Gaseous Fuel At Standard Temperature And Pressure Patents (Class 60/39.465)
  • Patent number: 11320092
    Abstract: A high pressure tank has a liner and a reinforcing layer. The reinforcing layer is formed on an outer surface of the liner. An adhesion inhibiting process that inhibits the liner from adhering to the reinforcing layer is applied to at least a portion of the liner in a region contacting the reinforcing layer.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: May 3, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shiro Nishibu
  • Patent number: 11268346
    Abstract: Embodiments of systems and methods for supplying fuel, enabling communications, and conveying electric power associated with operation of a hydraulic fracturing unit of a plurality of hydraulic fracturing units are disclosed and may include a fuel line connection assembly configured to be connected to the first hydraulic fracturing unit and to supply fuel from a fuel source to a gas turbine engine connected to the hydraulic fracturing unit. A system also may include a communications cable assembly configured to be connected to the hydraulic fracturing unit and to enable data communications between the hydraulic fracturing unit and a data center or another hydraulic fracturing unit. A system further may include a power cable assembly configured to be connected to the hydraulic fracturing unit and to convey electric power between the hydraulic fracturing unit and a remote electrical power source or the plurality of hydraulic fracturing units.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: March 8, 2022
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Patrick Thomson
  • Patent number: 11221177
    Abstract: Apparatus, systems, and methods use cryogenic liquids such as, for example, liquefied natural gas and liquefied air or liquefied air components to store thermal energy. The cryogenic liquids may be produced using electrically powered liquefaction methods, for example, using excess electric power during periods of over-generation on the electric grid.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: January 11, 2022
    Inventor: William M Conlon
  • Patent number: 11125166
    Abstract: A control system is configured to control a temperature of a fuel which is supplied to a combustor of a gas turbine via a fuel gas heater, which is configured to heat the fuel of the gas turbine, by adjusting a flow rate of heated water which is supplied to the fuel gas heater. The control system includes a water flow rate adjusting unit configured to adjust the flow rate of the heated water which is supplied to the fuel gas heater based on a difference between a target temperature of the fuel and the temperature of the fuel on an outlet side of the fuel gas heater.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: September 21, 2021
    Assignee: MITSUBISHI POWER, LTD.
    Inventors: Yuki Nakazawa, Akihiko Saito, Hiroyuki Nakagawa, Ryo Koto
  • Patent number: 10837642
    Abstract: Provided are a combustor nozzle, a gas turbine combustor, a gas turbine, a cover ring, and a combustor nozzle manufacturing method. The combustor nozzle includes: a nozzle body provided with a fuel flow passage; a cover ring that is disposed on an outer side of the nozzle body so as to form air flow passages that allow air to jet out toward a front side; and fuel injection nozzles that are provided in a leading end part of the nozzle body at predetermined intervals in a circumferential direction and extend through the cover ring so as to be able to inject fuel from the fuel flow passage toward the front side.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: November 17, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Masaki Mitani, Koshiro Fukumoto, Toshihiko Saito, Mitsunori Isono, Dai Morishige, Nobuyuki Izutsu, Hiroyuki Yamasaki, Yoshiyuki Wada
  • Patent number: 10384926
    Abstract: A system for renewable energy storage, providing integral synthesis of heat source cryo-fuel and heat sink refrigerant for distributed electric generation and motor vehicle prime movers and refrigerant liquefiers. Fuel synthesis is by gasification and anaerobic digestion of organic feedstock with heat recovery to drive thermo-chemical reactor and air and fuel liquefiers.
    Type: Grant
    Filed: July 1, 2018
    Date of Patent: August 20, 2019
    Inventor: Jay Stephen Kaufman
  • Patent number: 10343890
    Abstract: A system for renewable energy storage, providing integral synthesis of heat source cryo-fuel and heat sink refrigerant for distributed electric generation and motor vehicle prime movers and refrigerant liquefiers. Fuel synthesis is by gasification and anaerobic digestion of organic feedstock with heat recovery to drive thermo-chemical reactor and air and fuel liquefiers.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: July 9, 2019
    Inventor: Jay Stephen Kaufman
  • Patent number: 10309319
    Abstract: A compressor arrangement has a main compressor section and boundary walls of a main fluid path through the main compressor section. The main compressor section is segmented into an upstream and downstream sub section, each with at least one row of blades and vanes arranged within the main fluid path. A transition piece is downstream of the rows of blades and has boundary walls of the main fluid path through the transition piece. The compressor arrangement has an annular cavity, an effusion opening connecting the downstream sub section or the transition piece and the cavity, at least one valve to control effusion of compressor fluid from the main fluid path into the cavity, and a passage connecting the cavity and the main compressor section to guide fluid located between the upstream and downstream sub section and located at least one row of blades and vanes upstream of the effusion opening.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: June 4, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mats Andersson, Arturo Manrique Carrera
  • Patent number: 10145260
    Abstract: A turbomachine including an accessory drive case, connected to the engine shaft via a radial shaft, wherein the accessory drive case also includes: a primary shaft which is driven by the radial shaft via a bevel gearbox, and assemblies for mechanically driving accessories, driven by the primary shaft and configured such that the related accessories lie at the upper portion and on at least one of the side edges of the engine case.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: December 4, 2018
    Assignee: SAFRAN AIRCRAFT ENGINES
    Inventor: Frantz Armange
  • Patent number: 10100747
    Abstract: A fuel supply system for use in a gas turbine engine is provided. The fuel supply system includes a fuel manifold, and a shutoff valve coupled in flow communication with the fuel manifold and positioned upstream from said fuel manifold. The shutoff valve is configured to actuate into a closed position when the gas turbine engine is operating at an overspeed condition. The system also includes a relief valve coupled in flow communication with the fuel manifold, wherein the relief valve is configured to release fuel from within the fuel manifold when the shutoff valve is in the closed position, and when a pressure within the fuel manifold is greater than a first predetermined threshold.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: October 16, 2018
    Assignee: General Electric Company
    Inventors: Alberto Jose Negroni, David August Snider, William Forrester Seely, Keegan Saunders O'Donnell, Kyle Joseph Conger, Carlos Gabriel Roman
  • Patent number: 9926846
    Abstract: A fuel oxidizer system is operated in a first operating mode. In the first operating mode, a mixture that includes fuel from a fuel source is compressed in a compressor of the fuel oxidizer system; the fuel of the compressed mixture is oxidized in a reaction chamber of the fuel oxidizer system; and the oxidized fuel is expanded to generate rotational kinetic energy. The fuel oxidizer system is operated in a second operating mode. In the second operating mode, fuel from the fuel source is directed to bypass the compressor, and the fuel that bypassed the compressor is oxidized in the reaction chamber.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: March 27, 2018
    Assignee: Ener-Core Power, Inc.
    Inventor: Edan Prabhu
  • Patent number: 9719497
    Abstract: Supply assembly for a turbine of a solar thermodynamic system provided with plural multiple parabolic mirrors for heating a first thermal carrier fluid contained in a tank to a first temperature, comprising a column structure provided at the upper part with an exit. The column structure comprises: a lower portion provided with two inlets connected to the tank to be supplied with the first thermal carrier fluid, the lower portion comprising first and second heat exchangers supplied with a second thermal carrier fluid respectively to an overheated temperature and re-overheating temperature; an upper portion fluidically connected with the lower portion, the upper portion comprising a boiler to bring the second fluid from a pre-heating temperature to a boiling temperature, and a cylindrical body arranged on the boiler; a pre-heating and supplying structure for heating the second thermal carrier fluid to the pre-heating temperature and supply it to the column structure.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: August 1, 2017
    Assignee: ALFA LAVAL CORPORATE AB
    Inventor: Luca Zanardi
  • Patent number: 9476592
    Abstract: A combustion system uses a fuel nozzle with an inner wall having a fuel inlet in fluid communication with a fuel outlet in a fuel cartridge. The inner wall defines a mounting location for inserting the fuel cartridge. A pair of annular lip seals around the cartridge outer wall on both sides of the fuel outlet seals the fuel passage between the fuel inlet and the fuel outlet.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: October 25, 2016
    Assignee: General Electric Company
    Inventor: Jonathan Dwight Berry
  • Publication number: 20150082799
    Abstract: Hydrogen is combusted in Oxygen to generate extremely high temperature steam. By feeding the combustion generated steam directly into a steam turbine, unprecedented high conversion efficiency to electricity is achieved.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 26, 2015
    Applicant: BILLINGS ENERGY CORPORATION
    Inventor: Roger E. Billings
  • Patent number: 8984857
    Abstract: Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes integrated pressure maintenance and miscible flood systems with low emission power generation. An alternative system provides for low emission power generation, carbon sequestration, enhanced oil recovery (EOR), or carbon dioxide sales using a hot gas expander and external combustor. Another alternative system provides for low emission power generation using a gas power turbine to compress air in the inlet compressor and generate power using hot carbon dioxide laden gas in the expander. Other efficiencies may be gained by incorporating heat cross-exchange, a desalination plant, co-generation, and other features.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: March 24, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Moses Minta, Franklin F. Mittricker, Peter C. Rasmussen, Loren K. Starcher, Chad C. Rasmussen, James T. Wilkins, Richard W. Meidel, Jr.
  • Publication number: 20150059353
    Abstract: The present invention provides a gas turbine combustion system capable of minimizing unburned content of a gas fuel under all load conditions from partial load to rated load. A gas turbine combustion system includes: a plurality of gas fuel burners 32, 33; an IGV 9 that adjusts a flow rate of air to be mixed with a gas fuel; and a control system 500 that temporarily reduces an air flow rate from a reference flow rate to a set flow rate by outputting a signal to the IGV 9 when a combustion mode is switched from a partial combustion mode in which the gas fuel is burned with part of the gas fuel burners 32, 33 to a full combustion mode in which the gas fuel is burned with all of the gas fuel burners 32, 33.
    Type: Application
    Filed: August 19, 2014
    Publication date: March 5, 2015
    Inventors: Tomohiro ASAI, Akinori HAYASHI, Yasuhiro AKIYAMA
  • Publication number: 20140366504
    Abstract: An object is to prevent blockage of a slag hole with char and slag, enabling stable operation of a gasification furnace. In a configuration in which a heat exchanger (20) is provided above a coal gasification portion (10), the diameters (D1, D3) of the slag hole (16) and the throat portion (17) are set to three times or more the pitch (ST) of rows of heat exchange tubes (21). By doing so, blockage of the slag hole (16) or the throat portion (17) with char and a sintered material (50) falling from the heat exchanger (20) is prevented, enabling stable operation of a coal gasification furnace (101).
    Type: Application
    Filed: January 22, 2013
    Publication date: December 18, 2014
    Inventors: Kenta Haari, Osamu Shinada, Yasunari Shibata, Yuichiro Kitagawa
  • Patent number: 8899047
    Abstract: Provided is a power plant including a gas turbine that uses a fuel gas as a fuel; a fuel gas cooler that cools the fuel gas, which is to be pressurized in a fuel gas compressor and re-circulated, using cooling water; and a dust collection device that separates/removes impurities from the fuel gas that is to be guided to the fuel gas compressor; wherein the power plant further includes heating means that heats the fuel gas that is to be guided to the dust collection device using the fuel gas that has been used to generate an anti-thrust force acting on a rotor of the fuel gas compressor.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: December 2, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hiroshi Tanabe, Eiki Anzawa
  • Patent number: 8901178
    Abstract: A method and system for co-production of electric power, fuel, and chemicals in which a synthesis gas at a first pressure is expanded using a turbo-expander, simultaneously producing electric power and an expanded synthesis gas at a second pressure after which the expanded synthesis gas is converted to a fuel and/or a chemical.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: December 2, 2014
    Assignee: Gas Technology Institute
    Inventors: Iosif K. Rabovitser, Arunabha Basu
  • Patent number: 8869502
    Abstract: A turbomachine system includes a compressor portion having a compressor inlet and a compressor outlet, a turbine portion operatively connected to the compressor portion, a combustor having a combustor inlet fluidly connected to the compressor outlet and a combustor outlet fluidly connected to the turbine portion; and a reformer having a reformer inlet fluidly connected to the compressor outlet and a reformer outlet fluidly connected to the combustor inlet. The reformer partially combusts air from the compressor portion and a fuel to form a hydrogen-rich syngas.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: October 28, 2014
    Assignee: General Electric Company
    Inventors: Kihyung Kim, Hasan Karim, Abdul Rafey Khan
  • Patent number: 8850826
    Abstract: A gas turbine power generation system having a carbon production apparatus and a carbon fuel cell to generate electricity. The carbon production apparatus is functionally connected to the fuel cell to provide carbon to the fuel cell to generate electricity. The system is configured to power the carbon production apparatus with a portion of the electricity generated from the fuel cell.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: October 7, 2014
    Assignee: EGT Enterprises, Inc.
    Inventor: Bernard P. Ennis
  • Patent number: 8783041
    Abstract: A liquefied natural gas (LNG) transport vessel for transporting liquefied natural gas (LNG) is disclosed which is capable of storing excess boil off gas BOG until needed for combustion in one or more combustion apparatus on the vessel. A method for managing the delivery of the BOG to the combustion apparatus is also described. The LNG vessel includes at least one insulated LNG storage tank which stores LNG. A first stage LNG receiver receives and stores BOG from the at least one LNG storage tank. A second stage or high pressure BOG storage tank receives compressed BOG from the receiver and stores the BOG as needed for combustion by one or more combustion apparatus of the vessel. A pressure regulator allows BOG gas to be delivered to the combustion apparatus if there is sufficient pressure in the high pressure storage tank to passively deliver the BOG at a predetermined delivery pressure.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: July 22, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: John Hartono, Paul Martella
  • Publication number: 20140190146
    Abstract: The carbon dioxide membrane separation system in a coal gasification process contains introduction of a mixed gas of hydrogen (H2) and carbon dioxide (CO2) in a high temperature and high pressure condition generated through water gas shift reaction from a water gas shift reaction furnace, while maintaining the temperature and pressure condition, to a zeolite membrane module containing a zeolite membrane for removing carbon dioxide, thereby removing carbon dioxide and generating a fuel gas rich in hydrogen. The fuel gas rich in hydrogen in a high temperature and high pressure condition discharged from the zeolite membrane module is fed to a gas turbine of the power generation facility while maintaining the temperature and pressure condition.
    Type: Application
    Filed: April 19, 2012
    Publication date: July 10, 2014
    Applicant: HITACHI ZOSEN CORPORATION
    Inventors: Suguru Fujita, Ken-ichi Sawamura, Masanobu Aizawa
  • Patent number: 8752390
    Abstract: Both power and H2 are produced from a gaseous mixture, comprising H2 and CO2, using first and second pressure swing adsorption (PSA) systems in series. The gaseous mixture is fed at super-atmospheric pressure to the first PSA system, which comprises adsorbent that selectively adsorbs CO2 at said pressure, and CO2 is adsorbed, thereby providing an H2-enriched mixture at super-atmospheric pressure. A fuel stream is formed from a portion of the H2-enriched mixture, which is combusted and the combustion effluent expanded to generate power. Another portion of the H2-enriched mixture is sent to the second PSA system, which comprises adsorbent that selectively adsorbs CO2 at super-atmospheric pressure, and CO2 is adsorbed, thereby providing a high purity H2 product. In preferred embodiments, the division of H2-enriched mixture between forming the fuel stream and being fed to the second PSA system is adjustable.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: June 17, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Jeffrey Raymond Hufton, Vincent White, Timothy Christopher Golden
  • Patent number: 8739545
    Abstract: A burner for a gas turbine engine is provided. The burner includes a radial swirler for creating a swirling fuel/air mix, a combustion chamber where combustion of the swirling fuel/air mix occurs, and a pre-chamber located between the radial swirler and the combustion chamber. The radial swirler includes a plurality of vanes arranged in a circle, generally radially inwardly extending flow slots are defined between adjacent vanes in the circle, each flow slot includes a radially outer inlet end, a radially inner outlet end, first and second generally radially inwardly extending sides provided by adjacent vanes, and a base and top. A flow slot includes a first gas fuel injection hole in its base and a flow slot includes a second gas fuel injection hole in its first side wherein the amounts of gas fuel injected via the first and second gas fuel injection holes are independently variable.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: June 3, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andrew Cant, Paul Headland, Daniel Leggett
  • Publication number: 20140130478
    Abstract: A gas turbomachine includes a compressor portion, a turbine portion operatively connected to the compressor portion, a combustor assembly including at least one combustor fluidically connected to the turbine portion, and an accessory mechanically linked with and driven by the turbine portion. The gas turbomachine also includes a fuel pre-heat system including a fuel pre-heat element having a fuel circuit fluidically connected to the at least one combustor arranged in a heat exchange relationship with a heating medium circuit fluidically connected to at least one of the compressor portion, the turbine portion, and the accessory.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bhaskar Pemmi, Joseph John, Indrajit Mazumder
  • Publication number: 20140116062
    Abstract: A system for combusting boil-off gas and generating electricity at an offshore LNG marine terminal distant from an onshore LNG facility is disclosed. BOG produced as a result of LNG transfer between an onshore LNG facility and an LNG carrier, is combusted to produce power which drives an electrical generator producing electricity. None or a reduced amount of BOG needs to be returned to an onshore LNG facility, as some of the BOG is combusted at the offshore marine terminal.
    Type: Application
    Filed: July 19, 2012
    Publication date: May 1, 2014
    Applicant: CHEVRON U.S.A. INC.
    Inventor: John Surjono Hartono
  • Patent number: 8695323
    Abstract: A plant (100) for the gasification of biomass comprises a gasifier (10) and an apparatus (23) for the filtration of the gas. The apparatus comprises a scrubber (31), a tank (41), and a wet electrostatic precipitator (51). The scrubber is in fluid communication with the gasifier and with the tank, and is adapted for the injection of a washing liquid in the gas flow. The tank comprises a bottom area for collecting the liquid and a top area for holding the gas. The wet electrostatic precipitator is in fluid communication with the top area of the tank. In some examples, a gasifier comprises a gasification reactor (12), a grate (125) for the support of the biomass in the reactor (12) and a plug (126). The plug is vertically movable so as to close and/or open the middle part of the grate.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: April 15, 2014
    Assignee: A.G.T. SRL
    Inventor: Giovanni Cappello
  • Publication number: 20140020399
    Abstract: The invention relates to a method and an apparatus for generating current from hydrogen sulphide-containing exhaust gases, particularly from the natural gas industry. The method according to the invention is characterized in that the hydrogen sulphide-containing exhaust gases are delivered to a current generation device and are burnt there, preferably with air being supplied, the energy released during combustion being employed at least partially for current generation. The apparatus according to the invention is characterized by a current generation device in which supplied hydrogen sulphide-containing exhaust gases are burnt, preferably with air being supplied, the energy released during combustion being employed at least partially for current generation.
    Type: Application
    Filed: January 11, 2012
    Publication date: January 23, 2014
    Applicant: KNAUF GIPS KG
    Inventor: Rolf Hueller
  • Publication number: 20130284123
    Abstract: The disclosure is directed to an energy recovery system for a mobile machine. The energy recovery system may include a tank configured to store a liquid fuel for combustion within an engine of the mobile machine, and a combustor selectively connectable to receive gaseous fuel formed in the tank. The energy recovery system may also include a recovery device operable to generate work using exhaust from the combustor.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Inventor: Aaron Gamache FOEGE
  • Publication number: 20130255271
    Abstract: A fuel supply system is provided having a first fuel gas compressor configured to be driven by a motor and a second fuel gas compressor configured to be driven by a shaft of a gas turbine system. The first fuel gas compressor and the second fuel gas compressor are configured to supply a pressurized fuel flow to a combustor of the gas turbine system, and the first fuel gas compressor and the second fuel gas compressor are coupled to one another in series.
    Type: Application
    Filed: February 20, 2013
    Publication date: October 3, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ping Yu, Wenjie Wu, Zhiyong Chen
  • Publication number: 20130232945
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FlexEnergy, Inc.
    Inventors: Jeffrey ARMSTRONG, Richard MARTIN, Douglas HAMRIN
  • Publication number: 20130232946
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Douglas HAMRIN, Jeffrey ARMSTRONG
  • Publication number: 20130232947
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Jeffrey ARMSTRONG, Richard MARTIN, Douglas HAMRIN
  • Publication number: 20130232944
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Steve LAMPE, Douglas Hamrin
  • Publication number: 20130232943
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: FLEXENERGY, INC.
    Inventors: Steve LAMPE, Douglas HAMRIN
  • Patent number: 8528338
    Abstract: A method is provided for operating an air-staged diffusion nozzle for a gas turbine combustor to cool the nozzle tip and improve mixing of gas fuel and air within a downstream burner space. Air is mixed with the gas-fuel in an outer swirler and expanded in a downstream burner tube space. Compressed air from a cooling air cavity in the nozzle flows through an inner swirler, passing downstream from the tip of the nozzle to the burner tube space, cooling the nozzle tip and improving the mixing of the gas-fuel with air, thereby reducing emissions from the gas turbine and reducing soot formation in startup. Direction and rotation of the discharged air from the nozzle tip into the burner space may be arranged to promote nozzle tip cooling and gas-fuel mixing with air.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: September 10, 2013
    Assignee: General Electric Company
    Inventors: Anand Prafulchandra Desai, Karthick Kaleeswaran, Venugopal Polisetty
  • Publication number: 20130229018
    Abstract: An energy generation system and method are presented for use in operating a heat engine. The energy generation method comprises: reducing a CO2 gas into CO and O2 gases; reacting said CO and O2 gases, thus combusting the CO gas, and yielding a substantially pure CO2 outlet gas; and supplying said CO2 outlet gas to the heat engine as a working gas in its heat-to-work generation process.
    Type: Application
    Filed: September 7, 2011
    Publication date: September 5, 2013
    Applicant: YEDA RESEARCH AND DEVELOPMENT CO. LTD.
    Inventors: Jacob Karni, Uri Garbi
  • Patent number: 8522556
    Abstract: In an air-staged diffusion nozzle for a gas turbine combustor, air is mixed with the gas fuel and expanded in a downstream burner tube. Introduction of air, passing downstream from the tip of the nozzle to the burner tube space forces hot gases away from and cools the nozzle tip. Air flow through an inner swirler or through cooling holes on the nozzle tip may be arranged to establish a cooling flow volume and direction that advantageously interacts with gas fuel-air flow from an outer swirler to improve fuel-air mixing in the burner tube, helping to reduce emissions and soot formation.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: September 3, 2013
    Assignee: General Electric Company
    Inventors: Anand Prafulchandra Desai, Karthick Kaleeswaran, Venugopal Polisetty
  • Patent number: 8490406
    Abstract: A method and apparatus to determine a first heating value of a low BTU fuel, determine a target fuel quality level based on a state of a turbine system, control a second heating value of a high BTU fuel, and inject the high BTU fuel into the low BTU fuel to achieve the target fuel quality level.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: July 23, 2013
    Assignee: General Electric Company
    Inventors: Constantin Dinu, Gilbert Kraemer, Geoffrey D Myers
  • Patent number: 8490407
    Abstract: An integrated gasification combined cycle system. In one embodiment (FIG. 2) a system (200) includes an ion transport membrane air separation unit (210) for producing oxygen-enriched gas (209) and oxygen-depleted air (227), a gasification system (5) for generating syngas with the oxygen-enriched gas (209), a gas combustor (234) for reacting the syngas (224), and a subsystem configured to provide a first stream of air to the combustor (234) at a first pressure and to provide a second stream of air to the air separation unit (210) at a second pressure greater than the first pressure. The subsystem includes a compressor (230) having multi-pressure outlets (203, 204).
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: July 23, 2013
    Assignee: Siemens Energy, Inc.
    Inventor: Terrence B. Sullivan
  • Patent number: 8443607
    Abstract: An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: May 21, 2013
    Assignee: General Electric Company
    Inventors: William D. York, Willy S. Ziminsky, Benjamin P. Lacy
  • Patent number: 8438830
    Abstract: The present application provides a dual gas fuel delivery system and a method of delivering two gas fuels. The dual gas fuel delivery system may include (a) a low energy gas delivery system comprising a low energy gas inlet, a gas split, a low energy gas primary manifold outlet, and a low energy gas secondary manifold outlet; (b) a high energy gas delivery system comprising a high energy gas inlet and a high energy gas primary manifold outlet; (c) a primary manifold; and (d) a secondary manifold, wherein the low energy gas primary manifold outlet and the high energy gas primary manifold outlet are coupled to the primary manifold, and wherein the low energy gas secondary manifold outlet is coupled to the secondary manifold.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: May 14, 2013
    Assignee: General Electric Company
    Inventors: William J. Lawson, Rahul Mohan Joshi, Danny Lawing, Jitendra Morankar, Robert J. Iasillo
  • Publication number: 20130104520
    Abstract: A combustion device for hydrogen-rich gas is provided. Before entering a chamber, fuel and air are non-premixed for avoiding flushback. A vortex generator and a fuel sprayer are combined to mix fuel and air for enhancing burning effect. Vortex flame is generated with stabilizing aerodynamics of flow provided through vortex breakdown. A flameholder is formed downstream an injector to maintain stable combustion. Cooling air is introduced from a sheath to cool down a high-temperature gas, which leaves the combustion chamber and drives a turbine for turning a power generator. Thus, the present invention effectively mixes fuel and air, avoids flushback and prevents combustor damage.
    Type: Application
    Filed: April 23, 2012
    Publication date: May 2, 2013
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Yau-Pin Chyou, Shenqyang (Steven) Shy, Chien-Chia Liu, Chih-Yang Wu
  • Patent number: 8375696
    Abstract: The present application provides a dual gas fuel delivery system and a method of delivering two gas fuels. The system may include (a) a low energy gas delivery system comprising a low energy gas inlet, a gas split, a low energy gas primary manifold outlet, and a low energy gas secondary manifold outlet; (b) a high energy gas delivery system comprising a high energy gas inlet and a high energy gas primary manifold outlet; (c) a primary manifold; and (d) a secondary manifold, wherein the low energy gas primary manifold outlet and the high energy gas primary manifold outlet are coupled to the primary manifold, wherein the low energy gas secondary manifold outlet is coupled to the secondary manifold, and wherein the low energy gas delivery system further comprises a primary low energy gas stop and pressure control valve between the gas split and the low energy gas primary manifold outlet.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: William J. Lawson, Rahul Mohan Joshi
  • Publication number: 20130019584
    Abstract: In a burner for injecting mixed gas fuel containing at least one of hydrogen and carbon monoxide into a combustion chamber of a gas turbine combustor, the burner includes a fuel nozzle for startup from which liquid fuel is injected into the combustion chamber, and a mixed fuel nozzle disposed around the fuel nozzle for injecting the mixed gas fuel. An air swirler is disposed at a downstream end of the mixed fuel nozzle and has a plurality of flow passages from which compressed air is injected into the combustion chamber, and the mixed fuel nozzle has injection ports disposed in the inner peripheral side of the flow passages of the air swirler. Cooling holes formed in the nozzle surface and positioned to face the combustion chamber introduce a part of the mixed gas fuel injected from the mixed fuel nozzle into the combustion chamber.
    Type: Application
    Filed: September 26, 2012
    Publication date: January 24, 2013
    Applicant: HITACHI, LTD.
    Inventor: Hitachi, Ltd.
  • Patent number: 8316648
    Abstract: A method and apparatus to determine a first heating value of a low BTU fuel, determine a target fuel quality level based on a state of a turbine system, control a second heating value of a high BTU fuel, and inject the high BTU fuel into the low BTU fuel to achieve the target fuel quality level.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: November 27, 2012
    Assignee: General Electric Company
    Inventors: Constantin Dinu, Gilbert Kraemer, Geoffrey D Myers
  • Publication number: 20120260622
    Abstract: A burner, such as for a secondary combustion chamber of a gas turbine with sequential combustion having first and second combustion chambers, includes an injection device for introducing at least one gaseous fuel into the burner. The injection device has at least one body which is arranged in the burner with at least one nozzle for introducing the gaseous fuel into the burner. The body is configured as a streamlined body which has a streamlined cross-sectional profile and which extends with a longitudinal direction perpendicularly or at an inclination to a main flow direction prevailing in the burner. The at least one nozzle has its outlet orifice at or in a trailing edge of the streamlined body. The body has two lateral surfaces substantially parallel to the main flow direction. At least one vortex generator is located on at least one lateral surface upstream of the at least one nozzle.
    Type: Application
    Filed: May 7, 2012
    Publication date: October 18, 2012
    Applicant: ALSTOM Technology Ltd
    Inventors: Madhavan POYYAPAKKAM, Anton Winkler, Khawar Syed, Adnan Eroglu, Andrea Ciani
  • Patent number: 8268896
    Abstract: A method and system for co-production of electric power, fuel, and chemicals in which a synthesis gas at a first pressure is expanded using a stand-alone mechanical expander or a partial oxidation gas turbine, simultaneously producing electric power and an expanded synthesis gas at a second pressure after which the expanded synthesis gas is converted to a fuel and/or a chemical.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: September 18, 2012
    Assignee: Gas Technology Institute
    Inventors: Arunabha Basu, Iosif K Rabovitser, John J Lewnard, John M Pratapas, Howard S Meyer, Dennis Leppin, Dmitri Boulanov
  • Patent number: 8261529
    Abstract: A combustor includes two upstream parts of fuel supply system supplying gaseous fuels of two types having different heating values from each other, a three-way fuel transfer valve merging the two upstream parts of fuel supply system with each other, a plurality of gaseous fuel supply subsystems supplying a combustion chamber with the gaseous fuels supplied through the three-way fuel transfer valve and branched, and a plurality of burners injecting, corresponding to each of the gaseous fuel supply subsystems, the gaseous fuel supplied from the gaseous fuel supply subsystem into the combustion chamber.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: September 11, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hiromi Koizumi, Tomohiro Asai, Hiroshi Inoue, Tsunemasa Nishijima, Hidetaro Murata