Combined With Diverse Nominal Process Patents (Class 60/783)
  • Publication number: 20140331686
    Abstract: In a combined cycle gas turbine configuration having at least two power blocks, stack emissions (particularly nitrous oxides or NOx but also carbon monoxide CO and unburned hydrocarbons, UHC) are controlled concurrently with part load power output. In one power block a combined cycle power plant has a relatively large heavy-duty industrial gas turbine fired to about 1,700° C. at the turbine inlet leading to a first heat recovery system. A second power block with a smaller gas turbine has a second heat recovery system. A controller adjusts coupling of flue gas and steam paths from the second power block to the first power block to meet load demand in compliance with applicable emissions regulations.
    Type: Application
    Filed: December 30, 2013
    Publication date: November 13, 2014
    Applicant: Bechtel Power Corporation
    Inventor: Seyfettin C. Gülen
  • Publication number: 20140318146
    Abstract: A gas turbine includes a compressor and a combustor; a SOFC having a cathode and an anode; a first compression air supply line supplying compression air to the combustor; a second compression air supply line supplying compression air to the cathode; an exhaust air supply line supplying exhaust air discharged from the cathode to the combustor; a first fuel gas supply line supplying a fuel gas to the combustor; a second fuel gas supply line supplying a fuel gas to the anode; a fuel gas supply ratio change unit capable of changing a supply ratio of the fuel gas supplied to the combustor and the fuel gas supplied to the anode; an exhaust fuel gas supply line supplying an exhaust fuel gas discharged from the anode to the combustor; and a controller performing open-close control of the control valves and according to an operation state of the SOFC.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yoshinori Kobayashi, Kazuo Tomida, Masayuki Fukagawa, Ryutaro Mori, Takeshi Kitamura
  • Publication number: 20140305130
    Abstract: A system and method for controlling bleed air flow into an air cycle machine that includes a bleed air inlet and a conditioned air outlet is provided. The system and method include discharging bleed air from an operating gas turbine engine, sensing exhaust gas temperature (EGT) of the gas turbine engine, sensing conditioned air temperature at the conditioned air outlet, and controlling bleed air flow into the air cycle machine based on the sensed EGT and on the sensed conditioned air temperature.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: HONEYWELL INTERNATIONAL INC.
  • Publication number: 20140298822
    Abstract: A concentrated solar power (CSP) plant comprises a receiver configured to contain a chemical substance for a chemical reaction and an array of heliostats. Each heliostat is configured to direct sunlight toward the receiver. The receiver is configured to transfer thermal energy from the sunlight to the chemical substance in a reduction reaction. The CSP plant further comprises a first storage container configured to store solid state particles produced by the reduction reaction and a heat exchanger configured to combine the solid state particles and gas through an oxidation reaction. The heat exchanger is configured to transfer heat produced in the oxidation reaction to a working fluid to heat the working fluid. The CSP plant further comprises a power turbine coupled to the heat exchanger, such that the heated working fluid turns the power turbine, and a generator coupled to and driven by the power turbine to generate electricity.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 9, 2014
    Applicant: Alliance for Sustainable Energy, LLC
    Inventor: Zhiwen Ma
  • Patent number: 8850715
    Abstract: What is described is a process and an installation for drying articles, in particular painted vehicle bodies, in which the articles are moved through a drying zone in which they are hardened in an inert-gas atmosphere. Inert gas is taken from the drying zone constantly or intermittently and is first of all conducted along a first face which is at a first temperature at which higher-boiling contaminants condense out. The condensate that forms in the process is discharged. After that, the inert gas which has been pre-cleaned in this way is conducted along at least one second face which is at a lower temperature than the first face. Lower-boiling contaminants are precipitated at this point. These condensates, too, are then discharged. This process and installation work more favorably, energy-wise, and with higher cleaning efficiency than known processes and installations of a similar type.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: October 7, 2014
    Assignee: Eisenmann AG
    Inventors: Werner Swoboda, Andreas Keller
  • Publication number: 20140260313
    Abstract: A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Inventors: Jihad A. Badra, Assaad R. Masri
  • Publication number: 20140260312
    Abstract: A method of tuning a gas turbine includes receiving a first plurality of operating parameters as the gas turbine engine is operated at a first operating state. Further, the method includes operating the gas turbine engine at a second operating state to measure a second plurality of operating parameters at the second operating state. In addition, the method includes operating the gas turbine engine at a third operating state to measure a third plurality of operating parameters at the third operating state, wherein the first, second, and third operating states are different from each other. Additionally, the method includes generating a correction factor based on the first, second, and third plurality of operating parameters. The method also includes adjusting the operation of the gas turbine engine based on the correction factor.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Lewis Berkley Davis, JR., Rex Allen Morgan, Harold Lamar Jordan, JR., Scott Richard Baker
  • Publication number: 20140250912
    Abstract: A method for generating steam for hydrocarbon production is provided. The method includes producing steam using heat from an exhaust stream from a gas turbine system. A water stream is condensed from combustion products in the exhaust stream, and the water stream is used as a make-up water for production of the steam.
    Type: Application
    Filed: February 24, 2014
    Publication date: September 11, 2014
    Inventors: Richard A. Huntington, Robert D. Denton, Patrick D. McMahon, Lalit K. Bohra, Jasper L. Dickson
  • Publication number: 20140250913
    Abstract: Method for operating a combined-cycle power plant is provided. The plant includes at least a gas turbine and at least a steam power generation system. The plant activates at least one electric generator connectable to an electric grid, wherein the gas turbine includes a compressor. The steam power generation system includes a steam turbine, a heat recovery steam generator and a bypass line. The method is such that the gas turbine de-loads to a condition, where the compressor operates at its nominal speed. The method is such that the steam turbine de-loads in coordination with the de-load of the gas turbine, to a condition where the total load exported by the plant to the grid is substantially equal to zero, being both the gas turbine and the steam power generation system connected.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Inventors: Hamid OLIA, Jan SCHLESIER, Michael BREITFELD, Philipp BRUNNER
  • Publication number: 20140245748
    Abstract: A method of increasing the operational efficiency of an operating gas turbine engine includes supplying mechanical power from a first spool of the operating gas turbine engine to a first electrical machine to thereby generate electrical power using the first electrical machine and supplying mechanical power from a second spool of the operating gas turbine engine to a second electrical machine to thereby generate electrical power using the second electrical machine. The method further includes sensing one or more operational parameters of the operating gas turbine engine and, based on the one or more sensed operational parameters, ceasing to generate electrical power using the second electrical machine, and instead supplying at least a part of the electrical power generated by the first electrical machine to the second electrical machine to operate in motoring mode and to thereby generate and supply mechanical output power to the second spool of the engine.
    Type: Application
    Filed: November 20, 2012
    Publication date: September 4, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Honeywell International Inc.
  • Patent number: 8813507
    Abstract: A method for producing electric energy from solid and liquid fuels is provided. The fuels are first subjected to a gasification process at high pressure, and the scrubbed gasification gas is fed to a gas and steam turbine process. The combustion of the scrubbed gasification gas in the gas turbine chamber does not occur with air, but with a mixture made of the three components oxygen, carbon dioxide and water vapor. As a result, the waste gas of the gas turbine is made only of carbon dioxide and water vapor. After the condensation thereof, technically pure carbon dioxide remains, which can be dissipated by storage in the deep substrate of the atmosphere.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: August 26, 2014
    Assignees: Siemens Aktiengesellschaft, Siemens Fuel Gasification Technology GmbH & Co. KG
    Inventors: Frank Hannemann, Martin Pfund, Manfred Schingnitz
  • Patent number: 8776532
    Abstract: The present disclosure relates to a power production system that is adapted to achieve high efficiency power production with complete carbon capture when using a solid or liquid hydrocarbon or carbonaceous fuel. More particularly, the solid or liquid fuel first is partially oxidized in a partial oxidation reactor. The resulting partially oxidized stream that comprises a fuel gas is quenched, filtered, cooled, and then directed to a combustor of a power production system as the combustion fuel. The partially oxidized stream is combined with a compressed recycle CO2 stream and oxygen. The combustion stream is expanded across a turbine to produce power and passed through a recuperator heat exchanger. The expanded and cooled exhaust stream is scrubbed to provide the recycle CO2 stream, which is compressed and passed through the recuperator heat exchanger and the POX heat exchanger in a manner useful to provide increased efficiency to the combined systems.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: July 15, 2014
    Assignees: Palmer Labs, LLC, 8 Rivers Capital, LLC
    Inventors: Rodney John Allam, Jeremy Eron Fetvedt, Miles R. Palmer
  • Patent number: 8769964
    Abstract: A syngas cooler that includes an outer wall defining a cavity. A first membrane water wall is positioned within the cavity. A thermal siphon is positioned between the first membrane water wall and the outer wall and is configured to channel a flow of syngas therethrough to facilitate cooling the channeled syngas.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 8, 2014
    Assignee: General Electric Company
    Inventors: Pradeep S. Thacker, Paul Steven Wallace
  • Publication number: 20140182305
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, a mixing region configured to mix an exhaust flow with an oxidant flow to provide an oxidant-exhaust mixture, and a flow distributor configured to distribute the oxidant-exhaust mixture circumferentially around the head end chamber. The flow distributor includes at least one oxidant-exhaust mixture path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140182304
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow distributor configured to distribute an oxidant flow circumferentially around the head end chamber. The flow distributor includes at least one oxidant flow path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140182301
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow separator configured to separate a first exhaust flow from an oxidant flow. The flow separator is configured to direct the first exhaust flow into the head end chamber. The turbine combustor also includes a mixing region configured to mix the first exhaust flow with the oxidant flow to provide an oxidant-exhaust mixture.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Elizabeth Angelyn Fadde, William Lawrence Byrne, Carolyn Ashley Antoniono
  • Publication number: 20140182303
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow distributor configured to distribute an exhaust flow circumferentially around the head end chamber. The flow distributor includes at least one exhaust gas flow path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140182302
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow distributor configured to distribute at least one of an exhaust flow, an oxidant flow, an oxidant-exhaust mixture, or any combination thereof circumferentially around the head end chamber.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140174097
    Abstract: A gas turbine arrangement, a power plant having such a gas turbine arrangement and a method for operating the power plant are provided. A compressor may be mechanically coupled to a turbine which can be driven by combustion gases, such as can be generated by combustion of fuel with the compressed combustion air. An exhaust system may be used to discharge the combustion gases. One or more thermoelectric generators may be thermally coupled to the exhaust system for generating electrical energy from residual heat of the combustion gases which pass in the exhaust system, This gas turbine arrangement allows waste heat from the combustion gases to be utilized and thus the overall efficiency of the gas turbine arrangement can be increased and pollutant emissions may be lowered.
    Type: Application
    Filed: August 8, 2012
    Publication date: June 26, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Thomas Hammer, Stefan Lampenscherf, Gia Khanh Pham, Andreas Pickard
  • Patent number: 8752391
    Abstract: An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: June 17, 2014
    Assignee: General Electric Company
    Inventors: Ashok Kumar Anand, Richard Anthony DePuy, Veerappan Muthaiah
  • Patent number: 8739551
    Abstract: A method for operating a gas turbine comprising a compressor, a combustion chamber and a turbine is to allow a particularly safe and reliable operation of the gas turbine. Furthermore, a gas turbine and gas and steam turbine plant, which are especially suitable for carrying out the method, are disclosed. For this purpose, the compressor discharge pressure is used as a control variable.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: June 3, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Claus Grewe, Dieter Simon
  • Patent number: 8734569
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: May 27, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: David J. Hasse, Sudhir S. Kulkarni, Edgar S. Sanders, Jr., Jean-Pierre Tranier, Paul Terrien
  • Publication number: 20140123666
    Abstract: A system to improve gas turbine output and extend the life of hot gas path components includes a subsystem for estimating an amount of water or steam to be added to the flow of air to achieve the desired hot gas path temperature. The system includes a water or steam injection component adapted to inject the amount of water or steam to the flow of air to generate a flow of humid air and an injection subsystem adapted to inject the flow of humid air into a nozzle at the turbine stage are also included. The system includes a temperature sensor disposed at a turbine stage, and a subsystem for determining a desired hot gas path temperature at the turbine stage. An extraction conduit is coupled to a compressor stage and is adapted to extract a flow of air.
    Type: Application
    Filed: January 28, 2013
    Publication date: May 8, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sanji Ekanayake, Alston Ilford Scipio, William Theadore Fisher, Stephen Paul Wassynger, Timothy Tah-teh Yang
  • Patent number: 8713947
    Abstract: A power plant arrangement and method of operation is provided. The power plant arrangement includes at least one main air compressor and at least one gas turbine assembly. Each assembly includes a turbine combustor for mixing a portion of compressed ambient gas with a portion of a recirculated low oxygen content gas flow and a fuel stream for burning to form the recirculated low oxygen content gas flow. A recirculation loop for recirculating at least a portion of the recirculated low oxygen content gas flow from the turbine to a turbine compressor is provided. At least one auxiliary apparatus is fluidly connected to the main air compressor and may be at least partially powered by the compressed ambient gas flow.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: May 6, 2014
    Assignee: General Electric Company
    Inventors: Samuel David Draper, Kenneth William Kohl
  • Publication number: 20140096535
    Abstract: The present application provides a gas turbine system. The gas turbine system may include a gas turbine engine producing a flow of exhaust gases, a heat recovery steam generator with a reheater and an evaporator in communication with the flow of exhaust gases, and a gas flow control system for diverting a first portion of the flow of exhaust gases away from the reheater and towards the evaporator.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 10, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Lakshmanan Esakki, Mahendhra Muthuramalingam
  • Publication number: 20140060074
    Abstract: Systems and methods for driving an oil cooling fan (36) of a gas turbine engine (10) during different modes of operation of the gas turbine engine (10) are described. A system may include a coupling device (40) configured to: transmit motive power from a power turbine shaft (22) of the gas turbine engine (10) to the oil cooling fan (36) during a first mode of operation where the power turbine shaft (22) is turning, and to decouple the oil cooling fan (36) from the power turbine shaft (22) during a second mode of operation where the power turbine shaft (22) is prevented from turning. An alternate source (42) of motive power may be configured to drive the oil cooling fan (36) during the second mode of operation.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventor: Ian A. MACFARLANE
  • Patent number: 8663364
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: March 4, 2014
    Assignee: L'Air Liquide, Société Anonyme pour l'Étude et l'Éxploitation des Procédés Georges Claude
    Inventors: David J. Hasse, Sudhir S. Kulkarni, Edgar S. Sanders, Jr., Jean-Pierre Tranier, Paul Terrien
  • Publication number: 20140033732
    Abstract: The method and the apparatus described are used for generating electrical energy in a combined system comprising a power plant and a low-temperature air separation unit. A feed air stream is compressed in a main air compressor, cooled, and introduced into a distillation column system having a high-pressure column and a low-pressure column. A first oxygen-enriched stream from the distillation column system is introduced into the power plant. In a first operating mode, cryogenic liquid from the distillation column system is introduced into a liquid tank and is stored there at least in part. In a second operating mode, stored cryogenic liquid is removed from the liquid tank and introduced into the distillation column system. A second process fluid from the distillation column system is heated and then actively depressurized in a hot expansion turbine.
    Type: Application
    Filed: April 3, 2013
    Publication date: February 6, 2014
    Applicant: Linde Aktiengesellschaft
    Inventor: Dimitri GOLOUBEV
  • Publication number: 20140013766
    Abstract: Systems, methods, and apparatus are provided for generating power in low emission turbine systems and separating the exhaust into rich CO2 and lean CO2 streams. In one or more embodiments, the exhaust is separated at an elevated pressure, such as between a high-pressure expansion stage and a low-pressure expansion stage.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 16, 2014
    Inventors: Franklin F. Mittricker, Sulabh K. Dhanuka, Richard A. Huntington, Omar Angus Sites, Dennis M. O'Dea, Russell H. Oelfke
  • Patent number: 8617292
    Abstract: Disclosed are methods of obtaining carbon dioxide from a CO2-containing gas mixture. The methods combine the benefits of gas membrane separation with cryogenic temperatures.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: December 31, 2013
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: David J. Hasse, Sudhir S. Kulkarni, Edgar S. Sanders, Jr., Jean-Pierre Tranier, Paul Terrien
  • Publication number: 20130333391
    Abstract: Systems and methods are provided for combined cycle power generation while reducing or mitigating emissions during power generation. Recycled exhaust gas from a power generation combustion reaction can be separated using a swing adsorption process so as to generate a high purity CO2 stream while reducing/minimizing the energy required for the separation and without having to reduce the temperature of the exhaust gas. This can allow for improved energy recovery while also generating high purity streams of carbon dioxide and nitrogen.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: NARASIMHAN SUNDARAM, RAMESH GUPTA, HANS THOMANN, HUGO S. CARAM, LOREN K. STARCHER, FRANKLIN F. Mittricker, SIMON C. WESTON, SCOTT J. WEIGEL
  • Publication number: 20130318997
    Abstract: A supercharging system for a gas turbine system is provided supercharging system having a fan mechanically coupled to the turbine shaft of the turbine system. A bypass subsystem is provided or optionally conveying a portion of the airstream output to other uses. The supercharging system may also be used in conjunction with a combined cycle power system and a bypass subsystem optionally conveys a portion of the airstream output to a heat recovery steam generator.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Anthony Conchieri, Robert Thomas Thatcher, Andrew Mitchell Rodwell
  • Patent number: 8590492
    Abstract: The present invention provides an auxiliary power system to provide supplemental power by compressed hydrogen. The system includes a motor configured to be driven by the compressed hydrogen. The motor includes a cartridge for the generation of hydrogen. The cartridge is configured to generate high pressure and high temperature hydrogen. The motor is configured such that hydrogen generated by the cartridge is directed through a manifold and moves pistons in a cylinder block such that the cylinder block rotates. A clutch assembly is provided to transmit power from the motor.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 26, 2013
    Assignee: Advanced Hydrogen Technologies Corporation
    Inventor: Peter James Lohr, Sr.
  • Patent number: 8578718
    Abstract: The present invention provides a motor powered by an expandable, combustible gas. The motor includes a cartridge for the generation of hydrogen. The cartridge is configured to generate high pressure and high temperature hydrogen. The motor is configured such that hydrogen generated by the cartridge is directed into a series of expandable chambers defined by at least one flywheel. The flywheel is connected to a shaft such that power generated by the hydrogen can be transmitted out of the motor. The motor is configured such that power can be generated by expansion of the hydrogen and subsequent combustion of the hydrogen.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 12, 2013
    Assignee: Advanced Hydrogen Technologies Corporation
    Inventor: Peter James Lohr, Sr.
  • Publication number: 20130269365
    Abstract: An assembly or system is provided for selectively regulating journal bearing lubrication between at least first and second levels in an aircraft engine. A high pressure pump includes movable portions at least in part supported by a journal bearing. A selector valve is configured to selectively supply lubrication flow to the journal bearing. In addition, a relief valve is configured to receive a signal from the selector valve defining a pressure level at which the relief valve should relieve pressure.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Inventor: Martin A. Clements
  • Publication number: 20130269366
    Abstract: Louver systems for gas turbine bleed air systems are disclosed. An example louver system may include a bleed system discharge opening arranged to vent bleed air from a bleed flow conduit and a plurality of pivotable louvers disposed proximate the discharge opening, the pivotable louvers being pivotable between a shut position and an open position. In the shut position, individual louvers may at least partially obstruct the discharge opening. In the open position, individual louvers may at least partially control a direction of flow of the bleed air exiting the discharge opening.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 17, 2013
    Inventors: Christina Granger Morrissey HAUGEN, Bradley Willis Fintel, Brian Richard Green, Kevin Samuel Klasing
  • Publication number: 20130239580
    Abstract: A system for starting a gas turbine engine includes an engine controller and a fuel controller. The engine controller varies the engine speed between a minimum start speed and a maximum start speed until light-off of the engine occurs. The fuel controller operates a fuel command to vary fuel provided to a combustion chamber of the engine until light-off of the engine occurs.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Michael Corson, Kenneth W. Winston
  • Publication number: 20130227961
    Abstract: An integrated oxy-combustion turboexpander process including producing an enriched carbon dioxide product stream, by combusting a compressed synthetic air stream, including an oxygen-enriched stream and a carbon dioxide recycle stream, with a fuel stream and expanding the combustion stream thereby producing the carbon dioxide recycle stream and an enriched carbon dioxide product stream; producing an essentially pure carbon dioxide product stream, by processing the enriched carbon dioxide product stream into a deoxo methane combustor.
    Type: Application
    Filed: April 19, 2012
    Publication date: September 5, 2013
    Inventors: Craig LAFORCE, Bhadra S. GROVER
  • Publication number: 20130227960
    Abstract: An assembly includes a reservoir, a first sensor, a second sensor, and a controller. The first and second sensors are positioned in the reservoir. The controller is connected to both the first and second sensors. The controller sends a full signal when the first sensor indicates that liquid level in the reservoir is at or above a first level. The controller sends a fill signal when the second sensor indicates that liquid level in the sump is at or below a second level. The controller sends an approximate oil level signal with a value estimated based upon elapsed operating time since the reservoir was at or above the first level.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Brett Colin Bonner
  • Publication number: 20130205798
    Abstract: In one embodiment, a gas turbine engine assembly comprises an engine assembly disposed about a longitudinal axis, a core nozzle positioned adjacent the engine assembly to direct a core flow generated by the engine assembly, a fan nozzle surrounding at least a portion of the core nozzle to direct a fan flow, wherein the core nozzle defines a plenum to receive a portion of the core stream flow from the core nozzle and a thermoelectric generator assembly positioned in the plenum. Other embodiments may be described.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Inventors: David W. Kwok, James P. Huang, Jack W. Mauldin
  • Publication number: 20130200625
    Abstract: A process involving membrane-based gas separation and power generation, specifically for controlling carbon dioxide emissions from gas-fired power plants. The process includes a compression step, a combustion step, and an expansion/electricity generation step, as in traditional power plants. The process also includes a sweep-driven membrane separation step and a carbon dioxide removal or capture step. The carbon dioxide removal step is carried out on a portion of gas from the compression step.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 8, 2013
    Applicant: Membrane Technology and Research, Inc.
    Inventors: Xiaotong Wei, Richard W Baker, Timothy C Merkel, Brice C. Freeman
  • Publication number: 20130160458
    Abstract: An electrical raft assembly for a gas turbine engine is provided. The raft assembly comprises a rigid electrical raft formed of a rigid material that includes an electrical system comprising electrical conductors embedded in the rigid material. The raft assembly further comprises an engine component that is mounted to the electrical raft.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 27, 2013
    Applicant: ROLLS-ROYCE PLC
    Inventor: ROLLS-ROYCE PLC
  • Patent number: 8468835
    Abstract: A method of operating a drive system for a load is disclosed. The drive system may have an electric motor/generator and a gas turbine engine. The engine may have a combustor, and main and pilot flow paths via which fuel is supplied to the combustor. The engine may be operable in low and standard emissions modes. A proportion of the fuel that is supplied to the combustor via the pilot flow path may be greater in the standard emissions mode than in the low emissions mode. The method may include determining an engine power requirement of the load, and whether the engine power requirement of the load is sufficiently large to operate the engine in the low emissions mode. Additionally, the method may include operating the electric motor/generator if the engine power requirement of the load is not sufficiently large to operate the engine in the low emissions mode.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: June 25, 2013
    Assignee: Solar Turbines Inc.
    Inventors: Steven Howard DeMoss, Robert Eleazar Mendoza, Roy Thomas Collins
  • Publication number: 20130145773
    Abstract: A method of separating carbon dioxide (CO2) from nitrogen (N2) and oxygen (O2) within a turbine engine system includes, in an exemplary embodiment, directing an air stream into an air separation unit (ASU), separating N2 from the air stream in the ASU to form an oxygen (O2) rich air stream, and directing the O2 rich air stream to the combustor to mix with a fuel for combustion forming hot combustion gases, containing O2 and CO2, which are used to rotate the turbine. The method also includes directing turbine expander exhaust gases to a heat recovery steam generator (HRSG) to create steam, directing exhaust from the HRSG to a condenser to separate water from a mixture of O2 and CO2 gases, and directing the mixture of O2 and CO2 gases to a separation system where the CO2 is separated from the O2 gases and removed from the separation system.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 13, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Parag Prakash Kulkarni, Samuel David Draper, Roger Allen Shisler
  • Publication number: 20130127163
    Abstract: Systems and methods are provided for generating and using decarbonized fuel for power generation. In particular, the integrated systems and methods are provided for generating a synthesis gas, removing carbon dioxide from the synthesis gas and using the synthesis gas for producing power.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 23, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventor: Air Products and Chemicals, Inc.
  • Publication number: 20130118183
    Abstract: An optical sensor system includes a multi-color pyrometer in optical communication with a component. The pyrometer generates signals at least partially representative of radiation received from the component and from soot particles. The system includes at least one processing unit coupled to the pyrometer. The processing unit is programmed to receive the signals and distinguish portions of radiation received between at least two wavelength bands. The processing unit is also programmed to determine that a first portion of radiation within a first of the wavelength bands is representative of a temperature of soot particles and that a second portion of radiation within a second of the wavelength bands is representative of a temperature of the component. The processing unit is further programmed to filter out signals representative of the first portion of the radiation.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 16, 2013
    Applicant: General Electric Company
    Inventors: Guanghua Wang, Anquan Wang, Nirm Velumylum Nirmalan, Jordi Estevadeordal, Sean Patrick Harper, Bradford Allen Lewandowski
  • Patent number: 8438829
    Abstract: A turboprop propulsion unit includes at least one pusher propeller 5, 6 driven by an aircraft gas-turbine engine, with the aircraft gas-turbine engine being arranged in front of the pusher propeller 5, 6 in a direction of flight. A turbine outlet area 9 is arranged at the front in the direction of flight and a compressor area 14 faces towards the pusher propeller 5, 6.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: May 14, 2013
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventor: Dimitrie Negulescu
  • Publication number: 20130098059
    Abstract: A gas turbine engine according to an exemplary aspect of the present disclosure includes a windmill pump driven by a spool.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Inventors: Gabriel L. Suciu, Brian D. Merry, Christopher M. Dye, Michael E. McCune
  • Publication number: 20130098058
    Abstract: A gas turbine engine includes a spool, a first accessory gearbox, a second accessory gearbox, and a scavenge pump. The first accessory gearbox is connected to and driven by the spool. The second accessory gearbox is connected to and driven by the first accessory gearbox. The scavenge pump is connected between the first accessory gearbox and the second accessory gearbox. The first accessory gearbox drives the second accessory gearbox through the scavenge pump.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 25, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: William G. Sheridan
  • Publication number: 20130098060
    Abstract: A gas turbine engine includes an Integrated Drive Generator (IDG) geared to a low spool to selectively accelerate the low spool during a transient condition.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Inventors: Gabriel L. Suciu, Brian D. Merry, Christopher M. Dye