Fluid Motor Means Driven By Waste Heat Or By Exhaust Energy From Internal Combustion Engine Patents (Class 60/597)
  • Patent number: 11686316
    Abstract: Combining at least one centrifugal compression stage and at least one positive displacement compression stage in an integrally geared compressor to allow for different types of compression based on a temperature or a volume of gas to be compressed by the integrally geared compressor.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: June 27, 2023
    Assignee: ATLAS COPCO COMPTEC, LLC
    Inventors: Michael Andrews, Todd Steven Abbot Gibbs
  • Patent number: 11572057
    Abstract: It is determined whether chargeable and dischargeable electric power of a battery which is a power storage device are limited. When it is determined that the chargeable and dischargeable electric power of the battery is limited, an electric power balance target value of the battery during gear shifting control in a stepped gear shifting unit which is a mechanical gear shifting mechanism is calculated. A smaller value is calculated as a change rate limit value when the chargeable and dischargeable electric power is small than when the chargeable and dischargeable electric power is great, and the calculated change rate limit value is used to perform gear shifting control in the stepped gear shifting unit.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: February 7, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Atsushi Tabata, Koichi Okuda, Tooru Matsubara, Yasutaka Tsuchida
  • Patent number: 11415052
    Abstract: A method of generating electrical power includes expanding a flow of exhaust gas from a combustion process as the exhaust gas passes through a turbo-expander disposed on a turbo-crankshaft. The flow of exhaust gas from the turbo-expander is routed through a first flow path of an exhaust gas heat exchanger. The flow of exhaust gas from the first flow path is compressed as the exhaust gas passes through a turbo-compressor disposed on the turbo-crankshaft. The flow of exhaust gas from the turbo-compressor is routed through a second flow path of the exhaust gas heat exchanger. Heat from the first flow path is transferred to the second flow path to cool the exhaust gas in the first flow path and heat the exhaust gas in the second flow path. Electrical power is generated from a generator disposed on the turbo-crankshaft.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: August 16, 2022
    Assignee: SCUDERI GROUP, INC.
    Inventor: Salvatore C. Scuderi
  • Patent number: 11408434
    Abstract: A centrifugal compressor impeller includes a plurality of blades on a front side that extend from a first axial side to an outer radial end of the impeller. The centrifugal impeller includes a back side having a nonlinear backwall. The backwall can include a flat area hear a bore of impeller, a flat area near a tip of the impeller, and a convex surface between the flat areas of the bore and the tip. In some forms the impeller further includes a concave surface between the convex surface and the tip to form an s-shape. A transition or inflection point can denote the change from convex to concave. The convex and/or concave surfaces can take any variety of forms such as constant radius sections and/or compound curves.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: August 9, 2022
    Assignee: Ingersoll-Rand Industrial U.S., Inc.
    Inventor: Noel Blair
  • Patent number: 11352963
    Abstract: A reciprocating, internal combustion engine comprises a turbine connected to the exhaust port of a cylinder. The turbine receives exhaust gas from the cylinder and a power capture means transfers the power generated by the turbine to at least one of power storage device, a turbocharger, a compressor, and vehicle locomotion.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: June 7, 2022
    Inventor: Herbert U. Fluhler
  • Patent number: 11162407
    Abstract: A replacement exhaust manifold for retrofitting a turbocharger to an engine includes a central channel body, an exhaust connection, a turbo connection, and a plurality of exhaust ports. The central channel body has a first end and a second end. The exhaust connection is connected to the first end of the central channel body. The exhaust connection is configured to be attached to an exhaust system for the engine. The turbo connection is connected to the second end of the central channel body. The turbo connection is configured to be attached to the turbocharger. The plurality of exhaust ports are along the central channel body. Each of the exhaust ports are configured to be attached to a corresponding exhaust outlet port on a cylinder head of the engine. Wherein, the replacement exhaust manifold is configured to be attached to the engine for retrofitting the turbocharger to the engine.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: November 2, 2021
    Assignee: BOSTIC MOTORS INC.
    Inventor: Jeffrey Graham Aiello
  • Patent number: 10738720
    Abstract: A method includes operating an air boosting apparatus of a two-stroke, opposed piston engine as a function of one or more factors including a first engine speed, a first torque, demand, a first altitude, a first transient rate, and one or more first ambient conditions to provide a first pressure S ratio (PR} of pre-turbine pressure (PTP) versus turbocharger compressor discharge pressure (CDP} and a first air-to-fuel ratio (AFR).
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: August 11, 2020
    Assignee: Volvo Truck Corporation
    Inventor: Stephen Geyer
  • Patent number: 10696302
    Abstract: An internal combustion engine control device is provided. The internal combustion engine control device is provided with a generator that is driven by exhaust gas of the internal combustion engine. The internal combustion engine control device is capable of increasing the power generation of the generator. The internal combustion engine control device includes an exhaust amount control unit. The exhaust amount control unit increases the amount of the exhaust gas supplied to the generator in a coasting state.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: June 30, 2020
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Yuuki Okuda, Kazuhiro Oryoji, Masayuki Saruwatari
  • Patent number: 10641165
    Abstract: This turbocharger includes a rotating shaft extending along an axis, a turbine wheel provided at a first end portion of the rotating shaft, a compressor wheel provided at a second end portion of the rotating shaft, a housing accommodating at least a portion of the rotating shaft, bearings provided in the housing and configured to support the rotating shaft, supply flow paths supplying lubricating oil to the bearings, a discharge oil chamber formed in the housing and to which the lubricating oil is discharged from the bearings, and an oil drainage port formed below the discharge oil chamber, in which at least one of the discharge oil chamber and the oil drainage port is formed to be asymmetric between a first region and a second region defined by a vertical plane including the axis of the rotating shaft as a boundary plane.
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: May 5, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Takashi Nambu, Naomichi Shibata, Shuichi Isayama, Takaya Futae, Yuya Kojima
  • Patent number: 10632851
    Abstract: In a method for recharging an electrical energy storage device of a hybrid vehicle, the hybrid vehicle includes an internal combustion engine, first and second electric machines, and a drive shaft, the internal combustion engine and the first electric machine are directly mechanically coupled, the second electric machine and the drive shaft are directly mechanically coupled, and the internal combustion engine and the drive shaft are variably mechanically coupled by a gear device. A drive unit for a hybrid vehicle includes an electrical energy storage device, an internal combustion engine, first and second electric machines, and a drive shaft, wherein the internal combustion engine and the first electric machine are directly mechanically coupled, the second electric machine and the drive shaft are directly mechanically coupled, and the internal combustion engine and the drive shaft are variably mechanically coupled by a gear device. A hybrid vehicle can includes the drive unit.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: April 28, 2020
    Assignee: VOLKSWAGEN AKTIENGESELLSCHAFT
    Inventors: Daniel Münning, Christian Felsch
  • Patent number: 10544748
    Abstract: Methods and systems are provided for diagnostics of a wastegate valve during vehicle-off conditions. In one example, the engine may be reverse rotated, unfueled, and air flow via the intake manifold may be estimated and compared to a baseline air flow. A stuck open wastegate valve may be indicated based on the comparison between the intake air flow and the baseline air flow.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: January 28, 2020
    Assignee: Ford Global Technologies, LLC
    Inventor: Aed Dudar
  • Patent number: 10508590
    Abstract: A generator system may include a compressor and an electric motor. The compressor includes an impeller, and the compressor provides a quantity of air flowing toward an intake of an engine through rotation of the impeller. The electric motor is mechanically linked to the compressor and rotates the impeller to force the quantity of air flowing toward the intake of the engine. The generator system may include a charge air cooler to receive the quantity of air flowing toward the intake of the engine and increase an air charge density of the quantity of air. The generator system may include an exhaust portion to expel exhaust from the engine such that the quantity of air provided by the compressor does not include exhaust expelled by the exhaust portion. The generator system may include an air valve configured to regulate the quantity of air flowing toward the intake of the engine.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: December 17, 2019
    Assignee: Kohler Co.
    Inventors: Bryan Finn, Billy Brandenburg, Joshua Salley, Pezaan S. Patrawala
  • Patent number: 9896991
    Abstract: Systems and methods are provided for controlling boost pressure in an engine system with a parallel turbocharger. One example method includes, responsive to a first condition, deactivating a first compressor of a first turbocharger, activating each first exhaust valve of each cylinder of an engine, and deactivating each second exhaust valve of each cylinder of the engine to flow exhaust gas from the engine to a second turbocharger. The method further includes, responsive to boost pressure exceeding a threshold, maintaining deactivation of the first compressor, reactivating each second exhaust valve to flow exhaust gas from the engine to both the first turbocharger and second turbocharger, and driving an electric assist device via a first turbine of the first turbocharger.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: February 20, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Vanco Smiljanovski, Helmut Matthias Kindl, Joerg Kemmerling, Franz J. Brinkmann, Franz Arnd Sommerhoff
  • Patent number: 9624850
    Abstract: Methods and systems are provided for reducing exhaust energy delivered to a turbine of a turbine-generator coupled to a split exhaust engine system in order to reduce turbine over-speed conditions and/or to reduce a generator output. In one example, a method may include retarding a first timing of a first exhaust valve utilized to deliver a blowdown portion of exhaust energy to the turbine, and/or advancing a second timing of a second exhaust valve utilized to deliver a scavenging portion of exhaust energy to an exhaust catalyst in response to a turbine speed greater than a threshold speed.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: April 18, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Thomas G. Leone, Daniel Joseph Styles, Karen Elizabeth Maceroni
  • Patent number: 9518591
    Abstract: A compressor of an exhaust-gas turbocharger has a compressor housing in which a compressor wheel is arranged. The compressor housing has an inlet region. A contour ring is arranged in the compressor housing between the inlet region and the compressor wheel. The contour ring, together with an adjacent wall of the compressor housing, delimits a circulation chamber which has a first connecting opening facing toward the inlet region and a second connecting opening adjacent to the compressor wheel. An exhaust-gas recirculation device has an inlet line which is arranged in the compressor housing and which opens out into the circulation chamber.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: December 13, 2016
    Assignee: BorgWarner Inc.
    Inventors: Frank Schmitt, Tom Heuer
  • Patent number: 9502867
    Abstract: The present invention relates to an integrated cooling system 10 for a power station 14 comprising a transformer 16 and at least one of a generator 18 and/or a rectifier 20. The integrated cooling system 10 comprises a cooler 28 for reduction of an operative temperature of a cooling fluid circulating in the integrated cooling system 10. A pipe system 12 couples the cooler 28 to the transformer 16 and the generator 18 and/or the rectifier 20 in the power station 14. Further, a controller 32 of the integrated cooling system executes the cooling control of the integrated cooling system 10 according to operative temperatures of the transformer 16 and the generator 18 and/or the rectifier 20 in the power station 14. The provision of a common cooler for the different components of the power station 14 allows for a reduced installation space, reduced costs, and lower energy consumption for power station heating.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 22, 2016
    Assignee: Starkstrom-Geratebau GmbH
    Inventor: Arnold Schwaiger
  • Patent number: 9470115
    Abstract: A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: October 18, 2016
    Assignee: CUMMINS INTELLECTUAL PROPERTY, INC.
    Inventors: Timothy C. Ernst, Christopher R. Nelson
  • Patent number: 9441532
    Abstract: An engine assembly includes an engine control unit, an internal combustion engine having an exhaust, a turbine driven in use by said exhaust, and an energy storage mechanism for storing energy recovered from said exhaust by said turbine, wherein the engine control unit is operable to vary the rate of storing energy in the energy storage mechanism.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: September 13, 2016
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Ian A. Pegg, Robert Helle-Lorentzen
  • Patent number: 9249761
    Abstract: Systems and methods for internal combustion engine operation with exhaust gas recirculation and turbocharging are disclosed. The systems include an exhaust gas recirculation loop for recirculating exhaust gas flow from a first portion of the cylinders of the engine into an intake system prior to combustion. The system further includes a turbine with first and second inlets for receiving exhaust gas flows from respective first and second parts of the exhaust gas of the remaining portion of the cylinders.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: February 2, 2016
    Assignee: Cummins Inc.
    Inventors: Sudhanshu Talwar, Samuel C. Geckler, Marten H. Dane
  • Patent number: 9194277
    Abstract: An exhaust manifold maintains the EGR ratio constant irrespective of a change in shape of the exhaust manifold and includes exhaust gas inlet sections connected to the exhaust ports of respective cylinders of the engine; a main pipe section configured so that exhaust gas entering from the exhaust gas inlet sections is collected inside the main pipe section; an EGR gas taking-out section for extracting, as EGR gas, a part of the exhaust gas; and an exhaust gas discharge section for discharging the exhaust gas. The main pipe section has formed thereon a curved section provided between the exhaust gas inlet sections and curved in a shape protruding to the side opposite the exhaust gas inlet sections. The curved section has a recess which is formed by causing a portion of the outer peripheral surface of the curved section to be recessed toward the inside of the main pipe section.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: November 24, 2015
    Assignee: Yanmar Co., Ltd.
    Inventors: Hiroshi Omote, Takayuki Onodera
  • Patent number: 9188086
    Abstract: Coupled thermal chemical reactors and engines, and associated systems and methods. A system in accordance with a particular embodiment includes a reactor vessel having a reaction zone, a hydrogen donor source coupled in fluid communication with the reaction zone, and an engine having a combustion region. The system can further include a transfer passage coupled between the combustion region and the reaction zone to transfer a reactant and/or radiate energy to the reaction zone. The system can further include a product passage coupled between the reaction zone and the combustion region of the engine to deliver to the combustion region at least a portion of a constituent removed from the reaction zone.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: November 17, 2015
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 9140262
    Abstract: An electrical machine (20) coupled to a compressor (12) having a rotatable shaft (16), comprising: a rotor forming part of the rotatable shaft and having at least two magnetic portions (22A, 22B) separated by an inclined non-magnetic portion (24) and two elements (26A, 26B) of non-magnetic material at each end of the rotatable shaft, a stator comprising a laminated magnetic iron stack (28) surrounded by a winding (30) and disposed along a periphery of the rotor to define a first annular gap (32), a ring (34) of non-magnetic material disposed around the stator, and a casing (40) of magnetic material comprising permanent magnets (36), disposed around the non magnetic ring and having radial walls (40A, 40B) that project inwardly towards the rotor by defining a second annular gap (42) therebetween.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 22, 2015
    Assignee: SKF MAGNETIC MECHATRONICS
    Inventors: Lateb Ramdane, Cornelius Petrus Antonius Vissers
  • Patent number: 9133848
    Abstract: An electrical machine (20) coupled to a compressor (12) having a rotatable shaft (16), comprising: a rotor forming part of the rotatable shaft and having at least two magnetic portions (22A, 22B) separated by an inclined non-magnetic portion (24) shaft, a stator comprising a laminated magnetic iron stack (28) surrounded by a winding (30) and disposed along a periphery of the rotor to define a first annular gap (32), a ring (34) of non-magnetic material disposed around the stator, a DC coil (38) disposed around the non-magnetic ring, and a casing (40) of magnetic material disposed around the DC coil and having radial walls (40A, 40B) that project inwardly towards the rotor by defining a second annular gap (42) therebetween.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 15, 2015
    Assignee: SKF MAGNETIC MECHATRONICS
    Inventors: Lateb Ramdane, Cornelius Petrus Antonius Vissers
  • Patent number: 9080532
    Abstract: An exhaust manifold and diffuser integrated cylinder head, includes an exhaust manifold and a exhaust passage. The exhaust manifold is integrally formed with the cylinder head. The exhaust passage is integrally formed with the cylinder head such that a turbocharger is mounted on a joining part of exhaust ports of the exhaust manifold and exhaust gas discharged from the exhaust passage flows to the turbocharger.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: July 14, 2015
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: Seung Woo Ko, Hyun Wook Ryu
  • Patent number: 9068474
    Abstract: A turbine housing comprises an exhaust port flange, a turbine discharge flange, a crossover flange, and a bearing support ring. The exhaust port flange is configured for mechanically coupling the turbine housing to a mating structure providing a source of working fluid. The turbine discharge flange is configured for mechanically coupling the turbine housing to an exhaust system. The crossover flange is configured for mechanically coupling the turbine housing to a crossover duct. The bearing support ring is configured for mechanically supporting a bearing, on which a turbine output shaft is supported. The turbine housing defines an inlet plenum, a turbine shroud, and a discharge vent. The exhaust port flange defines an inlet port configured to provide fluid communication between the inlet plenum and the source of working fluid. The turbine shroud defines a fluid expansion flow path for expansion of the stream of working fluid.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: June 30, 2015
    Assignee: GM Global Technology Operations LLC
    Inventor: Joel Cowgill
  • Patent number: 9038388
    Abstract: A method of operating a piston expander, including introducing live steam into a cylinder space via an inlet valve; expanding the live steam during a power stroke in which a piston moves from an upper dead center position to a lower dead center position; opening an outlet opening as soon as the piston is in the region of the lower dead center position; after the piston reaches the lower dead center position, conveying the expanded steam out of the outlet opening and into a steam discharge; and subsequently closing the outlet opening before the piston in an exhaust stroke reaches the lower dead center position.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: May 26, 2015
    Assignee: MAN TRUCK & BUS OSTERREICH AG
    Inventor: Raimund Almbauer
  • Patent number: 9021808
    Abstract: A Rankine cycle waste heat recovery system associated with an internal combustion engine is in a configuration that enables handling of exhaust gas recirculation (EGR) gas by using the energy recovered from a Rankine cycle waste heat recovery system. The system includes a control module for regulating various function of the internal combustion engine and its associated systems along with the Rankine cycle waste heat recovery system.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 5, 2015
    Assignee: Cummins Intellectual Property, Inc.
    Inventors: Christopher R. Nelson, Timothy C. Ernst
  • Patent number: 9003781
    Abstract: Embodiments of a pre-turbo catalyst positioned within a turbine in a turbocharger of an engine are disclosed. In one example approach, a turbocharger for an engine comprises a turbine and a catalyst substrate mounted directly within the turbine.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: April 14, 2015
    Assignee: Ford Global Technologies, LLC
    Inventor: Patrick Murphy
  • Publication number: 20150013328
    Abstract: A drive unit for a motor vehicle that has a combustion machine having an internal combustion engine (10) as well as an exhaust gas system via which exhaust gas can be discharged from the internal combustion engine (10), and has a cyclic device that can be used to convert the thermal energy contained in the exhaust gas into mechanical work in a clockwise thermodynamic cycle, whereby the cycle comprises a heat transfer from the exhaust gas to a working medium in a first heat exchange device, as a result of which the temperature and/or the pressure of the working medium is increased, comprises an expansion of the working medium in an expansion device (30) for generating the mechanical work, and comprises a heat transfer from the working medium to a cooling medium in a second heat exchange device.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 15, 2015
    Inventors: Asmus CARSTENSEN, Marcus DALLMANN, Jörg FRITZSCHE, Andreas HERR, Christoph KÄPPNER, Thomas SCHULENBURG, Artur SEMKE, Jörg VOLKMANN
  • Patent number: 8935024
    Abstract: According to one implementation of an engine system, a power device is selectively actuated to provide energy to a storage device. Energy from the storage device is selectively provided to a boost assist device to supplement the normal energy supply to a boost device and enable an increased power output of the engine in at least certain engine or vehicle operating conditions. In one form, the power device may be a source of electrical energy and the storage device is capable of storing an electrical charge. In another form, the power device is a fluid pump and the storage device is capable of storing pressurized fluid. Various methods may be employed to control operation of the power device and energy storage in the storage device.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: January 13, 2015
    Assignee: BorgWarner Inc.
    Inventors: John Shutty, David B. Roth, Volker Joergl, Robert Czarnowski
  • Publication number: 20140373527
    Abstract: The present invention provides a compressor powered by a pressurized gas, whether steam or another working fluid, and a system for extracting work using such as compressor. The pressurized gas may comprise a heated working fluid in a gaseous state, to displace a piston in an input circuit, which in turn displaces a piston in an output circuit, thereby compressing a compressible fluid or displacing an incompressible fluid. A purpose of the compressor is to convert waste heat, heat generated by the combustion of biomass or other fuels, or heat resulting from the concentration of solar energy into useful power, whether configured to produce compressed air or pump water, which can displace the electricity otherwise used for this purpose, or to produce electricity or motive force directly, through a hydraulic circuit. The system for extracting work does so by an output fluid which is compressed or pumped by a pressurized gas powered compressor.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 25, 2014
    Applicant: NOVOPOWER LTD.
    Inventors: Valeri STROGANOV, Philip RAPHALS
  • Publication number: 20140352296
    Abstract: A method and apparatus for operating an internal combustion engine, in particular for commercial vehicles, having a fuel/air feed device and a downstream exhaust system, wherein, to achieve improved efficiency, the exhaust gas enthalpy in the exhaust gas flow of the internal combustion engine is used to operate a heat engine, in particular a Stirling engine, which produces mechanical energy.
    Type: Application
    Filed: May 15, 2014
    Publication date: December 4, 2014
    Applicant: MAN Truck & Bus AG
    Inventor: Alexander SCHYDLO
  • Publication number: 20140230436
    Abstract: Embodiments as described herein provide a simplified turbo recharger for an efficient, reliable, low-cost system that delivers good performance for improving efficiency of a vehicle using electric power. Embodiments as described herein may be used with electric motor, combustion engine hybrid vehicles to improve the fuel efficiencies of such vehicles. A turbine may be positioned in an exhaust stream of a vehicle that is coupled to a generator to recharge the battery of a vehicle. The turbine may include a wastegate to permit the exhaust stream to enter or bypass the turbine depending on the charge of the battery, the rate of rotation of the turbine, pressure within the turbine, the speed of the engine, or a combination of the above.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 21, 2014
    Inventor: Alexander Wong
  • Patent number: 8789367
    Abstract: A system for recovering, engine exhaust energy is provided. The system includes an exhaust system including a first exhaust branch and a second exhaust branch. The system includes a first and a second group of exhaust valves associated with a plurality of engine cylinders. The system also includes an energy recovering assembly. The system further includes a control mechanism configured to control at least one of the first and second groups of exhaust valves according to a determined timing strategy based on at least one engine operating parameter.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: July 29, 2014
    Assignee: Caterpillar Inc.
    Inventor: Wade J. Robel
  • Patent number: 8776516
    Abstract: An exhaust heat recovery system includes a plurality of Starling engines. Heaters of the Starling engines are disposed in an exhaust passage that is a heat medium passage. An inside of the exhaust passage is partitioned with a partitioning member into a first exhaust passage and a second exhaust passage. The heater of the Starling engine disposed on an upstream side in a flowing direction of exhaust gas is provided in the first exhaust passage, and the heater of the Starling engine disposed on a downstream side in the flowing direction of the exhaust gas is provided in the second exhaust passage.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: July 15, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaaki Katayama, Daisaku Sawada, Hiroshi Yaguchi
  • Patent number: 8769950
    Abstract: A turbocharger including a turbine wheel having a hub-to-tip ratio of no more than 60% and blades with a high turning angle, a turbine housing forming an inwardly spiraling primary-scroll passageway that significantly converges to produce highly accelerated airflow into the turbine at high circumferential angles, and a two-sided parallel compressor. The compressor and turbine each produce substantially no axial force, allowing the use of minimal axial thrust bearings.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: July 8, 2014
    Assignee: Honeywell International Inc.
    Inventors: Jeffrey A. Lotterman, Vaclav Kares
  • Patent number: 8763571
    Abstract: The present invention generally relates to providing an air supply for components associated with an engine. More particularly, the present invention relates to a system and method for using compressed air generated by a split-cycle engine to power components such as valves or air springs associated with the split-cycle engine.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: July 1, 2014
    Assignee: Scuderi Group, Inc.
    Inventors: Ian P. Gilbert, Anthony S. Perkins, Jean-Pierre Pirault, Riccardo Meldolesi
  • Patent number: 8739532
    Abstract: An exhaust heat regeneration system includes: an evaporator for cooling engine cooling water; an expansion device for expanding the refrigerant heated through the evaporator so as to generate a driving force; a condenser for cooling the refrigerant passing through the expansion device to condense the refrigerant; and a pump for pressure-feeding the refrigerant cooled through the condenser to the evaporator, in which: the expansion device is coupled to the pump by a shaft, and the expansion device and the pump are housed within the same casing to constitute a pump-integrated type expansion device; and the pump includes a high-pressure chamber through which the refrigerant to be discharged to the evaporator flows, the high-pressure chamber being provided on the expansion device side, or a low-pressure chamber through which the refrigerant flowing from the condenser flows, the low-pressure chamber being provided on the expansion device side.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: June 3, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiko Kawajiri, Minoru Sato, Kazunori Tsuchino
  • Publication number: 20140047831
    Abstract: A dish-type Stirling solar generator capable of running continuously day and night, including a dish-type Stirling solar generating set. The dish-type Stirling solar generating set includes a combustor, a position adjustment mechanism, and a bracket. The combustor includes an opening. The position adjustment mechanism is capable of adjusting the opening of the combustor to align or deviate from a heat receiver of the dish-type Stirling solar generating set. The position adjustment mechanism is disposed on the bracket of the dish-type Stirling solar generating set. The combustor is disposed on the position adjustment mechanism. A fuel supply system of the combustor is connected to the combustor via a main switch valve, a branch switch valve, a regulating valve, and a flexible conveying pipe.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: Wuhan Kaidi Engineering Technology Research Institute Co., Ltd.
    Inventors: Yilong CHEN, Qingping YANG, Yanfeng ZHANG
  • Publication number: 20140033704
    Abstract: The present invention relates to a construction vehicle comprising a main drive for driving work equipment of the construction vehicle, which main drive comprises at least one internal combustion engine, wherein the construction vehicle comprises an energy converter, which is adapted to convert off gas heat energy from the internal combustion engine to mechanical kinetic energy.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 6, 2014
    Applicant: BOMAG GmbH
    Inventors: Robert Laux, Marco Reuter
  • Publication number: 20140033703
    Abstract: A device having a heat exchanger includes a housing having a first end side and a second end side disposed along an axial direction, an inlet at the first end side and an outlet at the second end side for a fluid, a first annular channel connected to the inlet and a second annular channel upstream of the outlet, at least one outer jacket tube and at least one inner jacket tube disposed mutually concentrically and defining an intermediate space therebetween, a plurality of flow paths for the fluid extending in the axial direction in the intermediate space and interconnecting the first channel and the second channel, and at least one heat exchanger tube disposed in each of the plurality of flow paths. A motor vehicle having the device is also provided.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 6, 2014
    Applicant: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH
    Inventors: SIGRID LIMBECK, ROLF BRUECK
  • Publication number: 20140033702
    Abstract: A device having a heat exchanger includes a housing having an inlet and an outlet for a fluid and an inner tube having a first end face extending in axial direction, an opposite second end face and a circumferential surface having openings. A plurality of heat exchanger tubes is disposed parallel to the axial direction on the outside of the circumferential surface. The housing encloses the heat exchanger tubes and the inner tube and the inlet is fluidically connected to the first end face. Guide elements are disposed between the heat exchanger tubes so that the fluid entering the inner tube through the first end face flows out across the heat exchanger tubes in radial direction starting from the inner tube. The device is used particularly for constructing a thermoelectric generator for positioning in the underbody of a motor vehicle. A motor vehicle having the device is also provided.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 6, 2014
    Applicant: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH
    Inventors: SIGRID LIMBECK, ROLF BRUECK
  • Publication number: 20140026558
    Abstract: The application of a Tesla turbine as an exhaust system that provides power to vehicle electrical systems or for charging an onboard battery that includes harnessing energy from the system exhausts. A Tesla turbine is implemented using the compressed gas/fluid to operate a generator. The generator is connected to appropriate systems (battery, electrical components, etc.) to provide power.
    Type: Application
    Filed: January 25, 2013
    Publication date: January 30, 2014
    Inventor: Nathan Heuvel
  • Patent number: 8627661
    Abstract: The present concepts relate to turbocharger exhaust arrangements. One example involves a system that includes an internal combustion engine configured with a turbocharger. The system also includes an exhaust arrangement comprising a post-turbocharger (PT) exhaust pipe connected to the turbocharger and positioned proximate to the internal combustion engine, the PT exhaust pipe extending away from the turbocharger along the internal combustion engine. The PT exhaust pipe includes a first portion extending above at least one part of a set of header exhaust pipes connecting the internal combustion engine with the turbocharger. The PT exhaust pipe also includes one or more additional connected and contiguous portions extending below at least one other part of the set of header exhaust pipes.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: January 14, 2014
    Inventor: Steve Berg
  • Patent number: 8628025
    Abstract: A vehicle waste heat recovery system may include a first pump, an internal combustion engine, a waste heat recovery device and a condenser. The first pump may be in fluid communication with a fluid. The internal combustion engine may be operable to power rotation of a drive axle of a vehicle and may define an engine coolant passage having an inlet in fluid communication with an outlet of the first pump. The waste heat recovery device may have an inlet in fluid communication with an outlet of the engine coolant passage. The condenser may have an inlet in fluid communication with an outlet of the waste heat recovery device and an outlet in fluid communication with an inlet of the first pump.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: January 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: John R. Bucknell
  • Patent number: 8627803
    Abstract: An engine assembly may include an engine structure, a first intake valve, a first valve lift mechanism, a second intake valve, a second valve lift mechanism, and a boost mechanism. The first intake valve may be located in a first intake port and the first valve lift mechanism may be engaged with the first intake valve. The second intake valve may be located in a second intake port and the second valve lift mechanism may be engaged with the second intake valve and operable in first and second modes. The second intake valve may be displaced to an open position during the first mode and may be maintained in a closed position during the second mode. The boost mechanism may be in communication with an air source and the first intake port and isolated from the second intake port.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: January 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Edward J. Keating
  • Patent number: 8616015
    Abstract: A cooling circuit for removing waste heat from a cooling device of an electromechanical converter is provided. The cooling circuit includes a chilling medium, a cooler for extracting heat from the chilling medium, a return connecting the cooling device of the converter to the cooler and conducts warm chilling medium, a feed connecting the cooler to the cooling device of the converter and conducts cool chilling medium, and an absorption chiller for extracting heat from the chilling medium. The absorption chiller is driven by the heat of the warm chilling medium that is in the return.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: December 31, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Volker Amedick, Malte Blomeyer, Leandro Cravero, Eberhard Deuker, Hendrik Heitfeld, Carsten Kaufmann, Meinolf Klocke, Stefan Völker
  • Publication number: 20130328308
    Abstract: An apparatus and method for recovering exhaust kinetic energy. The apparatus includes a valve assembly, a motor generator and a controller. The valve assembly includes a rotary shaft which is disposed in an exhaust gas pipe and a flap which is disposed on the rotary shaft. The flap is rotated by an exhaust gas that is ejected. The motor generator is connected to the rotary shaft of the valve assembly, and in a first instance generates electricity using a rotational force transmitted from the rotary shaft and in a second instance applies a torque to the rotary shaft. The controller fixes the rotary shaft of the valve assembly at a predetermined angle in the first instance and adjusts the speed of rotation of the rotary shaft by controlling the motor generator in the second instance.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 12, 2013
    Applicant: Hyundai Motor Company
    Inventor: Jong Seung Won
  • Publication number: 20130327034
    Abstract: Disclosed is an energy retriever system and methods for absorbing energy and using that energy elsewhere or converting it to other useful forms of energy or work. The energy retriever system consists of a series of components interconnected by a plurality of conduits containing a fluid. Working as a self-contained thermodynamic system, the energy retriever system allows the fluid to circulate through all of these elements. Heat added to the energy capture subsystem heats the fluid. The fluid becomes more pressurized and moves into the expansion cycle subsystem. The energy extraction subsystem transforms the thermal energy of the fluid into work, kinetic energy or thermal energy. The reservoir subsystem compresses the fluid and reintroduces it into the energy capture subsystem. One-way valves are used throughout the system to keep the flow of the fluid in one direction and separate sections of the system that contain different pressures.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: Harlequin Motor Works, Inc.
    Inventor: Paul W. Corley
  • Publication number: 20130305707
    Abstract: Provided is a control apparatus for a supercharged internal combustion engine, which can favorably achieve a good balance between prevention of overheat of a catalyst disposed an exhaust passage and suppression of turbo lag, in a case in which a fresh air blow-through is generated through a combustion chamber from an intake passage to an exhaust passage. A turbo supercharger (22), an exhaust bypass passage (36), a WGV (38) capable of switching the opening and closing of the exhaust bypass passage (36), and variable valve operating mechanisms (46, 48) capable of changing a valve overlap period are included. The valve overlap period is shortened so that the fresh air blow-through amount Gsca becomes equal to or smaller than a predetermined blow-through determination value Gjudge when the blow-through amount Gsca is larger than the blow-through determination value Gjudge.
    Type: Application
    Filed: January 24, 2011
    Publication date: November 21, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Noboru Takagi