract: Disclosed is a method for removing water, nitrogen compounds, and unsaturated aliphatic compounds from a hydrocarbon feed stream by passing the hydrocarbon feed stream through a water removal zone, a nitrogen removal zone, and an unsaturated aliphatic compound removal zone. By on aspect, the method includes removing water from the hydrocarbon feed stream, contacting the feed stream with a nitrogen selective adsorbent, and contacting the feed stream with an unsaturated aliphatic compound removal material.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 5, 2013
    Inventors: Mark G. Riley, Wugeng Liang, Deng-Yang Jan, Adam Gross
  • Publication number: 20130324773
    Abstract: Disclosed is a method for treating two or more aromatic feed streams including combining one aromatic feed stream with another aromatic feed stream. The method further includes passing the combined feed stream to a unsaturated aliphatic compound removal zone for removing an unsaturated aliphatic compound therefrom. The method further includes passing the combined aromatic feed stream to a nitrogen removal zone for removing a nitrogen compound therefrom.
    Type: Application
    Filed: May 23, 2013
    Publication date: December 5, 2013
    Applicant: UOP LLC
    Inventors: Wugeng Liang, Mark G. Riley
  • Patent number: 8546632
    Abstract: Disclosed is a method for removing unsaturated aliphatic compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with an acidic molecular sieve to produce a hydrocarbon effluent stream having a lower unsaturated aliphatic content relative to the hydrocarbon feed stream. The hydrocarbon feed stream comprises an aromatic compound, a nitrogen compound, and an unsaturated aliphatic compound.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 1, 2013
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Michael A. Schultz, James A. Johnson
  • Patent number: 8546631
    Abstract: Disclosed is a method for removing unsaturated aliphatic compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with activated carbon to produce a hydrocarbon effluent stream having a lower unsaturated aliphatic content relative to the hydrocarbon feed stream. The hydrocarbon feed stream comprises an aromatic compound, a nitrogen compound, and an unsaturated aliphatic compound.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 1, 2013
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Michael A. Schultz, James A. Johnson
  • Patent number: 8546630
    Abstract: Disclosed is a method for removing unsaturated aliphatic compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with an adsorbent comprising clay to produce a hydrocarbon effluent stream having a lower unsaturated aliphatic content relative to the hydrocarbon feed stream. The hydrocarbon feed stream comprises an aromatic compound, a nitrogen compound, and an unsaturated aliphatic compound.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: October 1, 2013
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Michael A. Schultz, James A. Johnson
  • Patent number: 8536398
    Abstract: Processes suitable for purifying aromatic-containing feed streams, and processes using such purified streams are described, wherein the purification processes comprise: (a) providing a process feedstream comprising an aromatic component; and (b) bringing the process feedstream into contact with a first zeolite and a second zeolite; wherein the first zeolite has a mean pore size of 0.3 to 0.5 nm, and wherein the second zeolite has a mean pore size of 0.6 to 0.8 nm.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: September 17, 2013
    Assignee: Styrolution GmbH
    Inventors: Rolf Henn, Ulrich Müller, Ferdinand Straub, Jürgen Dosch
  • Patent number: 8524964
    Abstract: This disclosure relates to a process for hydrocarbon conversion comprising contacting, under conversion conditions, a feedstock suitable for hydrocarbon conversion with a catalyst comprising an EMM-10 family molecular sieve.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Jane C. Cheng, Mohan Kalyanaraman, Michael C. Kerby, Terry E. Helton
  • Patent number: 8426662
    Abstract: Alkylation systems and methods of minimizing alkylation catalyst regeneration are discussed herein. The alkylation systems generally include a preliminary alkylation system adapted to receive an input stream including an alkyl aromatic hydrocarbon and contact the input stream with a first preliminary alkylation catalyst disposed therein to form a first output stream. The first preliminary alkylation catalyst generally includes a Y zeolite. The systems further include a first alkylation system adapted to receive the first output stream and contact the first output stream with a first alkylation catalyst disposed therein and an alkylating agent to form a second output stream.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: April 23, 2013
    Assignee: Fina Technology, Inc.
    Inventors: James T. Merrill, Marcus Ledoux
  • Patent number: 8420877
    Abstract: A method of producing an alkylaromatic by the alkylation of an aromatic with an alkylating agent, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed. The method includes using an H-beta catalyst in a preliminary alkylation reactor that is located upstream of the primary alkylation reactor. The H-beta catalyst used in a preliminary alkylation reactor can be regenerated and the regenerated H-beta zeolite catalyst can have a deactivation rate that is no more than 120% of the deactivation rate of a fresh H-beta zeolite catalyst.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: April 16, 2013
    Assignee: Fina Technology, Inc.
    Inventor: James R. Butler
  • Patent number: 8414851
    Abstract: The apparatus converts ethylene in a dilute ethylene stream and dilute benzene in an aromatic containing stream via alkylation to heavier hydrocarbons. The catalyst may be a zeolite such as UZM-8. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, and hydrogen and selectively converts benzene. At least 40 wt-% of the ethylene in the dilute ethylene stream and at least 20 wt-% of the benzene in the dilute benzene stream can be converted to heavier hydrocarbons.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: April 9, 2013
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Alakananda Bhattacharyya
  • Patent number: 8357830
    Abstract: A process for producing a monoalkylated aromatic compound in an alkylation reaction zone, comprising providing upstream of said alkylation reaction zone a reactive guard bed having a catalyst of *BEA, MWW, or FAU framework structure and an alkylation feed wherein at least a portion of any reactive impurities are removed from the alkylation feed to form an effluent; and providing the effluent and a first catalytic particulate material which comprises MCM-56 and an alumina binder sized 50-60 mesh and having a ratio of surface area over volume ratio in the range of 241 to 2867 cm-1 and optionally additional alkylating agent to said alkylation reaction zone; and contacting said alkylatable aromatic compound and said alkylating agent with said catalytic particulate material in said alkylation reaction zone maintained under alkylation conditions, to form a product comprised of said monoalkylated aromatic compound.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 22, 2013
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Yun-Feng Chang
  • Patent number: 8329966
    Abstract: Synthetic base oil composition comprising dialkyl aromatic compound with alkyl side chain carbon number from C10 to C28, or preferably C11 to C24, or even more preferably, C12 to C18, wherein the branching characteristics of the alkyl side chain has a total methyl number (TMN) determined by C13 NMR spectroscopy to be from more than 2.1 to less than 3.5, or preferably from 2.15 to 3.25, or even more preferably from 2.2 to 3.0, or a branching index (BI) from more than 0.1 to less than 1.5, or more preferably, 0.15 to 1.25, or even more preferably, 0.2 to 1.0. The synthetic base oil composition has a combination of high viscometric index, low volatility, superior low temperature properties, and improved thermal/oxidation stability, and is particularly suitable to be used as a premium synthetic base stock, second base oil component, or additive for lubricant and additive package applications.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: December 11, 2012
    Assignee: Formosan Union Chemical Corp.
    Inventors: Chi-Hsing Tsai, Chien-Hsun Tsai
  • Patent number: 8309778
    Abstract: The present invention provides a catalyst comprising metallic Pt and/or Pd supported on a binder-free zeolite for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock, wherein the amount of metallic Pt and/or Pd is of 0.01-0.8 wt %, preferably 0.01-0.5 wt % on the basis of the total weight of the catalyst, and the binder-free zeolite is selected from the group consisting of mordenite, beta zeolite, Y zeolite, ZSM-5, ZSM-11 and composite or cocrystal zeolite thereof. The present invention also provides a process for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock using said catalyst.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: November 13, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Deju Wang, Zhongneng Liu, Xueli Li, Minbo Hou, Zheming Wang, Jianqiang Wang
  • Patent number: 8207388
    Abstract: A catalytic composition is described for the transalkylation of aromatic hydrocarbons comprising a zeolite and an inorganic binder, characterized by an extra-zeolitic porosity, i.e. the porosity obtained by adding the mesoporosity and the macroporosity fractions present in the catalytic composition, higher than or equal to 0.7 cc/g, which is such as to consist for a fraction of at least 30% of pores having a diameter greater than 100 nanometers. These catalytic compositions have a crushing strength not lower than 1.7 kg/mm and an apparent density not higher than 0.5 g/cc. A process is also described for the transalkylation of polyalkylated aromatic hydrocarbons which uses these catalytic compositions.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: June 26, 2012
    Assignee: Polimeri Europa S.p.A.
    Inventors: Elena Bencini, Gianni Girotti
  • Publication number: 20120157738
    Abstract: Disclosed is a method for removing unsaturated aliphatic compounds from a hydrocarbon feed stream by contacting the hydrocarbon feed stream with activated carbon to produce a hydrocarbon effluent stream having a lower unsaturated aliphatic content relative to the hydrocarbon feed stream. The hydrocarbon feed stream comprises an aromatic compound, a nitrogen compound, and an unsaturated aliphatic compound.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 21, 2012
    Applicant: UOP LLC
    Inventors: Deng-Yang Jan, Michael A. Schultz, James A. Johnson
  • Patent number: 8138384
    Abstract: In a process for converting methane to alkylated aromatic hydrocarbons, a feed containing methane is contacted with a dehydrocyclization catalyst under conditions effective to convert said methane to aromatic hydrocarbons and produce a first effluent stream comprising aromatic hydrocarbons and hydrogen. At least a portion of said aromatic hydrocarbon from said first effluent stream is then contacted with an alkylating agent under conditions effective to alkylate said aromatic hydrocarbon and produce an alkylated aromatic hydrocarbon having more alkyl side chains than said aromatic hydrocarbon prior to the alkylating.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: March 20, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Elizabeth L. Stavens, Gary D. Mohr, Matthew J. Vincent
  • Patent number: 8128895
    Abstract: Processing schemes and arrangements are provided for obtaining propylene and propane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the propylene into cumene without separating the propane from the propane/propylene feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of propylene from propane produced by a FCC process prior to using the combined propane/propane stream as a feed for a cumene alkylation process. A bottoms stream from the cumene column of the cumene alkylation process can be used and an absorption solvent in the FCC process thereby eliminating the need for a transalkylation reactor and a DIPB/TIPB column.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 6, 2012
    Assignee: UOP LLC
    Inventor: Michael A. Schultz
  • Patent number: 8119848
    Abstract: A process for treating an alkylation feedstock comprising olefins, n-alkanes, iso-alkanes, and impurities including one or more of butadiene, oxygenates, nitrogen-containing compounds, and sulfur-containing compounds, the process including: contacting an alkylation feedstock containing at least one of oxygenates and nitrogen-containing compounds with water to produce a hydrocarbon fraction having a reduced concentration of the at least one of oxygenates and nitrogen-containing compounds and an aqueous fraction comprising at least a portion of the at least one of oxygenates and nitrogen-containing compounds; separating water from the hydrocarbon fraction having a reduced concentration to produce a hydrocarbon fraction having a reduced water content; contacting the hydrocarbon fraction having a reduced water content with an oligomerization catalyst in a first oligomerization reaction zone under oligomerization conditions to react at least a portion of the olefins to form a reactor effluent comprising olefin oli
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: February 21, 2012
    Assignee: Catalytic Distillation Technologies
    Inventors: William M. Cross, Jr., Lawrence A. Smith, Jr., Gary G. Podrebarac
  • Publication number: 20110301396
    Abstract: Alkylation systems and methods of minimizing alkylation catalyst regeneration are described herein. The alkylation systems generally include a preliminary alkylation system adapted to receive an input stream including an alkyl aromatic hydrocarbon and contact the input stream with a preliminary alkylation catalyst disposed therein to form a first output stream. The preliminary alkylation catalyst generally includes a zeolite catalyst having a SiO2/Al2O3 ratio of less than about 25. The alkylation systems further include a first alkylation system adapted to receive the first output stream and contact the first output stream with a first alkylation catalyst disposed therein and an alkylating agent to form a second output stream.
    Type: Application
    Filed: August 18, 2011
    Publication date: December 8, 2011
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: James Butler, Xin Xiao, Jim Merrill
  • Patent number: 8071829
    Abstract: A process is disclosed for the alkylation of aromatics by charging a hydrocarbon feed containing aromatic hydrocarbons and olefinic hydrocarbons to a distillation column for separation into at least one fraction; removing an aromatics/olefin stream containing at least a portion of the aromatic hydrocarbons and at least a portion of the olefinic hydrocarbons; charging the aromatics/olefin stream to an alkylation reactor, operated at a temperature in the range of from about 80° C. to about 220° C., for alkylation of at least a portion of the aromatic hydrocarbons with the olefinic hydrocarbons; recycling at least a portion of the resulting reactor effluent to the distillation column; and removing a product stream containing alkylated aromatics from the distillation column.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: December 6, 2011
    Assignee: ConocoPhillips Company
    Inventors: Bradley M. Taylor, Barbara A. Todd
  • Publication number: 20110230693
    Abstract: A process for removing trace-sulfur compounds, particularly thiophene, from aromatic hydrocarbon streams is disclosed and claimed. The process involves contacting the stream with a catalyst/adsorbent comprising a solid acid and a metal component. The process yields a sulfur-free aromatic feedstock suitable for further processing by, e.g., alkylation.
    Type: Application
    Filed: May 31, 2011
    Publication date: September 22, 2011
    Applicant: UOP LLC
    Inventors: Mark G. Riley, Douglas G. Stewart
  • Publication number: 20110224469
    Abstract: Disclosed is a process for the production of alkylated aromatics by contacting a feed stream comprising an alkylatable aromatic, an alkylating agent and trace amounts of water and impurities in the presence of first and second alkylation catalysts wherein the water and impurities are removed in order to improve the cycle length of such alkylation catalysts. Water and a portion of impurities are removed in a dehydration zone. A first alkylation zone having a first alkylation catalyst which, in some embodiments is a large pore molecular sieve, acts to remove a larger portion of impurities, such as nitrogenous and other species, and to alkylate a smaller portion of the alkylatable aromatic compound. A second alkylation zone, which in some embodiments is a medium pore molecular sieve, acts to remove a smaller portion of impurities, and to alkylate a larger portion of the alkylatable aromatic compound.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 15, 2011
    Inventors: Matthew J. Vincent, Vijay Nanda, Maruti Bhandarkar, Brian Maerz, Terry E. Helton
  • Patent number: 8013199
    Abstract: This invention provides for a process for the alkylation of an aromatic hydrocarbon stream having impurities in which a hydrocarbon feedstock is contacted with a first molecular sieve comprising Linde type X molecular sieve and having a Si/Al molar ratio of less than about 5 to remove at least a portion of said impurities and to produce a partially treated aromatic hydrocarbon stream; and then contacting said partially treated hydrocarbons stream with a second molecular sieve comprising a zeolite Y and having a Si/Al molar ratio of greater than about 5 to remove substantially all of the remaining portion of said impurities to produce a fully treated hydrocarbon feedstock having a reduced amount of impurities. The fully treated hydrocarbon feedstock is contacted with an alkylating agent in the presence of an alkylation catalyst having a cycle length and under alkylation conditions to produce an alkylated aromatic hydrocarbon stream.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: September 6, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Charles Morris Smith
  • Publication number: 20110201862
    Abstract: A method for the separation of hydrocarbon compounds utilizing a dividing wall distillation column is described. The dividing wall distillation column enables one or more side draw stream to be removed from the dividing wall distillation column in addition to an overhead stream and a bottoms stream.
    Type: Application
    Filed: April 27, 2011
    Publication date: August 18, 2011
    Applicant: FINA TECHNOLOGY, Inc.
    Inventor: James R. Butler
  • Publication number: 20110184218
    Abstract: Alkylation systems and processes are described herein. The alkylation system generally includes a preliminary alkylation system containing a preliminary alkylation catalyst therein and adapted to contact an aromatic compound and an alkylating agent with the preliminary alkylation catalyst so as to alkylate the aromatic compound and form a preliminary output stream, wherein the preliminary alkylation system includes a first preliminary alkylation reactor and a second preliminary alkylation reactor connected in parallel to the first preliminary alkylation reactor and a primary alkylation system adapted to receive the preliminary output stream and contact the preliminary output stream and the alkylating agent with a primary alkylation catalyst disposed therein so as to form a primary output stream.
    Type: Application
    Filed: February 16, 2011
    Publication date: July 28, 2011
    Applicant: Fina Technology, Inc.
    Inventor: JAMES BUTLER
  • Patent number: 7939693
    Abstract: A process for producing sec-butylbenzene comprises feeding reactants comprising benzene and a C4 olefin to a distillation column reactor having a first reaction zone containing an alkylation catalyst and a second distillation zone, which is located below said first reaction zone and which is substantially free of alkylation catalyst, wherein the ratio of the number of distillation stages in said first reaction zone to the number of distillation stages in said second distillation zone is less than 1:1. Concurrently in the distillation reactor, the reactants are contacted with the alkylation catalyst in the first reaction zone under conditions such that the C4 olefin reacts with the benzene to produce sec-butylbenzene and the sec-butylbenzene is fractioned from the unreacted C4 olefin. The sec-butylbenzene thereby passes as a liquid phase stream from the first reaction zone to the second distillation zone and the liquid phase steam is withdrawn from the distillation column reactor as bottoms.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 10, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jane C. Cheng, Jihad M. Dakka, Travis A. Reine, Jon E. Stanat
  • Patent number: 7914754
    Abstract: Processing schemes and arrangements are provided for obtaining ethylene and ethane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the ethylene into ethyl benzene without separating the ethane from the feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of ethylene from ethane produced by a FCC process prior to using the combined ethylene/ethane stream as a feed for an ethyl benzene process. Further, heat from the alkylation reactor is used for one of the strippers of the FCC process and at least one bottoms stream from alkylation process is used as an absorption solvent in the FCC process.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 29, 2011
    Assignee: UOP LLC
    Inventor: Michael A. Schultz