At Reactor Inlet Patents (Class 585/923)
  • Patent number: 8603407
    Abstract: A novel catalytic reactor is provided for controlling the contact of a limiting reactant with a catalyst surface. A first flow vessel defines an interior surface and an exterior surface, and the interior surface has a catalyst deposited on at least a portion thereof. A second flow vessel is positioned within the first flow vessel and the second flow vessel defines a porous surface designed to deliver a fluid uniformly to at least a portion of the interior surface of the first flow vessel.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: December 10, 2013
    Assignee: Precision Combustion, Inc.
    Inventors: William C. Pfefferle, Shahrokh Etemad
  • Patent number: 8080700
    Abstract: The invention relates to a method for forming olefins from an oxygenate-containing feedstock, comprising contacting the at least partially vaporized feed comprising oxygenates with a first catalyst upstream of an OTO reactor, the first catalyst consisting of a reactive guard bed of metal oxides comprising one or more metals from Groups 2, 3, and 4 of the Periodic Table and/or one or more metals in the Lanthanide and Actinide series, then contacting the feedstock in the OTO reactor with a second catalyst under conditions effective to form an effluent comprising the olefins.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: December 20, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Gary T. Schmidt, Teng Xu, Christopher E. Dilley
  • Patent number: 7414166
    Abstract: This invention provides feed introduction devices, and processes for using same, which minimize catalyst clogging. In particular, the invention is to a feed introduction device having a first end in fluid communication with a feed source, a second end in fluid communication with a reactor and a deviation zone between the first end and the second end to deviate the flow of feed about a deviation angle from the first end toward the second end. According to the invention, the deviation angle is greater than 90 degrees.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: August 19, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., Brian A. Cunningham, Christopher G. Smalley, Rathna P. Davuluri
  • Patent number: 7385099
    Abstract: The present invention is directed to a hydrocarbon conversion apparatus and process. The apparatus comprises the following: a plurality of riser reactors, each having a first end into which a catalyst is fed, a second end through which the catalyst can exit, and optionally a center axis extending therebetween. The apparatus also includes a separation zone having a plurality of inlets, each inlet not being oriented along the center axes of the riser reactors, the separation zone being provided to separate the catalyst from products of a reaction conducted in the hydrocarbon conversion apparatus. A plurality of deviating members are also provided, each deviating member being in fluid communication between the second end of a respective riser reactor and a respective inlet of the separation zone. The apparatus also includes a catalyst retention zone provided to contain catalyst, which is fed to the riser reactors.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: June 10, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith Holroyd Kuechler, James R. Lattner, Nicolas P. Coute, Jeffrey S. Smith, Justin Leonard Krieger
  • Patent number: 7169960
    Abstract: A process for the dehydrogenation of a C2 or C3 alkyl aromatic compound to a corresponding vinyl aromatic compound in a tubular reactor incorporating a spiral flow path. Preferred embodiments of the invention provide processes for the production of styrene or divinylbenzene by the catalytic dehydrogenation of ethylbenzene or diethylbenzene, respectively. A feedstock containing a C2 or C3 alkyl aromatic and steam is supplied into the inlet of a tubular reactor containing a dehydrogenation catalyst and comprising a hydrogen permeable outer wall. The alkyl aromatic compound is dehydrogenated to a corresponding vinyl aromatic compound with the attendant production of hydrogen. The feedstock and products of the dehydrogenation reactor are flowed along a longitudinal spiral flow path providing for an outward radial flow of hydrogen to provide a pressure gradient through the hydrogen permeable outer wall of the reactor with the flow of hydrogen therethrough. Hydrogen is removed from the outer wall of the reactor.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: January 30, 2007
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, Gary Reed
  • Patent number: 7102050
    Abstract: The present invention is directed to a hydrocarbon conversion apparatus. The apparatus comprises the following: a plurality of riser reactors, each of the riser reactors having a first end into which a catalyst can be fed and a second end through which the catalyst can exit the riser reactor; a separation zone into which the second ends of the riser reactors extend, the separation zone being provided to separate the catalyst from products of a reaction conducted in the hydrocarbon conversion apparatus; and at least one catalyst return in fluid communication with the separation zone and the first ends of the riser reactors, the catalyst return being provided to transfer the catalyst from the separation zone to the first ends of the riser reactors.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: September 5, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Jeffrey S. Smith, Nicolas P. Coute, Keith H. Kuechler
  • Patent number: 7034196
    Abstract: Disclosed is a method and apparatus for reducing the amount of metal catalyzed side-reaction byproducts formed in the feed vaporization and introduction system of a methanol to olefin reactor system by monitoring and/or maintaining the temperature of at least a portion of the feed vaporization and introduction system and/or of the feedstock contained therein below about 400° C., 350° C., 300° C., 250° C., 200° C. or below about 150° C. The temperature can be maintained in the desired range by jacketing at least a portion of the feed vaporization and introduction system, such as at least a portion of the feed introduction nozzle, with a thermally insulating material or by implementing a cooling system.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: April 25, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kenneth Ray Clem, Stephen N. Vaughn, Teng Xu, Jeffrey L. White
  • Patent number: 6989091
    Abstract: A process for the conversion of hydrocarbons that are solid or have a high boiling temperature and may be laden with metals, sulfur or sediments, into liquids (gasolines, gas oil, fuels) with the help of a jet of gas properly superheated between 600 and 800° C. The process comprises preheating of feed 5 in a heater 8 to a temperature below the selected temperature of a reactor 10. This feed is injected by injectors 4 into the empty reactor 10 (i.e., without catalyst.) The feed is treated with a jet of gas or superheated steam from superheater 2 to activate the feed. The activated products in the feed are allowed to stabilize at the selected temperature and at a selected pressure in the reactor and are then run through a series of extractors 13 to separate heavy and light hydrocarbons and to demetallize the feed. Useful products appearing in the form of water/hydrogen emulsions are generally demulsified in emulsion breaker 16 to form water laden with different impurities.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: January 24, 2006
    Assignee: World Energy Systems Corporation
    Inventor: Pierre Jorgensen
  • Patent number: 6824675
    Abstract: A device for producing and distributing a polyphase mixture between two fluids comprises a chamber for the passage of a first fluid, said chamber being pierced by perforated tubes or conduits to pass a second fluid in a different physical state than the first fluid or not miscible with the first fluid through the chamber, said tubes being pierced by at least one orifice allowing passage of the first fluid and mixing between the fluids via the tubes. The second fluid is injected upstream of said device and the first fluid is injected into said device.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: November 30, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Boyer, Vincent Coupard, Bertrand Fanget
  • Patent number: 6781024
    Abstract: Process for the catalytic dehydrogenation of a C2 or C3 alkyl aromatic in which a feedstock containing the alkyl aromatic and steam is supplied into the inlet of a tubular reactor containing a dehydrogenation catalyst. Within the reactor, the feedstock flows through at least a portion of the reactor along a spiral flow path extending longitudinally of the reactor. The resulting vinyl aromatic product is then recovered from a downstream or outlet section of the reactor. The spiral flow path through which the feedstock is passed is located at least adjacent the inlet side of the reactor and at least a portion of the spiral flow path contains a particulate dehydrogenation catalyst. The spiral flow path may extend throughout a major portion of the elongated tubular reactor and may contain a particulate dehydrogenation catalyst in a substantial portion there.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: August 24, 2004
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, James T. Merrill, Adrian M. Jacobsen
  • Patent number: 6737556
    Abstract: Disclosed is a method and system for reducing the formation of metal catalyzed side-reaction byproducts formed in the feed vaporization and introduction system of a methanol to olefin reactor system by forming and/or coating one or more of the heating devices, feed lines or feed introduction nozzles of/with a material that is resistant to the formation of metal catalyzed side reaction byproducts. The invention also may include monitoring and/or maintaining the temperature of at least a portion of the feed vaporization and introduction system and/or of the feedstock contained therein below about 400° C., 350° C., 300° C., 250° C., 200° C. or below about 150° C. The temperature can be maintained in the desired range by jacketing at least a portion of the feed vaporization and introduction system, such as at least a portion of the feed introduction nozzle, with a thermally insulating material or by implementing a cooling system.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: May 18, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey P. Jones, Kenneth Ray Clem, Stephen N. Vaughn, Teng Xu, Jeffrey L. White
  • Patent number: 6613219
    Abstract: A device for distributing a poly-phase mixture comprises: at least one gas phase and at least one liquid phase, said mixture being in downflow mode through at least one bed of granular solid, comprising: at least one tray (P) located above one of said beds of granular solid, a plurality of mixer conduits (21) for said liquid and gas phases, each of said conduits comprising at least one upper cross section for flow (22) and at least one lower cross section for flow (23) allowing the mixture formed inside said mixer conduits to communicate with a bed of granular solid, said mixer conduits being provided over a portion of their height with one or more lateral cross sections for flow (26), said upper cross section for flow (22) allowing the majority of the gas phase to pass and said lateral cross section for flow (26) allowing the passage of the liquid phase into said mixer conduits and/or at least a portion of the gas phase respectively, said device comprising at least one jet disturber type dispersive system (2
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: September 2, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Isabelle Harter, Robert Agoero
  • Patent number: 6420621
    Abstract: A process for hydrocarbon conversion to prepare lower olefins such as ethylene, propylene, etc., and light aromatics by bringing hydrocarbons into contact with a solid granular catalyst. In order to optimize the reaction conditions and product structure and save the capital and operating costs, a piston flow reactor is used in this process and multiple groups of feed inlets, which allow hydrocarbons with different properties to enter the device from different feed inlets and proceed pyrolysis under different operation conditions, are set on the reactor. This process is usable for individual pyrolysis or co-feed pyrolysis of hydrocarbons from refinery gases, liquid hydrocarbons, to heavy residues.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: July 16, 2002
    Assignees: China Petro-Chemical Corp., Luoyang Petrochemical Engineering Corporation SINOPEC
    Inventors: Yingxun Sha, Zhongqiang Cui, Guoliang Wang, Mingdang Wang
  • Patent number: 6380449
    Abstract: Process for the catalytic dehydrogenation of ethylbenzene in which a feedstock containing ethylbenzene and steam is supplied into the inlet of a tubular reactor containing a dehydrogehation catalyst. Within the reactor, the feedstock flows through at least a portion of the reactor along a spiral flow path extending longitudinally of the reactor. The resulting styrene product is then recovered from a downstream or outlet section of the reactor. The spiral flow path through which the feedstock is passed is located at least adjacent the inlet side of the reactor and at least a portion of the spiral flow path contains a particulate dehydrogenation catalyst. The spiral flow path may extend throughout a major portion of the elongated tubular reactor and may contain a particulate dehydrogenation catalyst in a substantial portion there.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: April 30, 2002
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, James T. Merrill, Adrian M. Jacobsen
  • Publication number: 20010056216
    Abstract: A process for hydrocarbon conversion to prepare lower olefins such as ethylene, propylene, etc., and light aromatics by bringing hydrocarbons into contact with a solid granular catalyst. In order to optimize the reaction conditions and product structure and save the capital and operating costs, a piston flow reactor is used in this process and multiple groups of feed inlets, which allow hydrocarbons with different properties to enter the device from different feed inlets and proceed pyrolysis under different operation conditions, are set on the reactor. This process is usable for individual pyrolysis or co-feed pyrolysis of hydrocarbons from refinery gases, liquid hydrocarbons, to heavy residues.
    Type: Application
    Filed: October 19, 1998
    Publication date: December 27, 2001
    Inventors: YINGXUN SHA, ZHONGQIANG CUI, GUOLIANG WANG, MINGDANG WANG
  • Patent number: 6036848
    Abstract: The catalyst inside a catalytic reaction column is replaced while running the catalytic reaction by diverting a basically monophase fluid to keep it from passing through the catalyst, evacuating from the column the catalyst that has lost at least a portion of its properties, introducing into the column a quantity of catalyst that is approximately equal to the quantity of catalyst that was evacuated from the column, and restoring the circulation of the basically monophase fluid through the catalyst.
    Type: Grant
    Filed: February 11, 1998
    Date of Patent: March 14, 2000
    Assignee: Insitut Francais du Petrole
    Inventors: Jean-Paul Dessapt, Pierre Marache, Alain Forestiere
  • Patent number: 5969207
    Abstract: The proposed method comprises passing the hydrodynamic flow of liquid hydrocarbons through a flow-through passage accomodating a baffle body providing for a local constriction of the flow; establishing the local flow constriction on at least one portion of the flow-through passage whose cross-sectional profile area is so selected as to maintain such a velocity of the flow on the portion of the passage that promotes the development of a hydrodynamic cavitation field past the baffle body having the degree of cavitation of at least one; processing the flow of a mixture of liquid hydrocarbons in the hydrodynamic cavitation field to initiate chemical transformations of liquid hydrocarbons resulting in a change in the qualitative and quantitative composition of the mixture of liquid hydrocarbons.
    Type: Grant
    Filed: November 13, 1995
    Date of Patent: October 19, 1999
    Inventor: Oleg V. Kozyuk
  • Wax
    Patent number: 5800604
    Abstract: The invention relates to a novel wax and also to a process for preparing the wax which can be chemically modified in a simple, flexibly adaptable, inexpensive and environmentally friendly way. For this purpose, it is provided for the untreated waxes to be subjected to a low-temperature plasma treatment by means of which the waxes can be chemically modified in accordance with the application.
    Type: Grant
    Filed: January 27, 1997
    Date of Patent: September 1, 1998
    Assignee: Arplas Gesellschaft Fur Plasmatechnologie mbH
    Inventor: Steffen Berger
  • Patent number: 5723041
    Abstract: An apparatus is described for promoting annularly uniform flow in a reaction space of a mixed phase reactor. The apparatus defines ports which face a shared direction relative to the axis. The apparatus is useful in a process, also described, in which fluid emerging from the ports creates a turning moment which rotates fluid in a plenum adjacent the reaction space.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: March 3, 1998
    Assignee: Amoco Corporation
    Inventors: Narasimhan Devanathan, Peter J. Klomans, William B. VanderHeyden
  • Patent number: 5095167
    Abstract: The present invention provides a process and apparatus for alkylating an isoparaffin with an olefin which decreases the required catalyst inventory while improving alkylate quality by internally admixing unreacted isoparaffin and alkylate product with the isoparaffin:olefin reactant stream in the draft tube of a decantation reaction vessel.
    Type: Grant
    Filed: February 4, 1991
    Date of Patent: March 10, 1992
    Assignee: Mobil Oil Corporation
    Inventor: Gary Christensen