Producing Power By Heating And Cooling A Single Phase Fluid Patents (Class 60/650)
  • Publication number: 20140102099
    Abstract: A power generation plant including a solar radiation receiver for heating a medium stream and a turbine assembly being arranged to receive the heated medium stream from the solar radiation receiver, said turbine assembly being coupled to an electric power generator, wherein a combustor is positioned downstream of the solar radiation receiver and upstream of the turbine assembly, an air compressor unit having a compressed air outlet is arranged to supply compressed combustion air to the combustor, and a steam generator is arranged to extract heat from an outlet flow from the turbine assembly, and to produce steam to be transmitted to a medium stream inlet of the solar radiation receiver and subsequently to combustor. The invention also related to a method.
    Type: Application
    Filed: June 13, 2012
    Publication date: April 17, 2014
    Applicant: EUROTURBINE AB
    Inventors: Hans-Erik Hansson, Leif Nilsson
  • Publication number: 20140096523
    Abstract: An apparatus performs a power cycle involving expansion of compressed air utilizing high pressure (HP) and low pressure (LP) air turbines located upstream of a gas turbine. The power cycle involves heating of the compressed air prior to its expansion in the HP and LP air turbines. Taking into consideration fuel consumption to heat the compressed air, particular embodiments may result in a net production of electrical energy of ˜2.2-2.5× an amount of energy consumed by substantially isothermal air compression to produce the compressed air supply. Although pressure of the compressed air supply may vary over a range (e.g. as a compressed air storage unit is depleted), the gas turbine may run under almost constant conditions, facilitating its integration with the apparatus. The air turbines may operate at lower temperatures than the gas turbine, and they may include features of turbines employed to turbocharge large reciprocating engines.
    Type: Application
    Filed: September 25, 2013
    Publication date: April 10, 2014
    Applicant: LightSail Energy, Inc.
    Inventor: Michael CONEY
  • Publication number: 20140096504
    Abstract: An apparatus performs a power cycle involving expansion of compressed air utilizing high pressure (HP) and low pressure (LP) air turbines located upstream of a gas turbine. The power cycle involves heating of the compressed air prior to its expansion in the HP and LP air turbines. Taking into consideration fuel consumption to heat the compressed air, particular embodiments may result in a net production of electrical energy of ˜2.2-2.5× an amount of energy consumed by substantially isothermal air compression to produce the compressed air supply. Although pressure of the compressed air supply may vary over a range (e.g. as a compressed air storage unit is depleted), the gas turbine may run under almost constant conditions, facilitating its integration with the apparatus. The air turbines may operate at lower temperatures than the gas turbine, and they may include features of turbines employed to turbocharge large reciprocating engines.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Applicant: LIGHTSAIL ENERGY INC.
    Inventor: LightSail Energy Inc.
  • Patent number: 8694224
    Abstract: A control system or method for a vehicle references a camera and sensors to determine when an offset of a yaw rate sensor may be updated. The sensors may include a longitudinal accelerometer, a transmission sensor, a vehicle speed sensor, and a steering angle sensor. The offset of the yaw rate sensor may be updated when the vehicle is determined to be stationary by referencing at least a derivative of an acceleration from the longitudinal accelerometer. The offset of the yaw rate sensor may be updated when the vehicle is determined to be moving straight by referencing at least image data captured by the camera. Lane delimiters may be detected in the captured image data and evaluated to determine a level of confidence in the straight movement. When the offset of the yaw rate sensor is to be updated, a ratio of new offset to old offset may be used.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: April 8, 2014
    Assignee: Magna Electronics Inc.
    Inventors: William J. Chundrlik, Jr., Nathaniel Johnson, Marc Wimmershoff
  • Publication number: 20140075970
    Abstract: A heating, cooling, and power device includes a shaft and an expander coupled to the shaft to rotate the shaft. A first conduit is coupled to the expander and configured to transport a working fluid. A heater is coupled through the first conduit to the expander. A heat pump is coupled to the shaft. An electric machine is coupled to the shaft to produce electricity or mechanical shaft power. A recuperator includes a second conduit coupled between the expander and recuperator. The heat pump includes a first heat exchanger including a second conduit coupled between the expander and the first heat exchanger. An expansion device includes a third conduit coupled between the first heat exchanger and the expansion device. A second heat exchanger includes a fourth conduit coupled between the expansion device and second heat exchanger. A compressor is coupled to the shaft.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 20, 2014
    Inventor: Dwayne M. Benson
  • Publication number: 20140075937
    Abstract: The present invention provides a method for operating a plurality of independent, closed cycle power plant modules each having a vaporizer comprising the steps of. serially supplying a medium or low temperature source fluid to each corresponding vaporizer of one or more first plant modules, respectively, to a secondary preheater of a first module, and to a vaporizer of a terminal module, whereby to produce heat depleted source fluid; providing a primary preheater for each vaporizer; and supplying said heat depleted source fluid to all of said primary preheaters in parallel.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: ORMAT TECHNOLOGIES, Inc.
    Inventors: Dany BATSCHA, Rachel HUBERMAN, Tomer HASHMONAY
  • Patent number: 8671686
    Abstract: Backup energy systems utilizing compressed air storage (CAS) systems and bridging energy systems to supply backup power to a load are provided. During a power failure, the bridging energy system provides backup power to the load at least until the CAS system begins supplying adequate power. In various embodiments, backup power capability is enhanced through the use of one or more exhaustless heaters, which are used to heat compressed air. The compressed air, in turn, drives a turbine which is used to power an electrical generator. In various embodiments, ambient air heat exchangers or other types of heat exchangers are used to heat compressed air prior to the compressed air being routed to the turbine, thereby increasing system efficiency. Backup power and backup HVAC are also provided by utilizing turbine exhaust, heat exchangers and various resistive heating elements.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: March 18, 2014
    Assignee: Active Power, Inc.
    Inventors: Joseph F. Pinkerton, David Beatty, David E. Perkins
  • Publication number: 20140060048
    Abstract: The invention relates to a process and apparatus (10) for generating work, the apparatus (10) comprising at least one circuit for processing a working fluid in a thermodynamic cycle and mounted in a frame (11A) rotatable about an axis of rotation (12), the at least one circuit comprising, a compressor (13) for increasing the pressure in the working fluid, one or more expanders (17) in, on or downstream from the compressor (13) and extending in a direction having a tangential component, at least one channel (22) for the working fluid, a heat exchanger (18) for heating the accelerating working fluid in the channel (22), and a turbine (16) for generating work.
    Type: Application
    Filed: February 15, 2012
    Publication date: March 6, 2014
    Inventor: Frank Hoos
  • Publication number: 20140060049
    Abstract: A heat engine including a novel method for transferring working fluid from the low pressure side of the cycle back to the high pressure side. The invention includes one or more transfer tanks connecting the condenser to the boiler. Each transfer tank is connected to the condenser by a fill line and connected to the boiler by a dump line. Gravity and/or small transfer pumps are used to transfer the working fluid horn the low pressure side, through the transfer tank or tanks, and then to the high pressure side.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 6, 2014
    Inventor: Ronald David Conry
  • Patent number: 8656712
    Abstract: Apparatus (10) for storing energy, comprising: compression chamber means (24) for receiving a gas; compression piston means (25) for compressing gas contained in the compression chamber means; first heat storage means (50) for receiving and storing thermal energy from gas compressed by the compression piston means; expansion chamber means (28) for receiving gas after exposure to the first heat storage means; expansion piston means (29) for expanding gas received in the expansion chamber means; and second heat storage means (60) for transferring thermal energy to gas expanded by the expansion piston means. The cycle used by apparatus (10) has two different stages that can be split into separate devices or combined into one device.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: February 25, 2014
    Assignee: Isentropic Limited
    Inventors: Jonathan Sebastian Howes, James Macnaghten
  • Patent number: 8655553
    Abstract: A monitoring system is for an electric vehicle and an electric vehicle supply equipment. The electric vehicle supply equipment is structured to communicate with the electric vehicle to charge the electric vehicle. The monitoring system includes a monitoring component structured to monitor communication and monitor energy or power flow between the electric vehicle supply equipment and the electric vehicle, a storage component cooperating with the monitoring component to store information corresponding to the monitored communication and the monitored energy or power flow between the electric vehicle supply equipment and the electric vehicle, and a power supply structured to power at least one of the monitoring component and the storage component.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: February 18, 2014
    Assignee: Eaton Corporation
    Inventors: Geraldo Nojima, William E. Wilkie
  • Patent number: 8635873
    Abstract: The present invention is directed generally to a system and method which employ a compressed gas-driven device with a passive thermodynamic composition. Certain embodiments provide a compressed gas-driven (e.g., CO2-driven) device implementation that includes a passive thermodynamic composition which allows for extended use of the device without freezing and without requiring a persistently-maintained, active (e.g., electrically-powered) heating. Further, certain embodiments provide a compressed gas-driven (e.g., CO2-driven) device implementation that includes a passive thermodynamic composition which allows for extended use of the device without freezing and without requiring an ignition heat source (e.g., electrically-powered or pyrotechnic as generator) for heating the device.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: January 28, 2014
    Assignee: D2BG LLC
    Inventors: Daniel Galloway, Darrell Bevelhymer
  • Publication number: 20140014583
    Abstract: The invention relates to a method of converting thermal energy into mechanical energy wherein a working liquid such as is evaporated to generate a stream of a working fluid. According to the invention, the stream of the working fluid is a stream of pressurized distillate produced by evaporation and condensation using a direct contact membrane distillation (DCMD) unit, said stream of pressurized distillate having a pressure of at least one bar, and a converter such as a turbine is used for generating mechanical energy from said stream of said pressurized distillate. The invention also relates to an apparatus for performing the method.
    Type: Application
    Filed: February 29, 2012
    Publication date: January 16, 2014
    Applicant: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventor: Jan Hendrik Hanemaaijer
  • Patent number: 8627665
    Abstract: An installation for storing and returning electrical energy having first and second enclosures containing a gas and porous refractory materials suitable for transferring heat by contact between said porous refractory materials and a gas flowing through said enclosures, and a compressor and an expander for the gas flowing in pipes between each of the ends of an enclosure connected to an end of the other enclosure. Methods are also disclosed for storing electrical energy in the form of heat energy in which an installation of the invention is used, and for a method of returning electrical energy from heat energy stored by a method according to the invention. The electrical energy is stored in the form of heat within masses of refractory material, and the stored thermal potential energy is returned in the form of electrical energy.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: January 14, 2014
    Assignee: Saipem S.A.
    Inventor: Jacques Ruer
  • Publication number: 20130300120
    Abstract: A method of heating a gas by directing X-rays at a mass of hafnium 178 to induce gamma rays. The gamma rays are directed at a heat exchanging apparatus, resulting in a stream of heated gas. This process powers a Hafnium gas turbine engine capable of providing shaft power or thrust to mechanical devices.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 14, 2013
    Inventor: DAVID J. PODROG
  • Patent number: 8578695
    Abstract: An efficient thermal engine is disclosed. In some embodiments, a remainder of energy remaining after an expansion cycle is used to power a subsequent compression cycle. In other embodiments, novel configurations for a larger expansion volume than compression volume are provided. In addition, work of compression may be reduced in a compression cycle, and recovered in an expansion cycle.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: November 12, 2013
    Inventor: Herbert U. Fluhler
  • Patent number: 8572965
    Abstract: A chimney has a lower portion substantially in the shape of a pyramid and an upper portion forming a cylindrical portion that extends with a predetermined dimension upwardly and is provided in a ceiling portion of a building of a coil yard that is used for temporary storage of the hot-rolled coil which is an intermediate iron and steel product acting as a high-temperature heat radiator that is manufactured using the hot-rolling equipment of an iron and steel mill. A power generating turbine is provided at a predetermined position in the cylindrical portion. An intake duct is provided on a lower end portion of the side walls of the building. Hot-rolled coils that are in a high-temperature condition after manufacture are successively imported into the coil yard and accumulated and stored until transfer to a subsequent processing step. An ascending airflow is generated by sequential heating of air introduced into the building from the intake duct using heat retained in the hot-rolled coils.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: November 5, 2013
    Assignee: IHI Corporation
    Inventors: Hiroyuki Otsuka, Hisakazu Onizuka, Shinsuke Matsuno, Takahisa Nagao, Yoshiyuki Yamane, Atsushi Hirata, Kazuo Miyoshi, Masahiro Nakajima
  • Patent number: 8572973
    Abstract: An apparatus and a method generate power and refrigeration from low-grade heat. The apparatus includes a heating module, a power generator module, an ejector, a heat exchanger, a condenser module, a low-temperature evaporator, a reservoir, a pressure pump and two direction controllable three-way valves. The heating module includes a heat source and a boiler. The power generator module includes an expansion turbine and a power generator. The condenser module includes a condenser and a cooling tower. The method is that the direction controllable three-way valves are operated to change the flow directions of the working fluid for executing a power generation and refrigeration mode, a power generation mode, a refrigeration mode or an idle mode.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: November 5, 2013
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council
    Inventors: Heng-Yi Li, How-Ming Lee, Chin-Ching Tzeng
  • Patent number: 8562791
    Abstract: A system and method for decontaminating water and generating water vapor includes introducing contaminated water in to a vessel. The water is moved through a series of rotating trays alternately separated by stationary baffles so as to swirl and heat the water to effect the vaporization thereof to produce a vapor having at least some of the contaminants separated therefrom. The vapor is removed from the vessel for condensing apart from the separated contaminants and the remaining water. The vapor may be passed through a turbine connected to an electric generator. Sensors in a controller may be employed to adjust the speed of rotation of the trays or water input into the vessel in response to the sensed conditions. The treated water may be recirculated and reprocessed through the vessel to increase the purification thereof.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: October 22, 2013
    Assignee: Verno Holdings, LLC
    Inventors: John D. Riley, Dana L. Johnson
  • Patent number: 8554441
    Abstract: A traction control system and methodology that utilize a phase-out and phase-in of maximum drive torque and/or a regenerative brake torque based on vehicle speed and road slope.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 8, 2013
    Assignee: e-AAM Driveline Systems AB
    Inventors: Martin Johansson, Matilda Hallnor
  • Patent number: 8551343
    Abstract: A method and system for managing heat energy in a fluid purification system is provided. Initially, air is compressed using one or more compressors to obtain a compressed hot air. Then one or more fluids are purified using the heat energy associated with the compressed hot air in one or more fluid purification units thereby releasing a compressed cooled air. One or more hot purified fluids are stored in one or more fluid storage tanks obtained in response to the purification of the one or more fluids. Thereafter, the compressed cooled air is heated using a heat energy associated with the one or more hot purified fluids to obtain a heated compressed air. Subsequently, one or more turbines are operated using heat energy associated with the heated compressed air to obtain an expanded cooled air. The expanded cooled air is utilized for cooling.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: October 8, 2013
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Mazen Abdullah Ba-Abbad, Hany Abdulrahman Al-Ansary
  • Patent number: 8537961
    Abstract: Disclosed is an advanced process that relates to the enhanced production of energy using the integration of multiple thermal cycles (Brayton and Rankine) that employ multiple fuels, multiple working fluids, turbines and equipment. The method includes providing a nuclear reactor, reactor working fluid, heat exchangers, compressors, and multiple turbines to drive compressors that pressurize a humidified working fluid that is combusted with fuel fired in at least one gas turbine. The turbine(s) provide for electrical energy, processes or other mechanical loads.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: September 17, 2013
    Inventor: Michael Keller
  • Publication number: 20130219892
    Abstract: A compressed air energy storage module including an integrated thermal energy storage and recovery apparatus is provided. The compressed air energy storage module contains no moving parts and is constructed onsite, underground and out-of-sight. The compressed air energy storage module comprises a first regenerative heat exchanger including a first tank filled with a first particulate material that stores thermal energy and adsorbs air, and a second regenerative heat exchanger including a second tank filled with a second particulate material that stores thermal energy. A first end of the first tank is connected to a first end of the second tank via a first piping system. A second end of the first tank is connected to a second end of the second tank via a second piping system. The first piping system and the second piping system form a circular path for the air to circulate through the first and second regenerative heat exchangers.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 29, 2013
    Applicant: Energy Compression Inc.
    Inventor: Energy Compression Inc.
  • Patent number: 8495879
    Abstract: The efficiency of compressed air vehicle is enhanced by adapting the compressed air storage tank with a Magnus rotor that creates lift so as to reduce the effective weight of the tank during operation. A compressed air tank has an outlet in fluid communication with the inlet of a compressed air motor. Air leaving the compressed air motor is caused to flow across the Magnus rotor whereby lift is generated to counter gravitational force thereby reducing the effective weight of the system. A battery powered electric fan has an inlet disposed to draw air across the Magnus rotor thereby increasing the velocity of the air so as to maximize the Magnus effect. A thermoelectric cooler transfers heat across the compressed air motor, i.e. from air exiting the compressed air motor outlet, to the air entering the compressed air motor inlet, whereby the temperature of the air entering the compressed air motor is increased resulting in increased pressure.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: July 30, 2013
    Inventor: Winston Grace
  • Publication number: 20130147197
    Abstract: Combined cycle solar power generation is achieved using a primary cycle based on a solar receiver, such as a volumetric absorber, in which compressed air is heated by concentrated solar radiation, coupled with a secondary cycle based on a water/steam circuit driven by exhaust gas from the primary cycle. When the primary cycle is inactive, typically at night time, the secondary cycle can be driven by accessing a heat store of liquid or solid heat storage material, such as a molten salt or concrete blocks, which has been heated earlier during day time operation. The water/steam circuit is reconfigurable between first and second switching conditions, wherein in the first switching condition heat is transferred directly or indirectly from the primary cycle to heat the heat storage material, and in the second switching condition stored heat is transferred from the heat storage material to the water/steam circuit in order to generate steam.
    Type: Application
    Filed: February 11, 2013
    Publication date: June 13, 2013
    Applicant: Abu Dhabi Future Energy Company
    Inventors: Olaf Goebel, Yousif Al Ali
  • Patent number: 8459028
    Abstract: A novel engine for producing power from a temperature differential with additional benefits of low cost, high efficiency, quiet operation minimal wear of components, and the ability to produce power or cooling from low grade heat sources.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 11, 2013
    Inventors: James B. Klassen, David W. Boehm
  • Patent number: 8448438
    Abstract: An indirect-fired gas turbine power plant comprises a compressor; a turbine mechanically coupled to the compressor; a furnace; a heat exchanger inside the furnace and fluidly coupled at an inlet end to the compressor and at an outlet end to the turbine; and means for forming a gas barrier around a portion of the heat exchanger to impede combustion products from contacting the heat exchanger. Such means can be a plurality of gas discharge manifolds located around a portion of the heat exchanger. The manifolds can be coupled to heated working gas exhausted by the turbine.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: May 28, 2013
    Assignee: Firebox Energy Systems Ltd.
    Inventors: Jason Janus, Brian Fleck, Donald Gauthier, Ted R. Heidrick
  • Patent number: 8424308
    Abstract: A process (10) for co-producing synthesis gas and power includes in a synthesis gas generation stage, producing a hot synthesis gas and, in a nuclear power generation stage (12), heating a working fluid with heat generated by a nuclear reaction to produce a heated working fluid and generating power by expanding the heated working fluid using one or more turbines (16), with additional heating (14) of the heated working fluid by indirect transfer of heat from the hot synthesis gas to the heated working fluid.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: April 23, 2013
    Assignee: Sasol Technology (Proprietary) Limited
    Inventor: Isabella Lodewina Greeff
  • Patent number: 8424281
    Abstract: A method of operating a power plant is provided. The method includes channeling saturated steam at a first pressure to a pressure control device, superheating the steam by decreasing the pressure of the saturated steam from the first pressure to a second pressure using the pressure control valve, and channeling the superheated steam towards a steam turbine component to facilitate cooling the component.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: April 23, 2013
    Assignee: General Electric Company
    Inventors: Nestor Hernandez Sanchez, Clifford Edward Samson
  • Patent number: 8424284
    Abstract: Devices and methods for moving a working fluid through a controlled thermodynamic cycle in a positive displacement fluid-handling device (20, 20?, 20?) with minimal energy input include continuously varying the relative compression and expansion ratios of the working fluid in respective compressor and expander sections without diminishing volumetric efficiency. In one embodiment, a rotating valve plate arrangement (40, 42, 44, 46) is provided with moveable apertures or windows (48, 50, 56, 58) for conducting the passage of the working fluid in a manner which enables on-the-fly management of the thermodynamic efficiency of the device (20) under varying conditions in order to maximize the amount of mechanical work needed to move the target quantity of heat absorbed and released by the working fluid. When operated in refrigeration modes, the work required to move the heat is minimized. In power modes, the work extracted for the given input heat is maximized.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: April 23, 2013
    Inventors: Gilbert Staffend, Nancy A. Staffend
  • Publication number: 20130074500
    Abstract: The present invention relates to a method of converting thermal energy into mechanical energy using a non-gaseous working medium present in an apparatus comprising a plurality of heat exchangers and an outgoing shaft. In accordance with the invention, the apparatus used comprises a multitude of chamber units, a chamber unit comprising an inlet for introducing heat exchange medium and an outlet for discharging heat exchange medium as well as a closed chamber having a heat exchanger wall for exchanging heat between working medium inside the closed chamber and the heat exchange medium introduced into the chamber unit via said inlet for introducing heat exchange medium and heat exchange medium is passed around so as to do work when it is giving off heat to a chamber unit containing relatively cool working medium and recuperate heat when it is passed through a chamber unit containing relatively warm working medium. The invention also relates to an apparatus for performing the method.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 28, 2013
    Applicant: CYCLO DYNAMICS B.V.
    Inventor: Jeichienus Adriaan Van Der Werff
  • Patent number: 8397504
    Abstract: A method and system for waste heat recovery for conversion to mechanical energy. Exhaust is received from an engine into a first heat exchanger where heat from the exhaust is transferred to a refrigerant. The exhaust is then transferred to a regenerator module in order to produce electricity which is provided to a power box. The hot refrigerant from the first heat exchanger is transferred to a kinetic energy recovery system to produce electricity which is also transferred to said power box. The power box provides electricity to a traction motor and the traction motor turns an axle. The refrigerant is then transferred to a refrigerant cooling unit and then to a second heat exchanger wherein ambient air from the regenerator module is cooled. The refrigerant and cooled ambient air can be then transferred to an engine cooling jacket to cool the engine.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: March 19, 2013
    Assignee: Global Alternative Fuels, LLC
    Inventors: Carlos Guzman, Larry Lee Walter
  • Patent number: 8397506
    Abstract: Techniques for generating power are provided. Such techniques involve a thermodynamic system including a housing, a turbine positioned in a turbine cavity of the housing, a compressor positioned in a compressor cavity of the housing, and an alternator positioned in a rotor cavity between the turbine and compressor cavities. The compressor has a high-pressure face facing an inlet of the compressor cavity and a low-pressure face on an opposite side thereof. The alternator has a rotor shaft operatively connected to the turbine and compressor, and is supported in the housing by bearings. Ridges extending from the low-pressure face of the compressor may be provided for balancing thrust across the compressor. Seals may be positioned about the alternator for selectively leaking fluid into the rotor cavity to reduce the temperature therein.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: March 19, 2013
    Inventors: Steven A. Wright, Robert L. Fuller
  • Patent number: 8392105
    Abstract: Operating a vehicle includes receiving, by a central controller, positional data related to the vehicle and environmental data related to a current route of the vehicle. The central controller calculates a desired energy allocation based on the positional data and the environmental data, and transmits the desired energy allocation to the vehicle for use in controlling engine function.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 5, 2013
    Assignee: General Electric Company
    Inventor: Lane David Desborough
  • Patent number: 8375717
    Abstract: A method to pre-heat gas at gas Pressure Reducing Stations. A first step involve providing at least one electrical line heater having a flow path for passage of natural gas through electrical heating elements. A second step involves passing the high pressure cold natural gas stream along electrical heating elements and heating it up before de-pressurization. A third step involves the expansion of the high pressure heated gas in a enclosed vessel that houses a gas expander and power generator. The expansion of the gas generates shaft work which is converted into electrical power by the power generator and the expanded low pressure gas cools the power generator. This process results in the recovery of energy to replace the slipstream of natural that is presently used to pre-heat gas at Pressure Reduction Stations.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: February 19, 2013
    Inventors: Jose Lourenco, MacKenzie Millar
  • Patent number: 8347628
    Abstract: This invention relates to a Compressed Air Turbine-Generator, or CAT-G that will enable the ability to manage energy gathered from ecologically friendly sources, such as solar and wind power. Compressed Air Energy Storage, (C.A.E.S.), is a promising mode of clean energy storage. A major challenge facing this technology is the need to efficiently convert the compressed air energy into electricity. Conventionally, high-pressure air is used only to improve the efficiency of a conventional jet powered turbine generator. The focus herein is on a new technology that efficiently converts the energy stored in compressed air directly into electrical power without producing greenhouse byproduct gases or other pollutants. This new capability will add important flexibility to the optimization of ecologically friendly energy systems.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: January 8, 2013
    Inventor: Henry M. Gerard
  • Patent number: 8347629
    Abstract: A method, system, and apparatus including a compressed air energy storage system that includes an ambient air intake configured to intake a quantity of ambient air for storage in a compressed air storage volume, a compression system having a compression path that is configured to convey air compressed by the compression system through the compression system, a first path configured to convey ambient air to the compression system, a second path proceeding from the compression system to the compressed air storage volume and configured to convey compressed air to the compressed air storage volume, and a dehumidifying system. The dehumidifying system is coupleable to at least one of the first path that proceeds from the ambient air intake to the compression system, the compression path, and the second path. The dehumidifying system includes a dehumidifying component configured to remove moisture from the ambient air and/or the compressed air.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: January 8, 2013
    Assignee: General Electric Company
    Inventors: Matthias Finkenrath, Cristina Botero, Sebastian Walter Freund, Clarissa Sara Katharina Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann, Roland Marquardt, Kurt Peter Moser, Stefan Martin Zunft
  • Publication number: 20120297773
    Abstract: Described herein are gradual oxidation systems that receive and process solid, liquid, or gaseous fuels. The system can include a solid fuel gasifier that extracts and cleans gas fuel from a solid fuel. The system can also include a reaction chamber that receives the gas fuel and maintains a gradual oxidation process of the fuel. In some embodiments, liquids containing contaminants can be oxidized within the gradual oxidation chamber. Liquid fuels and gas fuels may be communicated to the oxidation chamber separately or in combination.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: FLEXENERGY, INC.
    Inventor: Edan D. PRABHU
  • Patent number: 8312703
    Abstract: A solar-thermal gas turbine generator is equipped with a compressor, a heat receiver, and a turbine. Additionally, there is a generator that is driven by the solar-thermal gas turbine to generate power; and a steam power generation cycle in which high-temperature air exhausted from the turbine is introduced into a steam generator and in which a steam turbine that is operated with steam generated at the steam generator drives a generator to generator power, wherein a solar-thermal steam generator that generates steam by being heated with heat collected by the light collector is provided upstream of the steam turbine of the steam power generation cycle, and a distribution ratio for distributing the sunlight collected by the light collector to the heat receiver and the solar-thermal steam generator is adjusted in accordance with the sunlight intensity.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: November 20, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kuniaki Aoyama, Kei Inoue, Kazuta Kobayashi, Masashi Tagawa, Toshiyuki Osada, Manabu Maeda
  • Patent number: 8297056
    Abstract: Thermo-dynamic battery is an energy storage unit for converting compressed gas energy into consumable electrical power for application uses with any device that requires electrical power to function. A method for storing electrical energy in the form of compressed gas and converting the same energy to electric power includes compressing gas and storing the compressed gas for release to drive a generator. A system and method for storing, disseminating, and utilizing energy in the form of gas compression and expansion comprises a method for expanding compressed gas in at least two stages and further provides for storing energy in the form of compressed gas through compression in at least two stages. Apparatus is provided to operate in accordance with the described procedure to contribute at or about 90% efficiency.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 30, 2012
    Inventor: Daniel Ashikian
  • Publication number: 20120222424
    Abstract: An apparatus can include a pressure vessel that defines an interior region that can contain a liquid and/or a gas. A piston is movably disposed within the interior region of the pressure vessel. A divider is fixedly disposed within the interior region of the pressure vessel and divides the interior region into a first interior region on a first side of the divider and a second interior region on a second, opposite side of the divider. The piston is movable between a first position in which fluid having a first pressure is disposed within the first interior region and the first interior region has a volume less than a volume of the second interior region, and a second position in which fluid having a second pressure is disposed within the second interior region and the second interior region has a volume less than a volume of the first interior region.
    Type: Application
    Filed: January 10, 2012
    Publication date: September 6, 2012
    Applicant: GENERAL COMPRESSION, INC.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Luc Aalmans, Matthew Bleiske
  • Publication number: 20120216537
    Abstract: A solar receiver for a solar thermal power system includes a silicon carbide body having a passage therethrough. A coating on an outer surface of the silicon carbide body may increase absorption of solar radiation relative to the silicon carbide body. A plurality of silicon carbide fins may extend outwardly from the silicon carbide body, the fins oriented such that when the receiver is placed on a tower of a solar thermal power system having a plurality of heliostats, the fins are substantially perpendicularly to solar radiation received on the silicon carbide body from the plurality of heliostats.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Inventor: John S. Fitch
  • Patent number: 8245512
    Abstract: Use of working fluids for energy conversion in a thermal Organic Rankine Cycle (ORC) process for combined generation of electrical and heat energy. The heat source used in the ORC process is in particular thermal water. The working fluids used in the ORC process are partially or perfluorinated hydrocarbons and/or partially or perfluorinated polyethers and/or partially or perfluorinated ketones. In some embodiments, the working fluid used is a combination of 1,1,1,3,3-pentafluorobutane and a fluorinated polyether having a molecular weight of 340 and a boiling point of 57° C. at 101.3 kPa, or a combination of 1,1,1,3,3-pentafluorobutane and at least one partially or perfluorinated ketone.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: August 21, 2012
    Assignee: SOLVAY FLUOR GmbH
    Inventors: Martin Schwiegel, Felix Flohr, Christoph Meurer
  • Publication number: 20120131920
    Abstract: Waste heat energy conversion cycles, systems and devices use multiple waste heat exchangers arranged in series in a waste heat stream, and multiple thermodynamic cycles run in parallel with the waste heat exchangers in order to maximize thermal energy extraction from the waste heat stream by a working fluid. The parallel cycles operate in different temperature ranges with a lower temperature work output used to drive a working fluid pump. A working fluid mass management system is integrated into or connected to the cycles.
    Type: Application
    Filed: August 18, 2011
    Publication date: May 31, 2012
    Applicant: ECHOGEN POWER SYSTEMS, LLC
    Inventors: Timothy James Held, Michael Louis Vermeersch, Tao Xie, Jason Miller
  • Publication number: 20120102954
    Abstract: Systems and methods are described herein to operate an air compression and/or expansion system in its most efficient regime, at a desired efficiency, and/or achieve a desired pressure ratio independent of discharge temperature, with little to no impact on thermal efficiency. For example, systems and methods are provided for controlling and operating hydraulic pumps/motors used within a hydraulically actuated device/system, such as, for example, a gas compression and/or expansion energy system, in its most efficient regime, continuously, substantially continuously, intermittently, or varied throughout an operating cycle or stroke of the system to achieve any desired pressure and temperature profile. Such systems and methods can achieve any desired pressure ratio independent of input or discharge temperature, and can also achieve any desired discharge temperature independent of pressure ratio, without altering any of the structural components of the device or system.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 3, 2012
    Applicant: GENERAL COMPRESSION, INC.
    Inventors: Eric D. Ingersoll, Justin A. Aborn, Matthew Blieske
  • Patent number: 8156919
    Abstract: Embodiments of rotary vane engines include rotors that rotate about an axis of rotation. The rotors can be moved in directions substantially perpendicular to the axis of rotation to vary expansion and/or compression ratios of the rotary vane engines. The ability to vary the expansion and/or compression ratios can facilitate optimization of the performance of the rotary vane engines as operating conditions vary.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: April 17, 2012
    Inventor: David S. Darrow
  • Patent number: 8132412
    Abstract: A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: March 13, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Charles L. Bennett
  • Publication number: 20120055159
    Abstract: An apparatus and a method, for converting fluid heat energy to motive force by the heating and pressurization of air, and for storing and delivering motive force to motive force users, which includes at least one air pressurizer. The air pressurizer facilitates the transfer of heat energy contained in a hot fluid to air confined within the air pressurizer, thus pressurizing the air to provide motive force.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 8, 2012
    Inventor: Marvin W. Hicks
  • Patent number: 8118895
    Abstract: A process of generating power utilizing a low level heat from a raw syngas produced in a quench gasifier is disclosed. The process includes a first stage that includes: producing raw syngas at the quench gasifier, making 150 psi saturated steam from the produced raw syngas, superheating the saturated steam, and using the superheated saturated steam in a low pressure steam turbine to generate power. The process includes a second stage that includes: providing the raw syngas and a process condensate stream to a thermal fluid vaporizer to vaporize an organic thermal fluid, and using the vaporized organic thermal fluid in an expander turbine to generate power via an organic Rankine cycle.
    Type: Grant
    Filed: March 29, 2008
    Date of Patent: February 21, 2012
    Assignee: Bechtel Power Corporation
    Inventors: Harvey Wen, Rattan K. Tawney
  • Publication number: 20120036853
    Abstract: A compressed air energy storage system including a compressor adapted to receive a process gas and output a compressed process gas. A heat transfer unit may be coupled to the compressor and adapted to receive the compressed process gas and a heat transfer medium and to output a cooled process gas and a heated heat transfer medium. A compressed gas storage unit may be coupled to the heat transfer unit and adapted to receive and store the cooled process gas. A waste heat recovery unit may be coupled to the heat transfer unit and adapted to receive the heated heat transfer medium.
    Type: Application
    Filed: March 17, 2011
    Publication date: February 16, 2012
    Applicant: Dresser-Rand Company
    Inventors: H. Allan Kidd, Harry F. Miller