Multiple Fluid-operated Motors Patents (Class 60/39.15)
  • Patent number: 9003761
    Abstract: In one embodiment, a system is provided that includes a first gas turbine engine. The first gas turbine engine has a first compressor configured to intake air and to produce a first compressed air and a first combustor configured to combust a first mixture to produce a first combustion gas. The first mixture has a first fuel, at least a first portion of the first compressed air, and a second combustion gas from a second gas turbine engine. The first gas turbine engine also includes a first turbine configured to extract work from the first combustion gas.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 14, 2015
    Assignee: General Electric Company
    Inventor: Samuel David Draper
  • Patent number: 8959885
    Abstract: A heat recovery system for use with a gasification system is provided. One system includes a gasification system and an organic Rankine cycle system coupled to the gasification system. The organic Rankine cycle system is configured to receive heated fluid from the gasification system and to deliver cooled fluid to the gasification system. The organic Rankine cycle system is configured to produce power by converting heat energy in the heated fluid.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Ganesh Prasadh Kidambi, Atul Kumar Vij, Priyanandini Balasubramanian, Ronald Frederick Tyree
  • Publication number: 20150013300
    Abstract: A boiler system having a series of boilers. Each boiler includes a shell having an upstream end, a downstream end, and a hollow interior. The boilers also have an oxidizer inlet entering the hollow interior adjacent the upstream end of the shell and a fuel nozzle positioned adjacent the upstream end of the shell for introducing fuel into the hollow interior of the shell. Each boiler includes a flue duct connected to the shell adjacent the downstream end for transporting flue gas from the hollow interior. Oxygen is delivered to the oxidizer inlet of the first boiler in the series. Flue gas from the immediately preceding boiler in the series is delivered through the oxidizer inlet of each boiler subsequent to the first boiler in the series.
    Type: Application
    Filed: June 3, 2014
    Publication date: January 15, 2015
    Applicant: Washington University
    Inventors: Richard L. Axelbaum, Benjamin M. Kumfer, Fei Xia, Akshay Gopan, Bhupesh Dhungel
  • Publication number: 20150000296
    Abstract: In a method for operating a gas turbine, NOx is removed from the exhaust gases of the gas turbine by means of a selective catalysis device with the addition of NH3. The method achieves an extremely low NOx content while simultaneously achieving economic consumption of NH3 and avoiding NH3 in the exhaust gas by maintaining the NOx content of the exhaust gas at a constant level via a regulated return of a portion of the exhaust gas in varying operating conditions of the gas turbine, and by adjusting the addition of the NH3 in the selective catalysis device to the constant NOx level.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventors: Felix GUETHE, Eribert Benz, Frank Graf
  • Publication number: 20140373505
    Abstract: A power plant (10) having a first and second turboshaft engines (11, 16) and an emergency system (20) for injecting fluid into said engines (11, 16). First and second pressurization pipes (26, 28) connect a tank (21) to each gas generator of the engines. In addition, the system (20) includes an injector device (35, 40) for each engine, which device comprises an injector pipe (36, 41) connecting said tank (21) to at least one injector nozzle (31). A distributor (51, 52) is arranged on each injector pipe (36, 41), each valve (51) feeding one of the engines while being connected to the gas generator of the other engine.
    Type: Application
    Filed: June 9, 2014
    Publication date: December 25, 2014
    Inventors: Frederic DYRLA, Romain STEPHANT
  • Publication number: 20140352320
    Abstract: A two-shaft gas turbine is provided that can raise an inlet temperature of a high-pressure turbine and the air quantity of a compressor to respective rated values at any atmospheric temperature without using a variable stator vane in the initial stage of a low-pressure turbine. The two-shaft gas turbine includes a power generator 21 having a compressor 11, a combustor 12 and a high-pressure turbine 13; a low-pressure turbine 14 driven by exhaust gas from the high-pressure turbine 13; a generator motor 23 connected to the gas generator 21; and a control unit 24. When either one of a value of the inlet temperature of the high-pressure turbine 13 and a value of the air quantity of the compressor 11 reaches a rated value before the other value reaches a rated value, the control unit 24 drives the generator motor 23 to bring the other value close to the rated value.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 4, 2014
    Applicant: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Kenji NANATAKI, Hidetoshi KUROKI
  • Patent number: 8887488
    Abstract: A high efficiency power plant for a UAV with a high pressure ratio gas turbine engine used for low power operation such as loiter speed and a low pressure ratio gas turbine engine used for high power operation. A power turbine receives hot gas flows from the two engines to drive an output shaft. At low power operation, only the high pressure ratio engine is operated. At high power operation, both engines are operated where the exhaust from the high pressure ratio engine is used to drive a turbine of the low pressure ratio engine. A compressor of the low pressure ratio engine supplies compressed air to a combustor that produces a hot gas stream that is passed through the power turbine.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 18, 2014
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: Jose R. Paulino
  • Patent number: 8863492
    Abstract: A combined cycle power plant including a gas turbine engine having a first compressor providing compressed air for combustion to form a hot working gas, and a turbine section for expanding the hot working gas. A first heat recovery steam generator (HRSG) is provided for receiving an exhaust gas flow from the turbine section to form a reduced temperature exhaust gas and to produce a high pressure steam flow which is provided to a high pressure steam turbine. A second compressor is provided for receiving and compressing the reduced temperature exhaust gas to add energy and form a reheated exhaust gas. A second heat recovery steam generator (HRSG) is provided for receiving and removing heat from the reheated exhaust gas to produce a low pressure steam flow, and a low pressure steam turbine is provided for receiving and expanding the low pressure steam flow.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: October 21, 2014
    Assignee: Siemens Energy, Inc.
    Inventor: Lennard Helmers
  • Patent number: 8850787
    Abstract: A hybrid thermal power generation system using crude oil as a fuel comprises a combined cycle power generation system for generating power by supplying naphtha and light oil separated by an atmospheric distillation column alone into different gas turbines and using steam produced by exhaust heat and a conventional power generation system for generating power by burning heavy oil separated by the atmospheric distillation column alone.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: October 7, 2014
    Assignee: Sumitomo Corporation
    Inventors: Takumi Fujita, Masayoshi Horino, Isao Takekoh, Jun Minase, Yusuke Kamemura
  • Patent number: 8844263
    Abstract: An aircraft wing turbine engine is designed to increase the ground clearance for larger modernized engines mounted under the wings of an airfoil. To this end, the aircraft wing turbine engine includes a hot flow generator with a turbine engine rotating about a first central axis, a cold flow blower rotating about a second central axis, and a pod surrounding the hot flow generator and cold flow blower. The first and second central axes are offset and non-collinear with each other such that the cold flow blower can be moved farther away from the ground to increase the ground clearance of the turbine engine.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: September 30, 2014
    Assignee: Airbus Operations (SAS)
    Inventor: Jacques Hervea Marche
  • Patent number: 8844266
    Abstract: A variable bypass ratio augmented gas turbine engine system for a UAV with a high pressure ratio gas turbine engine used for low power operation such as loiter speed and a low pressure ratio gas turbine engine used for high power operation. A power turbine receives hot gas flows from the two engines to drive an output shaft. At low power operation, only the high pressure ratio engine is operated. At high power operation, both engines are operated where the exhaust from the high pressure ratio engine is mixed with bleed off air form the second compressor to produce a second hot gas flow in a second combustor to drive the second turbine. The remaining compressed air from the second compressor is passed into a third combustor to produce a third hot gas flow that then flows into the power turbine.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: September 30, 2014
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: Jose R. Paulino
  • Publication number: 20140250860
    Abstract: A gas turbine engine is disclosed with a first spool having a first turbine connected to a first compressor through a first rotatable shaft; a second spool having a second turbine connected to a second compressor through a second rotatable shaft; and a gearbox having a power input port coupled to each of the first and second shafts and a power output port connected to a third shaft, wherein the rotational speed of the third shaft is lower than the rotational speed of each of the first and second shafts.
    Type: Application
    Filed: December 26, 2013
    Publication date: September 11, 2014
    Applicant: Rolls-Royce Corporation
    Inventor: Dmitriy B. SIDELKOVSKIY
  • Publication number: 20140250902
    Abstract: This invention relates to electrical power systems, including generating capacity of a gas turbine, and more specifically to augmentation of power output of gas turbine systems, that is useful for providing additional electrical power during periods of peak electrical power demand.
    Type: Application
    Filed: March 31, 2013
    Publication date: September 11, 2014
    Inventor: Robert J. KRAFT
  • Patent number: 8826639
    Abstract: A thermal/electrical power converter includes a gas turbine with an input couplable to an output of an inert gas thermal power source, a compressor including an output couplable to an input of the inert gas thermal power source, and a generator coupled to the gas turbine. The thermal/electrical power converter also includes a heat exchanger with an input coupled to an output of the gas turbine and an output coupled to an input of the compressor. The heat exchanger includes a series-coupled super-heater heat exchanger, a boiler heat exchanger and a water preheater heat exchanger. The thermal/electrical power converter also includes a reservoir tank and reservoir tank control valves configured to regulate a power output of the thermal/electrical power converter.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: September 9, 2014
    Assignee: Hi Eff Rescue LLC
    Inventor: William Edward Simpkin
  • Patent number: 8806849
    Abstract: A method of operating a turbine engine system and a turbine engine system are provided. The method comprises supplying a flow of oxygen to a combustion chamber defined within a plurality of turbines coupled serially together within the turbine engine system, supplying a flow of hydrocarbonaccous fuel to the combustion chambers of each of the plurality of turbines in the turbine engine system, and supplying a working fluid to an inlet of a first turbine engine coupled within the turbine engine system, wherein the working fluid is substantially nitrogen-free and wherein each of the turbines coupled within the turbine engine system is operable with the resulting fuel-oxygen-working fluid mixture.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: August 19, 2014
    Assignees: The University of Wyoming, General Electric Company
    Inventors: John Frederick Ackerman, Matthew Timothy Franer, Randy Lee Lewis, David Allen Bell, Morris Dee Argyle, Brian Francis Towler
  • Publication number: 20140196432
    Abstract: A new type of engine module is described based on the Tesla turbine. Our Tesla Twin Turbines Combustion Engine Module comprises of two Tesla turbines welded together, forming a combustion chamber in between. The combustion chamber includes an air-fuel mixture inlet and an ignition inlet. Fuel-air mixture is injected through the air-fuel inlet into the combustion chamber which is ignited by an ignition device. The high temperature combustion gas flow in opposite directions across 2 stacks of evenly spaced smooth parallel discs, transferring energy into rotating the discs via the mechanism of boundary layer laminar flow interaction. The pair of rotating stacks of discs rotates a pair of rods. The gas exits through exhaust holes or openings adjacent to the pair of rods. The rotating rods can be used to drive generators or do useful works.
    Type: Application
    Filed: January 14, 2013
    Publication date: July 17, 2014
    Inventors: Vinh Minh Glisttenmeer Lam, ETHAN LAM, MEGAN LAM, VICTOR LAM
  • Patent number: 8726663
    Abstract: In one embodiment, a component for a power generation system includes an interior volume for containing steam condensate or gas turbine exhaust gas. A phase change material is disposed around an external surface of the combined cycle power generation system component.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: May 20, 2014
    Assignee: General Electric Company
    Inventors: Mark S. Schroder, Mark Joseph Steffen
  • Patent number: 8701380
    Abstract: A turbine engine including two respectively upstream and downstream external impellers that are nonstreamlined, coaxial, and contrarotating is provided. The downstream impeller is retractable so as to reduce its diameter. The blades of the downstream impeller are mounted so as to pivot about a pivot, the axis of which forms a nonzero angle, notably perpendicular, with the axis of rotation of the impeller, the blades in the retracted position being tilted about the pivot.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: April 22, 2014
    Assignee: SNECMA
    Inventor: Alexandre Alfred Gaston Vuillemin
  • Patent number: 8701379
    Abstract: An engine that operates and produces the entire required vehicle thrust below Mach 4 is useful for a Hypersonic combined cycle vehicle by saving vehicle and engine development costs. One such engine is a combined cycle engine having both a booster and a dual mode ramjet (DMRJ). The booster and the DMRJ are integrated to provide effective thrust from Mach 0 to in excess of Mach 4. As the booster accelerates the vehicle from Mach 0 to in excess of Mach 4, from Mach 0 to about Mach 2 incoming air delivered to the DMRJ is accelerated by primary ejector thrusters that may receive oxidizer from either on-board oxidizer tanks or from turbine compressor discharge air. As the TBCC further accelerates the vehicle from about Mach 0 to in excess of Mach 4 exhaust from the turbine and exhaust from the DMRJ are combined in a common nozzle disposed downstream of a combustor portion of said DMRJ functioning as an aerodynamic choke.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: April 22, 2014
    Assignee: Aerojet-General Corporation
    Inventor: Melvin J. Bulman
  • Patent number: 8669670
    Abstract: A system of dense packaging of turbomachinery in a gas turbine engine by means of close-coupling of components and by the ability to rotate various engine components with respect to other engine components is disclosed. In addition, spool shaft rotational direction may be reversed to suit the application. In multiple engine configurations, the same ability to close-couple and rotate components and to reverse shaft rotational direction in order to rearrange the engine geometry package is used for packaging two or more gas turbine engines to achieve high power density. Dense-packing is possible because of a number of features of the basic engine.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 11, 2014
    Assignee: ICR Turbine Engine Corporation
    Inventors: Frank Wegner Donnelly, David William Dewis
  • Patent number: 8631655
    Abstract: The gas turbine engine comprises at least one electrical generator and an electrical heater associated with a gas path of the engine. The heater is powered by the generator to selectively add heat to the gas turbine cycle.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: January 21, 2014
    Assignee: Pratt & Whitney Canada Corp.
    Inventor: Kevin Allan Dooley
  • Patent number: 8631637
    Abstract: A fire enclosure for an auxiliary power unit having a hot zone formed by a gas turbine comprises an annular fire enclosure body, an axial expansion joint and a radial expansion joint. The annular fire enclosure body is configured to encapsulate the hot zone. The fire enclosure includes a first end and a second end. The axial expansion joint is connected to the first end. The radial expansion joint is connected to the second end.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 21, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Brian C. DeDe, David Eugene Martinez, David Lau, Mark C. Tate
  • Patent number: 8615980
    Abstract: A rotary-wing aircraft includes a retractable port movable between a closed position and an open position to selectively control flow of combustion gases into a bypass passage to change a power distribution between a rotor system and a secondary propulsion system.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: December 31, 2013
    Assignee: United Technologies Corporation
    Inventors: Rajendra K. Agrawal, Steven J. Sirica, William F. Schneider
  • Patent number: 8613186
    Abstract: Provided in one embodiment is a two-shaft gas turbine that exhibits improved reliability, output power, and efficiency. The turbine operates stably by establishing a balance between the driving force of a compressor and the output power of a high-pressure turbine in the case where the two-shaft gas turbine is applied to a system, in which the flow rate of a fluid flowing into a combustor is higher than a simple cycle gas turbine. A portion of the fluid driving the high-pressure turbine is allowed to flow not into the high-pressure turbine but into a low-pressure turbine.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: December 24, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Tomomi Koganezawa, Shinichi Higuchi, Yasuo Takahashi, Ryo Akiyama, Shinya Marushima
  • Patent number: 8595953
    Abstract: A clothes treating apparatus includes a drum configured to accommodate therein an object to be dried, an air suction device configured to form a flow path of air introduced into the drum, an air exhaustion device configured to form a flow path of air exhausted from the drum, a condenser disposed to heat air sucked into the drum through the air suction device, an evaporator disposed to cool air exhausted from the drum the air exhaustion device, and a compressor and an expander configured to constitute a heat pump together with the condenser and the evaporator. The method includes a temperature detection step of detecting a temperature change of air passing through the condenser or the air suction device, and a determination step of determining that refrigerant leakage has occurred when a temperature decrease amount measured in the temperature detection step is more than a predetermined level.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: December 3, 2013
    Assignee: LG Electronics Inc.
    Inventors: Hyuksoo Lee, Sungho Song, Sungmin Ye, Seonghwan Kim, Byeongjo Ryoo
  • Publication number: 20130255224
    Abstract: A gas turbine engine has a fan at an axially outer location. The fan rotates about an axis of rotation. The fan delivers air into an outer bypass duct, and across a booster fan positioned radially inwardly of the outer bypass duct. The booster fan delivers air into a radially middle duct, and across a cold turbine into a radially inner core duct being directed into a compressor. From the compressor, air flows axially in a direction back toward the fan through a combustor section, and across an exhaust of the turbine section as directed into the middle duct. A gear reduction drives the fan from a fan drive turbine section. A method is also disclosed.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 3, 2013
    Inventors: Daniel Bernard Kupratis, Francis R. Moon
  • Publication number: 20130255219
    Abstract: A gas turbine engine has a fan rotor, a first compressor rotor and a second compressor rotor. The second compressor rotor compresses air to a higher pressure than the first compressor rotor. A first turbine rotor drives the second compressor rotor and a second turbine rotor. The second turbine drives the compressor rotor. A fan drive turbine is positioned downstream of the second turbine rotor. The fan drive turbine drives the fan rotor through a gear reduction. The first compressor rotor and second turbine rotor rotate as an intermediate speed spool. The second compressor rotor and first turbine rotor together as a high speed spool. The high speed spool, the intermediate speed spool, and the fan drive turbine rotate in the same direction.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Inventors: Frederick M. Schwarz, Daniel Bernard Kupratis
  • Publication number: 20130247539
    Abstract: A gas turbine engine power generation system includes first and second spools respectively connected to first and second turbine sections. First and second shafts respectively are coupled to the first and second spools. First and second generators respectively are configured to provide first and second electrical powers. A generator gearbox operatively connects the first and second shafts respectively to the first and second generators. An electrical summing device is electrically connected to the first and second generators and is configured to receive the first and second electrical powers and combine the first and second electrical powers to produce a common output power.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 26, 2013
    Inventor: Richard John Hoppe
  • Patent number: 8511058
    Abstract: A convertible gas turbine propulsion system operates in multiple output modes. The convertible gas turbine propulsion system comprises a gas generator, a first power turbine, a secondary propulsion system and an exhaust duct. The gas generator is configured to produce exhaust gas. The first power turbine is aligned with the gas generator to receive the exhaust gas. The secondary propulsion system is in series with the gas generator and the first power turbine. The exhaust duct coaxially extends from the first power turbine to the secondary propulsion system. The exhaust duct includes an exhaust port for opening the exhaust duct to ambient air pressure and permitting exhaust gas to bypass the secondary propulsion system. In various embodiments of the invention, the first power turbine is connected to a first rotary propulsion system, and the secondary propulsion system comprises a second power turbine or a nozzle.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: August 20, 2013
    Assignee: United Technologies Corporation
    Inventors: Rajendra K. Agrawal, Steven J. Sirica, William F. Schneider
  • Publication number: 20130205747
    Abstract: A separate propulsion unit incorporating a free turbine and a fan receives gases from a plurality of core engines. The core engines each include a compressor, a turbine and a combustion section. The core engines in combination pass gases across the free turbine. A method is also disclosed.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Inventors: Gabriel L. Suciu, Joseph B. Staubach, Christopher M. Dye
  • Publication number: 20130192191
    Abstract: A gas turbine engine includes a very high speed low pressure turbine such that a quantity defined by the exit area of the low pressure turbine multiplied by the square of the low pressure turbine rotational speed compared to the same parameters for the high pressure turbine is at a ratio between about 0.5 and about 1.5. The high pressure turbine is supported by a bearing positioned at a point where the first shaft connects to a hub carrying turbine rotors associated with the second turbine section.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 1, 2013
    Inventors: Frederick M. Schwarz, Daniel Bernard Kupratis, Brian D. Merry, Gabriel L. Suciu, William K. Ackermann
  • Patent number: 8474239
    Abstract: An industrial gas turbine engine capable of operating at higher temperatures than air cooled nickel based alloy airfoils in the turbine. The engine burns stoichiometric or rich to produce a hot gas stream that is mostly without oxygen, and the turbine airfoils are made from a high temperature resistant material such as a refractory material that also has poor oxidation resistance. A second small gas turbine engine is used to compress nitrogen gas that is used to pass through the turbine airfoils for cooling where the film cooling nitrogen gas is injected into the hot gas stream but without igniting the fuel rich gas stream.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: July 2, 2013
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: Joseph R Paulino
  • Publication number: 20130139518
    Abstract: Electric power from the low spool of a turboshaft engine is transferred to drive the compressor of an other turboshaft engine. This is used to assist in maintaining the other turboshaft idling while a single engine provides flight power or to increase acceleration for instance.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 6, 2013
    Inventor: KEITH MORGAN
  • Patent number: 8453428
    Abstract: A number of engines usable alone or in combination are taught herein. One engine comprises a housing, a drive shaft mounted within the housing, a first impeller and a second impeller mounted on the drive shaft for movement, and a combustion mediating hub between the second impeller and the first impeller and mounted for movement in both a clockwise and counter-clockwise direction with respect to the drive shaft, where the hub includes an annular plate, a first plurality of blades mounted on a first surface of the annular plate and facing the second impeller and a second plurality of blades mounted on a second, opposing surface of annular plate and facing the first impeller. An ignition source and a fuel source extend through the housing into an area between an outer peripheral wall of the annular plate and an inner wall of the housing.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: June 4, 2013
    Inventor: Ronald August Kinde, Sr.
  • Publication number: 20130125525
    Abstract: A gas turbine power plant and a method for operating a gas turbine power plant are provided. The power plant includes a gas turbine installation which may supply a mains supply network with electric power and includes a compressor and an associated first gas turbine. Differing from previous gas turbine installations, the compressor of the gas turbine installation and the first gas turbine of the gas turbine installation are decoupled from each other. A second turbine is provided which drives compressor. As a result, the compressor of the gas turbine installation is operated independently of the first gas turbine. Influences on the mains supply network side, such as generating deficiencies in the main supply network, which act upon the first gas turbine as a result of speed reduction, are also not able to have an impact upon the compressor which is decoupled from the first gas turbine.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 23, 2013
    Inventors: Olaf Hein, Hardy Kliemke, Andreas Waruschewski
  • Publication number: 20130098052
    Abstract: A method and architecture for recombining power of a turbomachine improving on problems of size, mass, or reliability. In the method energy is recovered in an exhaust nozzle and converted and recirculated using a mechanical and/or electrical power recombining mechanism. An example of an architecture of a turbomachine includes a main turbine engine and a heat exchanger positioned in the exhaust nozzle and coupled, via pipes, to an independent system that converts thermal energy into mechanical energy. This independent system is connected to a localized mechanical recombination mechanism via a power shaft to supply power to a power transmission shaft according to aircraft requirements.
    Type: Application
    Filed: July 5, 2011
    Publication date: April 25, 2013
    Applicant: TURBOMECA
    Inventors: Olivier Bedrine, Patrick Marconi, Alphonse Puerto
  • Patent number: 8401719
    Abstract: A method includes controlling an aircraft during descent, and controlling the engine pressure ratio of a jet engine so that the engine has a substantially equal pressure at the exhaust, and at the front of the engine during the descent.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 19, 2013
    Inventor: Hal Gerard Wick
  • Patent number: 8371521
    Abstract: An exhaust duct system for a gas turbine engine that mounts within a tail cone of an aircraft, comprises an exhaust exit that exits one side of the tail cone offset from the axial centerline of the tail cone and an exhaust duct that couples the engine to the offset exhaust exit, with a straight section of the exhaust duct extending from the exhaust exit for a length that corresponds to at least one diameter of the exhaust duct.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: February 12, 2013
    Assignee: Pratt & Whitney
    Inventors: James C. Napier, Jay M. Francisco
  • Patent number: 8359824
    Abstract: A combined cycle power plant includes a gas turbomachine system including a compressor and a gas turbine that extracts work from gases at a first temperature. The combined cycle power plant also includes a steam turbomachine system including at least one steam turbine that extracts work from gases at a second temperature. The combined cycle power plant further includes a heat recovery steam generator having a main housing fluidly connected to the gas turbine. The heat recovery steam generator includes a plurality of heat pipes that extend within the main housing in fluid communication with the gases at the first temperature. The plurality of heat pipes are also in fluid communication with the gases at the second temperature. The plurality of heat pipes absorb heat from the gases at the first temperature and pass the heat into the gases at the second temperature to form gases at a third temperature.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: January 29, 2013
    Assignee: General Electric Company
    Inventors: Hua Zhang, Jatila Ranasinghe
  • Patent number: 8347600
    Abstract: At least one main air compressor makes a compressed ambient gas flow. The compressed ambient gas flow is delivered to both master and slave turbine combustors at a pressure that is greater than or substantially equal to an output pressure delivered to each turbine combustor from each turbine compressor as at least a first portion of a recirculated gas flow. A fuel stream is delivered to each turbine combustor, and combustible mixtures are formed and burned, forming the recirculated gas flows. A master and slave turbine power are produced, and each is substantially equal to at least a power required to rotate each turbine compressor. At least a portion of the recirculated gas flow is recirculated through recirculation loops. At least a second portion of the recirculated gas flow bypasses the combustors or an excess portion of each recirculated gas flow is vented or both.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: January 8, 2013
    Assignee: General Electric Company
    Inventors: Lisa Anne Wichmann, Daniel David Snook, NoƩmie Dion Ouellet, Scott Allen Rittenhouse
  • Patent number: 8286435
    Abstract: A jet engine (1) includes at least one emergency drive unit (10), with the jet engine (1) having at least one engine shaft (2a) coupled via at least one gear train (4) with at least one auxiliary gearbox (7), which is connected to at least one auxiliary equipment (8), especially an electric generator. The emergency drive unit (10) includes at least one rotatable component. In order to provide a jet engine with an emergency drive unit in a simple configuration, the rotatable component of the emergency drive unit (10) is attached to the gear train (4).
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 16, 2012
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventor: Detlef Rensch
  • Publication number: 20120233980
    Abstract: One embodiment of the present invention is a unique variable cycle gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for variable cycle gas turbine engines. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Type: Application
    Filed: December 27, 2011
    Publication date: September 20, 2012
    Inventor: Craig Heathco
  • Patent number: 8250848
    Abstract: A method of assembling a steam turbine power system with a coolant source is provided. The method includes providing a first steam turbine train including a first high pressure turbine assembly, a first low pressure turbine assembly coupled in flow communication with the first high pressure turbine assembly, and a first condenser coupled in flow communication with the first low pressure turbine assembly. The method also includes providing a second steam turbine train including a second high pressure turbine assembly, a second low pressure turbine assembly coupled in flow communication with the second high pressure turbine assembly, and a second condenser coupled in flow communication with the second low pressure turbine assembly.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: August 28, 2012
    Assignee: General Electric Company
    Inventors: John Edward Sholes, Jr., Raub Warfield Smith
  • Publication number: 20120159922
    Abstract: The present invention generally relates to power generation methods and secondary processes requiring high radiant and emissivity homogeneous combustion to maximize production output. In one embodiment, the present invention relates to a top cycle power generator with combustion exhaust modified to have radiant flux in excess of 500 kW per square meter and emissivity greater than 0.90, and supercritical CO2 power generating cycle to maximize exergy efficiency.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 28, 2012
    Inventor: Michael Gurin
  • Patent number: 8110012
    Abstract: In a retrofit system for hot solids combustion and gasification, a chemical looping system includes an endothermic reducer reactor 12 having at least one materials inlet 22 for introducing carbonaceous fuel and CaCO3 therein and a CaS/gas outlet 26. A first CaS inlet 40 and a first CaSO4 inlet 64 are also defined by the reducer reactor 12. An oxidizer reactor 14 is provided and includes an air inlet 68, a CaSO4/gas outlet 46, a second CaS inlet 44, and a second CaSO4 inlet 66. A first separator 30 is in fluid communication with the CaS/gas outlet 26 and includes a product gas and a CaS/gas outlet 32 and 34 from which CaS is introduced into said first and second CaS inlets. A second separator 50 is in fluid communication with the CaSO4/gas outlet 46 and has an outlet 52 for discharging gas therefrom, and a CaSO4 outlet from which CaSO4 is introduced into the first and second CaSO4 inlets 62, 66.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: February 7, 2012
    Assignee: ALSTOM Technology Ltd
    Inventors: John H. Chiu, Herbert E. Andrus, Gregory N. Liljedahl, Paul R. Thibeault
  • Publication number: 20120023891
    Abstract: A rotary-wing aircraft includes a retractable port movable between a closed position and an open position to selectively control flow of combustion gases into a bypass passage to change a power distribution between a rotor system and a secondary propulsion system.
    Type: Application
    Filed: October 11, 2011
    Publication date: February 2, 2012
    Inventors: Rajendra K. Agrawal, Steven J. Sirica, William F. Schneider
  • Publication number: 20110302926
    Abstract: A method of operating a gas turbine power plant with a first gas turbine group, including a first turbine assembly, and a second gas turbine group, including a compressor assembly and a second turbine assembly which are mechanically coupled to one another, and useful work is extracted by a device being included in the plant, where a flue gas stream is produced by a combustion device, which is placed in a gas flow stream upstream of the second turbine assembly, where the second turbine assembly and compressor assembly are balanced to each other such that work produced by the second turbine assembly is consumed by the compressor assembly, and where the first turbine assembly is balanced to the device for the extraction of useful work such that work produced by the first turbine assembly is consumed by the device for the extraction of useful work.
    Type: Application
    Filed: February 24, 2010
    Publication date: December 15, 2011
    Applicant: EUROTURBINE AB
    Inventor: Hans-Erik Hansson
  • Publication number: 20110289930
    Abstract: In one embodiment, a system is provided that includes a first gas turbine engine. The first gas turbine engine has a first compressor configured to intake air and to produce a first compressed air and a first combustor configured to combust a first mixture to produce a first combustion gas. The first mixture has a first fuel, at least a first portion of the first compressed air, and a second combustion gas from a second gas turbine engine. The first gas turbine engine also includes a first turbine configured to extract work from the first combustion gas.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: General Electric Company
    Inventor: Samuel David Draper
  • Patent number: 8051654
    Abstract: A combined cycle power plant includes a compressor, a first turbine, a second turbine, a first combustor, a second combustor, a heat exchanger and a heat recovery steam generator. A controller operates the combined cycle power plant a first mode wherein compressor air is passed through the heat exchanger before being delivered to the first and second combustors, and exhaust gas from the second turbine is passed to the heat exchanger. The exhaust gas from the second turbine pre-heats the compressor air passing through the heat exchanger to the first and second combustors.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventor: Joseph Kirzhner
  • Patent number: 8020365
    Abstract: A gas turbine engine comprising a compressor, a combustion chamber, and at least two turbines mounted oppositely to the combustion chamber, such that the gas turbine engine is capable of generating multidirectional thrust.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: September 20, 2011
    Inventor: Kamyar Brothers