Metal-containing Patents (Class 585/855)
  • Patent number: 9006130
    Abstract: The invention relates to a hydrodesulfurization nanocatalyst, use of the hydrodesulfurization nanocatalyst in a hydrodesulfurization process and a process for producing the hydrodesulfurization nanocatalyst. The hydrodesulfurization nanocatalyst can include a nanostructured alumina material, at least one metal selected from group VI B of the periodic table of elements, and at least one metal selected from group VIII B of the periodic table of elements.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: April 14, 2015
    Assignee: Research Institute of Petroleum Industry (RIPI)
    Inventors: Fereshteh Rashidi, Alimorad Rashidi, Kheirollah Jafari Jozani, Ali Nemati Kharat Ghaziani, Morteza Rezapour, Hamidreza Bozorgzadeh
  • Publication number: 20150045600
    Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan Martin McConnachie, Faiz Pourarian
  • Publication number: 20150025258
    Abstract: The concentration of hydrogen sulfide in a hydrocarbon can be mitigated by intruding therein a zinc carboxylate oxo complex composition prepared by reacting particulate zinc oxide with a mixture of two or more carboxylic acids wherein the zinc carboxylate oxo complex composition is soluble in hydrocarbons. Useful acids useful include acetic acid, oleic acid, isobutyric acid, lineoleic acid, cekanoic acid, and neodecanoic acid.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Applicant: BAKER HUGHES INCORPORATION
    Inventor: Ross Poland
  • Patent number: 8785711
    Abstract: There are provided an ionic liquid having ether group(s) in which a copper(I) compound is included, a method for preparing the same, and a method for removing traces amounts of acetylene-based hydrocarbon compounds included in olefin by absorption or extraction using the same. When the disclosed solution is used, oxidation of Cu(I) to Cu(II) is prevented since CuX is stabilized by the ionic liquid. Thus, selective removal efficiency of acetylenic compounds is improved greatly while the removal performance is retained for a long period of time. Further, since the solution according to the present disclosure is applicable as an extractant as well as an absorbent, the associated operation is simple and apparatus cost can be decreased.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: July 22, 2014
    Assignee: Kolon Industries, Inc.
    Inventors: Hyun Joo Lee, Byoung Sung Ahn, Hoon Sik Kim, Jin-Hyung Kim, Gyeong Taek Gong
  • Publication number: 20130053610
    Abstract: A process for the production of para-xylene by simulated counter-current adsorption with high flexibility with respect to a reference run (100%) uses 2 adsorbers each with 12 beds, said adsorbers being able to be connected in accordance with 3 different modes; the flexibility obtained is 50% to 150%.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 28, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Damien LEINEKUGEL LE COCQ, Philibert Leflaive, Luc Wolff, Gerard Hotier
  • Publication number: 20120116145
    Abstract: A method of producing a crude product from a hydrocarbon feed is provided. A hydrocarbon feed is contacted with a catalyst containing a Col. 6-10 metal or compound thereof to produce the crude product, where the catalyst has a pore size distribution with a median pore diameter ranging from 105 ? to 150 ?, with 60% of the total number of pores in the pore size distribution having a pore diameter within 60 ? of the median pore diameter, with at least 50% of its pore volume in pores having a pore diameter of at most 600 ?, and between 5% and 25% of its pore volume in pores having a pore diameter between 1000 ? and 5000 ?.
    Type: Application
    Filed: January 11, 2012
    Publication date: May 10, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Opinder Kishan BHAN, Scott Lee WELLINGTON
  • Publication number: 20120083643
    Abstract: The invention relates to a hydrodesulfurization nanocatalyst, use of the hydrodesulfurization nanocatalyst in a hydrodesulfurization process and a process for producing the hydrodesulfurization nanocatalyst. The hydrodesulfurization nanocatalyst can include a nanostructured alumina material, at least one metal selected from group VI B of the periodic table of elements, and at least one metal selected from group VIII B of the periodic table of elements.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 5, 2012
    Applicant: RESEARCH INSTITUTE OF PETROLEUM INDUSTRY (RIPI)
    Inventors: Fereshteh Rashidi, Alimorad Rashidi, Kheirollah Jafari Jozani, Ali Nemati Kharat Ghaziani, Morteza Rezapour, Hamidreza Bozorgzadeh
  • Publication number: 20120083642
    Abstract: There are provided an ionic liquid having ether group(s) in which a copper(I) compound is included, a method for preparing the same, and a method for removing traces amounts of acetylene-based hydrocarbon compounds included in olefin by absorption or extraction using the same. When the disclosed solution is used, oxidation of Cu(I) to Cu(II) is prevented since CuX is stabilized by the ionic liquid. Thus, selective removal efficiency of acetylenic compounds is improved greatly while the removal performance is retained for a long period of time. Further, since the solution according to the present disclosure is applicable as an extractant as well as an absorbent, the associated operation is simple and apparatus cost can be decreased.
    Type: Application
    Filed: December 16, 2010
    Publication date: April 5, 2012
    Inventors: Hyun Joo Lee, Byoung Sung Ahn, Hoon Sik Kim, Jin-Hyung Kim, Gyeong Taek Gong
  • Publication number: 20110213191
    Abstract: The present invention is directed to compositions and methods for the recovery of olefins from a mixture. The compositions of the present invention comprise: (1) a transition metal ion; (2) a counter anion; (3) a ligand selected from the group consisting of a bidentate ligand and a tridentate ligand, wherein the ligand comprises at least two nitrogen atoms, and wherein each of the nitrogen atoms comprises a lone pair of electrons; and (4) a polar solvent with a boiling point of at least about 200° C. The methods of the present invention comprise: (1) providing the aforementioned compositions; (2) bonding at least a portion of the olefins in a mixture to the transition metal ion in the composition to form a complex; (3) separating the complex from the mixture; and (4) recovering the olefins from the complex.
    Type: Application
    Filed: June 8, 2009
    Publication date: September 1, 2011
    Applicant: Trans Ionics Corporation
    Inventors: Robert C. Schucker, Michael F. Lynch
  • Publication number: 20110190519
    Abstract: A new purification technique for alkylene oxides is described. The technique is safer than previously reported methods and does not require cooling of the purification vessel. In a solution of a high-boiling point solvent and butyllithium, an alkylene oxide is added and allowed to react at ambient temperature. The impurities readily react with the butyllithium while the alkylene oxide does not. The low-boiling alkylene oxide is then easily distilled out of the high-boiling point solvent as a pure material ready for use in controlled polymerization reactions.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 4, 2011
    Applicant: SEEO, INC
    Inventor: Hany Eitouni
  • Patent number: 7955498
    Abstract: A method for reducing halide concentration in a hydrocarbon product having an organic halide content which is made by a hydrocarbon conversion process using a halogen-containing acidic ionic liquid catalyst comprising contacting at least a portion of the hydrocarbon product with an aqueous caustic solution under conditions to reduce the halide concentration in the hydrocarbon product is disclosed.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: June 7, 2011
    Assignee: Chevron, U.S.A. Inc.
    Inventors: Michael S. Driver, Saleh A. Elomari, Hye-Kyung C. Timken
  • Publication number: 20100228061
    Abstract: The invention relates to a catalyst for the removal of detrimental halogenated and non-halogenated hydrocarbons in different effluent or process gases. The invention also relates to a method for the manufacture and use of such a catalyst. The catalyst of the invention includes a porous support material, on the surface of which there are one or several noble metals, V, and one or several 1. additives chosen from the group of Cr, Mn, Fe, Co and Ni.
    Type: Application
    Filed: July 22, 2008
    Publication date: September 9, 2010
    Applicant: ECOCAT OY
    Inventors: Matti Harkonen, Teuvo Maunula, Jukka Saartoala
  • Patent number: 7772336
    Abstract: An object of the present invention is to provide highly pure ?-methylstyrene by efficiently removing polar substances present in the ?-methylstyrene. The present invention discloses a method for purifying ?-methylstyrene by reacting polar substances contained in the ?-methylstyrene in the presence of a basic substance, and separating a reaction product of the polar substance and the ?-methylstyrene.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: August 10, 2010
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yuji Okada, Kenji Ebara
  • Publication number: 20090299121
    Abstract: ITQ-26 (INSTITUTO DE TECNOLOGIA QUIMICA number 26) is a new crystalline microporous material with a framework of tetrahedral atoms connected by atoms capable of bridging the tetrahedral atoms, the tetrahedral atom framework being defined by the interconnections between the tetrahedrally coordinated atoms in its framework. ITQ-26 can be prepared in silicate compositions with an organic structure directing agent. It has a unique X-ray diffraction pattern, which identifies it as a new material. ITQ-26 is stable to calcination in air, absorbs hydrocarbons, and is catalytically active for hydrocarbon conversion.
    Type: Application
    Filed: December 15, 2006
    Publication date: December 3, 2009
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Avelino Corma, Maria Jose Diaz, Fernado Rey, Karl G. Strohmaier, Douglas L. Dorset
  • Publication number: 20090220620
    Abstract: A functional fluid for the removal of contaminates such as but not limited to, acid causing components in gas, sulfur components and carbon oxides from fluid streams, and removal and treatment of NOX & SOX from post combustion emissions. Also described is the manufacturing process to produce the functional fluid both in a batch atmospheric process system as well as a closed system capable of operating at above or below atmospheric conditions.
    Type: Application
    Filed: November 7, 2006
    Publication date: September 3, 2009
    Applicant: Specialist Process Technologies Limited
    Inventors: Theodore E. Dickinson, David J. Parkinson, Kevin E. Collier
  • Patent number: 7399891
    Abstract: This invention relates to a process for the production of an alcohol, the process comprising (a) reacting an olefin and water in the presence of a catalyst under conditions sufficient to form a crude alcohol stream comprising alcohol, and a dialkyl ether; (b) separating at least a portion of the crude alcohol stream into an alcohol-containing stream and a dialkyl ether stream; (c) contacting at least a portion of the dialkyl ether stream with an ether decomposition catalyst, the ether decomposition catalyst comprising a mixed metal oxide having the following composition XmYnZpOq where X is at least one metal selected from Group 4 of the Periodic Table of Elements, Y is at least one metal selected from Group 3 (including the Lanthanides and Actinides) and Group 6 of the Periodic Table of Elements and Z is at least one metal selected from Groups 7, 8, and 11 of the Periodic Table of Elements; m, n, p, and q are the atomic ratios of their respective components and, when m is 1, n is from about 0.01 to about 0.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: July 15, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Charles M Yarbrough, Brian William Roberts, Dennis Jay Davoren, Kenneth Joseph Buturla, Carl Stotz Katzenstein, Doron Levin, Hans Georg Korsten, Vijay Swarup
  • Patent number: 7357902
    Abstract: Process for the removal of oxygen from a gas mixture comprising oxygen, at least one olefin, hydrogen, carbon monoxide and optionally at least one alkyne, the ratio of oxygen:hydrogen in the gas mixture being 1 part by volume of oxygen to at least 5 parts by volume of hydrogen. The process comprises contacting the gas mixture with a catalyst in a reaction zone under conditions sufficient to oxidise at least a portion of the hydrogen and to oxidize at least a portion of the carbon monoxide and without significant hydrogenation of the at least one olefin. The catalyst comprises at least one metal or oxide of a metal from the 10th group of the Periodic Table of Elements, the metal or oxide of the metal being supported on an oxide support, provided that the catalyst also comprises tin.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: April 15, 2008
    Assignee: Ineos Europe Limited
    Inventors: Matthew Hague, Ian Raymond Little, Warren John Smith
  • Publication number: 20040192995
    Abstract: A process for recovery of sulfur from sour/natural gas stream containing H2S is described. It involves contacting the stream with an aqueous solution of biodegradable water soluble carboxylic acid metal chelate. This carboxylic acid metal chelate contains an oxidizing polyvalent metal e.g. Fe (III) and one of the acid from gluconic acid, malic acid, citric acid, succinic acid, oxalic acid. The hydrogen sulfide gas is reduced to hydrogen and elemental sulfur, which is recovered as precipitate. The iron in the metal chelate is reduced in the process and can be regenerated by oxidation.
    Type: Application
    Filed: March 25, 2003
    Publication date: September 30, 2004
    Applicant: COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH
    Inventors: Aniruddha Subhash Deshpande, Narendra Vasant Sankpal, Bhaskar Dattatraya Kulkarni
  • Patent number: 6797846
    Abstract: A crystal substance formed by precipitating as fibrous aggregates by making a metal aliphatic carboxylate dissolve completely in pure water, stirring, and gradually cooling the resulting solution. A method of preparing the fibrous crystal aggregates. A material for recovering flowing oil and method of recovering flowing oil by using the fibrous crystal aggregates. A material for solidifying liquid hydrocarbon, waste tempura oil and edible oil and method of solidifying liquid hydrocarbon, waste tempura oil and edible oil by using the fibrous crystal aggregates. A method of preparing the solidifying material.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: September 28, 2004
    Assignees: National Institute of Advanced Industrial Science and Technology, Okamura Oil, Mill, Ltd.
    Inventors: Hiroshi Sakaguchi, Yoshishige Kida, Seizi Iseki
  • Patent number: 6570045
    Abstract: Disclosed are a method of solidifying a low-boiling-point hydrocarbon, wherein the low-boiling-point hydrocarbon (including hydrocarbons which are gaseous at ordinary temperature) is brought into contact with a metal salt of an aliphatic carboxylic acid, and if necessary a high-boiling-point hydrocarbon, suspended in water, to form a solid aggregate substance, a method of handling the low-boiling-point hydrocarbon, wherein the solid aggregate substance is stored or transported, and a method of regenerating the low-boiling-point hydrocarbon, wherein the solid aggregate substance is decomposed by opening or heating, to obtain the low-boiling-point hydrocarbon. According to the methods, a wide variety of gaseous and highly volatile liquid hydrocarbons can be safely and easily solidified without using harmful reagent, and during storage, transportation, etc., the gaseous hydrocarbons and highly volatile liquids can be handled as a solid material.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: May 27, 2003
    Assignee: Agency of Industrial Science and Technology
    Inventors: Hiroshi Sakaguchi, Tomokazu Yoshimura, Rumiana Tzoneva, Takashi Masuda, Takahiro Sato, Akio Matsuda
  • Patent number: 6417415
    Abstract: Disclosed are a method of solidifying a low-boiling-point hydrocarbon, wherein the low-boiling-point hydrocarbon (including hydrocarbons which are gaseous at ordinary temperature) is brought into contact with a metal salt of an aliphatic carboxylic acid, and if necessary a high-boiling-point hydrocarbon, suspended in water, to form a solid aggregate substance, a method of handling the low-boiling-point hydrocarbon, wherein the solid aggregate substance is stored or transported, and a method of regenerating the low-boiling-point hydrocarbon, wherein the solid aggregate substance is decomposed by opening or heating, to obtain the low-boiling-point hydrocarbon. According to the methods, a wide variety of gaseous and highly volatile liquid hydrocarbons can be safely and easily solidified without using harmful reagent, and during storage, transportation, etc., the gaseous hydrocarbons and highly volatile liquids can be handled as a solid material.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: July 9, 2002
    Assignee: Agency of Industrial Science and Technology
    Inventors: Hiroshi Sakaguchi, Tomokazu Yoshimura, Rumiana Tzoneva, Takashi Masuda, Takahiro Sato, Akio Matsuda
  • Patent number: 5866749
    Abstract: Sulfur and mercaptans in reactive hydrocarbon streams are removed by contacting the hydrocarbons at mild temperatures with a hydrogen reduced metal oxide such as a hydrogen reduced copper, zinc and/or aluminum oxide.
    Type: Grant
    Filed: January 22, 1997
    Date of Patent: February 2, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Di-Yi (John) Ou
  • Patent number: 5744685
    Abstract: A process is disclosed for the separation and recovery of an unsaturated hydrocarbon from its mixture with at least one other material by the selective and reversible complexation of the unsaturated hydrocarbon using a single cubane-type cluster of palladium, molybdenum and sulfur as a complexation agent.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: April 28, 1998
    Assignee: Amoco Corporation
    Inventors: Robert B. Wilson, Jr., Karen Meyer, Marianna F. Asaro
  • Patent number: 5674379
    Abstract: The present invention relates to a process for removing carbonyl sulfide from a liquid hydrocarbon feedstock, said process comprising the steps of (a) passing said hydrocarbon feedstock over an absorbent material comprising nickel deposited on a support material wherein nickel is present as both nickel oxide and metallic nickel and wherein the absorbent material has been conditioned by passing an inert gas flow containing a minor amount of propylene; and (b) recovering a liquid hydrocarbon stream having substantially reduced carbonyl sulfide content.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 7, 1997
    Assignee: Fina Research, S.A.
    Inventors: Guy L. G. Debras, Georges E. M. J. De Clippeleir, Raymond M. Cahen
  • Patent number: 5639934
    Abstract: A process for the desulfurization of a sulfur-containing composition is described. The process comprises providing a sulfur-containing composition, adding an aqueous medium and a sulfur absorbent to the composition, and subjecting the resultant mixture to hydrothermal reaction under specific conditions to obtain a desulfurized product. When the sulfur-containing composition is made of vulcanized rubbers, the rubber can be converted into oily substances by treating the rubber product under supercritical conditions using an aqueous medium. The conversion reaction is facilitated by addition of metal oxides or salts.
    Type: Grant
    Filed: November 28, 1995
    Date of Patent: June 17, 1997
    Assignees: Nakamichi Yamasaki, Nishikawa Rubber Co., Ltd.
    Inventors: Nakamichi Yamasaki, Kenji Tsuda, Hiroyuki Okuda, Toshinari Tenno
  • Patent number: 5625116
    Abstract: The carbon monoxide contained in .alpha.-olefins and saturated hydrocarbons, in particular .alpha.-olefins and C.sub.2-4 saturated hydrocarbons, is removed, by contacting such .alpha.-olefins and saturated hydrocarbons, at a temperature ranging from 0.degree. to 150.degree. C., with a catalyst system comprising a mixture and/or the reaction product of:A) one or more oxides of metals selected from the group consisting of Cu, Fe, Ni, Co, Pt, Pd; andB) one or more oxides of metals selected from the group consisting of metals of groups V B, VI B, or VII B of the Periodic Table;thus reducing the content of carbon monoxide to values lower than 0.03 ppm.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: April 29, 1997
    Assignee: Montell North America Inc.
    Inventors: Roberto Flammini, Giovanni Patroncini
  • Patent number: 5510551
    Abstract: A carotenoid-enriched fraction is extracted from natural sources, such as carrots, by (i) separating the carotenoid-containing natural source into a carotenoid-containing liquid fraction and a pulp fraction, (ii) adding a carotenoid precipitation agent including calcium chloride, calcium hydroxide, calcium lactate or calcium gluconate to the liquid fraction to form a carotenoid-enriched solid precipitate, and (iii) separating the carotenoid-enriched solid precipitate from the carotenoid-depleted liquid portion.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: April 23, 1996
    Assignee: Humanetics Corporation
    Inventors: Frederic A. Graves, Daniel D. Gallaher
  • Patent number: 5470456
    Abstract: The present invention relates to a process for removing carbonyl sulfide from a liquid hydrocarbon feedstock, said process comprising the steps of (a) passing said hydrocarbon feedstock over an absorbent material comprising nickel deposited on a support material wherein nickel is present as both nickel oxide and metallic nickel and wherein the absorbent material has been conditioned by passing an inert gas flow containing a minor amount of propylene; and (b) recovering a liquid hydrocarbon stream having substantially reduced carbonyl sulfide content.
    Type: Grant
    Filed: June 1, 1993
    Date of Patent: November 28, 1995
    Assignee: Fina Research, S.A.
    Inventors: Guy L. G. Debras, Georges E. M. J. De Clippeleir, Raymond M. Cahen
  • Patent number: 5463168
    Abstract: A process is described wherein the HCN in FCC hydrocarbon gas streams is converted to NH.sub.3 over a catalyst. This conversion has the desirable result of decreasing the amount of CN.sup.- in the water leaving the sour-water stripper, and ultimately in the refinery water effluent.
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: October 31, 1995
    Assignee: Mobil Oil Corporation
    Inventors: Costandi A. Audeh, David S. Shihabi, Richard F. Socha, Scott A. Stevenson
  • Patent number: 5446232
    Abstract: Disclosed is a method and apparatus for removing oxygen from hydrogen, hydrocarbon, or halogenated hydrocarbon gas which contains about 0.01 to about 10 mole % oxygen. The oxygen removal is accomplished by contacting the gas with a Hopcalite catalyst at a temperature of about 100.degree. to about 300.degree. C. The invention can be part of a process for making 1,2-dichloroethane where, in a first reaction, ethane and chlorine are reacted to make ethylene and hydrogen chloride and, in a second reaction, the ethylene and hydrogen chloride are reacted with excess oxygen to make the 1,2-dichloroethane. The unreacted ethane can be recycled to the first step after the method of the invention is applied to remove the oxygen.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: August 29, 1995
    Assignee: Occidental Chemical Corporation
    Inventors: Hang-Chang B. Chen, Deborah J. Olsen
  • Patent number: 5430225
    Abstract: Derivatized molybdenum-sulfide dimers of the general formula [(C.sub.5 R.sub.5 Mo).sub.2 (.mu.-S).sub.4-x (.mu.-SR).sub.x ].sup.n are utilized in the solid state, incorporated in permselective membranes and in aqueous solution as chemical specific complexing agents in various separation processes.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: July 4, 1995
    Assignee: The University of Colorado Foundation, Inc.
    Inventors: Mary R. DuBois, Richard D. Noble, Carl A. Koval
  • Patent number: 5414194
    Abstract: Derivatized molybdenum-sulfide dimers of the general formula [(C.sub.5 R.sub.5 Mo).sub.2 (.mu.-S).sub.4-x (.mu.-SR).sub.x ].sup.n are utilized in the solid state, incorporated in permselective membranes and in aqueous solution as chemical specific complexing agents in various separation processes.
    Type: Grant
    Filed: July 22, 1993
    Date of Patent: May 9, 1995
    Assignee: The Regents of the University of Colorado
    Inventors: Mary R. Dubois, Richard D. Noble, Carl A. Koval
  • Patent number: 5378783
    Abstract: A highly polymerizable dicyclopentadiene (DCPD) monomer composition is obtained. The dicyclopentadiene so obtained is highly suitable for ring-opening polymerization by metathesis catalysts. The active DCPD yields articles with excellent physical properties upon in-mold polymerization.
    Type: Grant
    Filed: May 23, 1991
    Date of Patent: January 3, 1995
    Assignee: Nippon Zeon Co., Ltd.
    Inventors: Kin-ichi Okumura, Masao Torii, Hirotoshi Tanimoto, Motoyuji Yamato
  • Patent number: 5371313
    Abstract: A process is provided for the removal of tertiary butyl chloride from a hydrocarbon stream, wherein the hydrocarbon stream is contacted at a temperature of from about 130.degree. to about 170.degree. C. with a particulate calcium oxide containing from 1 to 10 mole % of a Group 3 or 4 compound and the hydrocarbon stream is recovered containing a reduced level of tertiary butyl chloride.
    Type: Grant
    Filed: November 24, 1993
    Date of Patent: December 6, 1994
    Assignee: Polysar Rubber Corporation
    Inventor: Andreas B. Ostrowicki
  • Patent number: 5268091
    Abstract: A method for removing arsenic and/or phosphorus from a petroleum charge with a retaining material comprising:(a) from 60 to 97% of a carrier containing, by weight, from 1.5 to 60% of oxide of at least one metal A selected from the group consisting of Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu and Zn, dissolved in alumina in the form of aluminate, and from 40 to 98.5% of at least one alumina,(b) from 3 to 40% of nickel oxide, with which the carrier is impregnated by exchange or depositing, and(c) possibly from 0 to 1% of platinum and/or palladium oxide with which the carrier is impregnated.
    Type: Grant
    Filed: May 10, 1991
    Date of Patent: December 7, 1993
    Assignee: Institut Francais de Petrole
    Inventors: Jean P. Boitiaux, Philippe Courty, Patrick Sarrazin
  • Patent number: 5220105
    Abstract: A process is provided for the purification of d-Limonene, particularly to remove odorous impurities. The process includes the step of mixing d-Limonene with an oxidizer and separating the oxidizer from the d-Limonene. In preferred embodiments, the d-Limonene is then mixed with an acid and separated. The preferred process also includes a wash water step. The oxidizer and acid are preferably provided in aqueous solutions. The process removes the odorous impurities without the formation of an off-color in the d-Limonene.
    Type: Grant
    Filed: March 25, 1992
    Date of Patent: June 15, 1993
    Assignee: The Coca-Cola Company
    Inventors: Albert J. Kruger, Jr., Mark L. Corkum, Steven G. Carlson, Don H. Kimball
  • Patent number: 5177301
    Abstract: Disclosed is a two-step method for separating isobutylene from a C-4 hydrocarbon fraction comprising:a) Reacting the C-4 fraction with a glycol in the presence of a catalyst comprising heteropoly acid on an inert support at a temperature of about 60.degree. to 160.degree. C. to yield the corresponding glycol mono-t-butyl ether, and subsequentlyb) reacting the intermediate glycol ether product over the same class of catalyst at a temperature of about 100.degree. to 220.degree. C. to regenerate the isolatable isobutylene.
    Type: Grant
    Filed: January 21, 1992
    Date of Patent: January 5, 1993
    Assignee: Texaco Chemical Company
    Inventor: John F. Knifton
  • Patent number: 5177297
    Abstract: A process for separating lithium from a conjugated diolefin polymer wherein a solution containing said conjugated diolefin polymer and a lithium compound is contacted with magnesium phosphate, magnesium phosphate dibasic, magnesium dihydrogen phosphate or a mixture thereof. Preferably, the magnesium phosphate compound is selected from the group consisting of mono- and dihydrogen phosphates. Most preferably, the magnesium phosphate is magnesium phosphate dibasic. The magnesium phosphate, magnesium phosphate dibasic, magnesium phosphate or mixture thereof may be used in combination with water and/or methanol with relatively good results. The lithium, which is a polymerization catalyst, can be removed immediately after the conjugated diolefin polymer is prepared by contacting the polymer solution with the magnesium phosphate compound.
    Type: Grant
    Filed: October 30, 1991
    Date of Patent: January 5, 1993
    Assignee: Shell Oil Company
    Inventor: Carma J. Gibler
  • Patent number: 5162597
    Abstract: A disproportionation catalyst comprising an ammonium or an alkali metal tungsten oxide and a process for forming disproportionation product using the disproportionation catalyst are disclosed. The disproportionation process is used to facilitate the separation of at least one 1-olefin from a mixture of olefins that have close boiling points by contacting the mixture of olefins with another 1-olefin under disproportionation conditions to produce disproportionation products which have significantly different boiling points among themselves and can be easily separated by conventional means.
    Type: Grant
    Filed: November 18, 1991
    Date of Patent: November 10, 1992
    Assignee: Phillips Petroleum Company
    Inventor: An-hsiang Wu
  • Patent number: 5159131
    Abstract: A chromatographic process able to separate para-xylene from C.sub.8 isomers and C.sub.9 aromatics. In the process, the para-xylene-containing feed mixture is contacted with an X zeolite adsorbent having barium or barium and potassium ions, at exchangeable cationic sites. The para-xylene components are selectively adsorbed onto the adsorbent. The non-adsorbed feed is then removed from the adsorbent and the para-xylene recovered by desorption with indan or an alkyl derivative of indan. Any C.sub.9 aromatic hydrocarbons and the other xylene isomers in the raffinate can be separated from these heavy desorbents by fractionation of the raffinate and the desorbent can be recycled to the process.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: October 27, 1992
    Assignee: UOP
    Inventor: Hermann A. Zinnen
  • Patent number: 5157204
    Abstract: A process for removing carbon monoxide and free oxygen from hydrocarbon-containing fluids comprises contacting the fluid feed with at least one of several supported platinum-containing catalyst compositions so as to convert carbon monoxide and free oxygen to carbon dioxide, essentially without oxidizing the hydrocarbon(s).
    Type: Grant
    Filed: June 14, 1991
    Date of Patent: October 20, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Scott H. Brown, John H. Kolts
  • Patent number: 5130109
    Abstract: A catalyst composition suitable for three-way conversion of internal combustion engine, e.g., automobile gasoline engine, exhaust gases, includes a catalytic material disposed in two discrete coats on a carrier. The first coat includes a stabilized alumina support on which a first platinum catalytic component is dispersed and bulk ceria, and may also include bulk iron oxide, a metal oxide (such as bulk nickel oxide) which is effective for the suppression of hydrogen sulfide emissions, and one or both of baria and zirconia dispersed throughout the first coat as a thermal stabilizer. The second coat, which may comprise a top coat overlying the first coat, contains a co-formed (e.g., co-precipitated) rare earth oxide-zirconia support on which a first rhodium catalytic component is dispersed, and a second activated alumina support having a second platinum catalytic component dispersed thereon.
    Type: Grant
    Filed: August 6, 1991
    Date of Patent: July 14, 1992
    Inventor: Chung-Zong Wan
  • Patent number: 5057644
    Abstract: This invention relates to a process for the purification of an alpha olefinic feedstock contaminated with internal olefins which process comprises contacting said alpha olefinic feedstock with ethylene in the presence of a catalyst comprising an organoborane promoted alkali metal doped molybdenum and/or rhenium oxide supported on an inorganic oxide support.
    Type: Grant
    Filed: October 31, 1990
    Date of Patent: October 15, 1991
    Assignee: Shell Oil Company
    Inventors: Jiang-Jen Lin, Randall T. De Pue, Keith M. Kreitman
  • Patent number: 4861939
    Abstract: The present invention relates to a process for removing arsine from a light olefin to containing hydrocarbon feedstock, said process comprising the steps of (a) passing said feedstock over an absorbent material comprising nickel deposited on a support material wherein nickel is present as both nickel oxide and metallic nickel; and (b) recovering a stream having a substantially reduced arsine content.
    Type: Grant
    Filed: September 23, 1988
    Date of Patent: August 29, 1989
    Assignee: Labofina, S.A.
    Inventors: Guy Debras, Philippe Bodart
  • Patent number: 4849577
    Abstract: Process for eliminating jointly arsenic and carbon oxysulfide from an unsaturated hydrocarbon cut, wherein said hydrocarbon cut is contacted with an absorbing mass containing a support and lead oxide, comprising contacting the hydrocarbon cut in the liquid phase.
    Type: Grant
    Filed: March 16, 1988
    Date of Patent: July 18, 1989
    Assignee: Institut Francais Du Petrole
    Inventors: Jean-Paul Boitiaux, Jean Cosyns
  • Patent number: 4830735
    Abstract: The present invention relates to a process for removing carbonyl sulfide from a liquid hydrocarbon feedstock, said process comprising the steps of (a) passing said hydrocarbon feedstock over an absorbent material comprising nickel deposited on a support material wherein nickel is present as both nickel oxide and metallic nickel and wherein the absorbent material has been conditioned by passing an inert gas flow containing a minor amount of propylene; and (b) recovering a liquid hydrocarbon stream having a substantially reduced carbonyl sulfide content.
    Type: Grant
    Filed: September 30, 1987
    Date of Patent: May 16, 1989
    Assignee: Labofina, S.A.
    Inventors: Guy L. G. Debras, Georges E. M. J. De Clippeleir, Raymond M. Cahen
  • Patent number: 4683033
    Abstract: Hydrocarbon solutions containing iodine or iodine-containing impurities are rendered essentially color-free by distillation in the presence of small amounts of a hydrocarbon soluble organometallic compound.
    Type: Grant
    Filed: January 24, 1986
    Date of Patent: July 28, 1987
    Assignee: Phillips Petroleum Company
    Inventor: Raymond L. Cobb
  • Patent number: 4613724
    Abstract: The present invention relates to a process for removing carbonyl sulfide from a liquid olefinic hydrocarbon feedstock comprising (a) passing said hydrocarbon feedstock over an absorbent material comprising zinc oxide and a promoter selected from the group consisting of alumina, silico-aluminas and any combination thereof; and (b) recovering a liquid olefinic hydrocarbon stream having a substantially reduced carbonyl sulfide content.
    Type: Grant
    Filed: July 9, 1985
    Date of Patent: September 23, 1986
    Assignee: Labofina, S.A.
    Inventors: Guy L. G. Debras, Georges E. M. J. De Clippeleir, Raymond M. Cahen
  • Patent number: 4599472
    Abstract: Hydrocarbon solutions containing iodine or iodine-containing impurities are rendered essentially color-free by distillation in the presence of small amounts of a hydrocarbon soluble organometallic compound.
    Type: Grant
    Filed: June 27, 1985
    Date of Patent: July 8, 1986
    Assignee: Phillips Petroleum Company
    Inventor: Raymond L. Cobb
  • Patent number: 4435609
    Abstract: Isobutylene containing a minor amount, e.g. 0.06-0.10 wt %, of n-butene-1 is subjected to gas phase isomerization using hydrogen and Group VIII metal catalyst to convert the butene-1 to butene-2 with at least 65% conversion and no more than 0.3% hydrogenation of the isobutylene; butene-2 is more readily separated from the isobutylene by distillation. Isomerization conditions applied are defined by a pressure of 3 to 5 bars gauge, a temperature of from 40.degree. to 50.degree. C., a space velocity of from 150 to 300 vol/vol/hour, a mass velocity of from 1.1 to 1.5 metric tons/m2/hour and a hydrogen/feed volume ratio of not more than 2.5%.
    Type: Grant
    Filed: May 31, 1983
    Date of Patent: March 6, 1984
    Assignee: Exxon Research & Engineering Co.
    Inventor: Wolfgang W. J. Gschwendtner