Sterioscopic Patents (Class 600/111)
  • Publication number: 20140012082
    Abstract: An endoscope includes a first lens unit that collects light corresponding to an object image which is an image including depth information of an object; a second lens unit that collects light corresponding to a surrounding tissue image which is an image of a surrounding tissue of the object; a switching unit that alternately applies light received from the first lens unit and the second lens unit to a photographing unit; and a photographing unit that alternately captures the light from the switching unit.
    Type: Application
    Filed: April 16, 2013
    Publication date: January 9, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Joon-kee CHO, Hyung-joo KIM, Jong-hwa WON
  • Publication number: 20130338439
    Abstract: An exemplary optical device for stereoscopic imaging that includes an aperture unit. The aperture unite may be configured to adjust an aperture value of first and second aperture portions while maintaining a binocular disparity between a first alignment location of the first aperture portion and a second alignment location of the second aperture portion.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Inventors: Hiroshi Kosugi, Masahito Kikuchi
  • Patent number: 8608645
    Abstract: A stereo-endoscope is provided having a hollow shank with two axially parallel optical channels, which channels run through the hollow shank and respectively form at least a section of an image path to respective oculars of a binocular observation device arranged on the proximal end of the hollow shank. Moreover, the stereo-endoscope includes a camera connection, and one of the optical channels also forms at least one section of an image path to the camera connection.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: December 17, 2013
    Assignee: Richard Wolf GmbH
    Inventors: Manfred Boebel, Alexander Frank, Klaus-Peter Hipp, Rudolf Heimberger, Felix Bitrolf, Friedrich Haehnle, Carl-Sebastian Wagner, Stephan Prestel, Gerhard Fritz Buess
  • Publication number: 20130296648
    Abstract: Aspects of the invention include minimally invasive imaging system. Systems according to embodiments of the invention include: an access device having a proximal end and distal end and an internal passageway extending from the proximal to distal end; and an elongated member dimensioned to be slidably moved through the internal passageway of the access device and having a proximal and distal end. In the systems of the invention, at least one of multiple visualization elements and multiple illumination elements are positioned among the distal ends of the access device and the elongated member. Also provided are methods of using the systems in imaging applications, as well as kits for performing the methods.
    Type: Application
    Filed: January 11, 2013
    Publication date: November 7, 2013
    Inventors: Xiaolong OuYang, James S. Cybulski, Fred R. Seddiqui
  • Patent number: 8562516
    Abstract: The present invention provides methods and apparatus for obtaining endoluminal access. An elongate body is configured for insertion within a body lumen, conduit, organ, orifice, passageway or cavity, the elongate body having a working axis and a distal region, and an articulating element disposed near the distal region, the articulating element configured to articulate off-axis from the working axis of the elongate body. The elongate may achieve access in an endoluminal or a laparoscopic fashion. Methods of using the apparatus are also provided.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: October 22, 2013
    Assignee: USGI Medical Inc.
    Inventors: Vahid Saadat, John A. Cox, Chris Rothe
  • Publication number: 20130245375
    Abstract: In one embodiment of the invention, a method for a minimally invasive surgical system is disclosed. The method includes capturing and displaying camera images of a surgical site on at least one display device at a surgeon console; switching out of a following mode and into a masters-as-mice (MaM) mode; overlaying a graphical user interface (GUI) including an interactive graphical object onto the camera images; and rendering a pointer within the camera images for user interactive control. In the following mode, the input devices of the surgeon console may couple motion into surgical instruments. In the MaM mode, the input devices interact with the GUI and interactive graphical objects. The pointer is manipulated in three dimensions by input devices having at least three degrees of freedom. Interactive graphical objects are related to physical objects in the surgical site or a function thereof and are manipulatable by the input devices.
    Type: Application
    Filed: February 25, 2013
    Publication date: September 19, 2013
    Applicants: The Johns Hopkins University c/o John Hopkins Technology Transfer, Intuitive Surgical Operations, Inc.
    Inventors: Simon P. DiMaio, Christopher J. Hasser, Russell H. Taylor, David Q. Larkin, Peter Kazanzides, Anton Deguet, Balazs Peter Vagvolgyi, Joshua Leven
  • Publication number: 20130237756
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the plurality of tracking illumination sensors disposed upon the otoscanner body so as to sense reflections of tracking illumination emitted from the tracking illumination emitter and reflected from tracking targets installed at positions that are fixed relative to the scanned ear; the image sensor coupled for data communications to a data processor, with the data processor configured so that it functions by constructing a 3D image of the interior of the scanned ear.
    Type: Application
    Filed: August 15, 2012
    Publication date: September 12, 2013
    Applicant: 3DM SYSTEMS, INC.
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Publication number: 20130237759
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the image sensor coupled for data communications to a data processor, with the data processor configured to function by inferring, from a tracked position of the ear probe, previously recorded statistics describing typical ear sizes according to human demographics, and currently recorded demographic information regarding a person whose ear is scanned, the actual present position of the ear probe in relation to at least one part of the scanned ear; and providing a warning when the probe moves within a predefined distance from the part of the scanned ear.
    Type: Application
    Filed: August 15, 2012
    Publication date: September 12, 2013
    Applicant: 3DM SYSTEMS, INC.
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Publication number: 20130237758
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; the ear probe comprising a wide-angle lens optically coupled to the image sensor, laser light source, a laser optical element, and a source of non-laser video illumination; the display screen coupled for data communications to the image sensor, the display screen displaying images of the scanned ear, the display screen positioned on the otoscanner body in relation to the ear probe so that when the ear probe is positioned for scanning, both the display screen and the ear probe are visible to a operator operating the otoscanner; and a data processor configured to construct a 3D image of the interior of the scanned ear.
    Type: Application
    Filed: August 15, 2012
    Publication date: September 12, 2013
    Applicant: 3DM SYSTEMS, INC.
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Publication number: 20130237757
    Abstract: An otoscanner including an otoscanner body, the body comprising a hand grip, the body having mounted upon it an ear probe, a tracking illumination emitter, a plurality of tracking illumination sensors, and a display screen, the otoscanner body having mounted within it an image sensor; wherein the image sensor operates at a video frame rate that is twice a standard video frame rate; a laser light source is strobed during capture by the image sensor of alternate video frames; video frames are captured by the image sensor when only the non-laser video illumination illuminates the scanned ear; and images for constructing 3D images are captured by the image sensor only when the strobed laser light illuminates the scanned ear.
    Type: Application
    Filed: August 15, 2012
    Publication date: September 12, 2013
    Applicant: 3DM SYSTEMS, INC.
    Inventors: Nathanael Berglund, Harris Bergman, Scott Cahall, Jerry Foster, Eohan George, Samuel W. Harris, Giorgos Hatzilias, Karol Hatzilias, Ruizhi Hong, Wess E. Sharpe, David G. Stites, Harry S. Strothers, IV
  • Patent number: 8512229
    Abstract: The present invention provides methods and apparatus for obtaining endoluminal access. An elongate body is configured for insertion within a body lumen, conduit, organ, orifice or passageway, the elongate body having a working axis and a distal region, and an articulating element disposed near the distal region, the articulating element configured to articulate off-axis from the working axis of the elongate body. Methods of using apparatus of the present invention are also provided.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: August 20, 2013
    Assignee: USGI Medical Inc.
    Inventors: Vahid Saadat, Desmond Birkett, Chris Rothe, Tracy Maahs
  • Publication number: 20130158352
    Abstract: A processor of an endoscope apparatus that is a medical apparatus generates two images that are a normal-light observation image and a special-light observation image that are obtained by picking up a return light, determines matching of observation fields of view with respect to the two images, generates a marker M that indicates a position on a living tissue for at least one of the two images based on the determination result, causes the generated two images to be displayed within a screen of a monitor, and displays the generated marker M by superimposing the marker M on at least one of the two images.
    Type: Application
    Filed: November 21, 2012
    Publication date: June 20, 2013
    Applicant: OLYMPUS MEDICAL SYSTEMS CORP.
    Inventor: OLYMPUS MEDICAL SYSTEMS CORP.
  • Publication number: 20130137926
    Abstract: Obtaining a surface image captured by an endoscope inserted in a tubular organ associated with a surrounding blood vessel and representing an inner surface of a wall of the organ, generating, from a three-dimensional image representing a three-dimensional area including the organ, an adjacent blood vessel image depicting a portion of the blood vessel adjacent to the wall from a viewpoint in the three-dimensional image corresponding the viewpoint of the surface image, generating, from a three-dimensional image representing a three-dimensional area including a surrounding area of the organ, a surrounding blood vessel image depicting the blood vessel from a viewpoint in the three-dimensional image corresponding the viewpoint of the surface image, and causing the surface image, adjacent blood vessel image, and surrounding blood vessel image to be displayed in this order on a display unit.
    Type: Application
    Filed: January 28, 2013
    Publication date: May 30, 2013
    Applicant: FUJIFILM CORPORATION
    Inventor: FUJIFILM CORPORATION
  • Publication number: 20130102846
    Abstract: A steerable stereoscopic endoscope comprising: a shaft having a distal end, a proximal end, and an articulating region therebetween; stereo image acquisition means disposed at the distal end of the shaft for acquiring stereo images of a remote site; and means for steering the portion of the shaft distal to the articulating region.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 25, 2013
    Applicant: VIKING SYSTEMS, INC.
    Inventor: Viking Systems, Inc.
  • Publication number: 20130085329
    Abstract: The present disclosure relates to calibration target devices, assemblies and methods for use with imaging systems, such as a stereoscopic endoscope. A calibration assembly includes: a target surface extends in three dimensions with calibration markers and a body with an interface that engages an endoscope so the markers are within the field of view. A first calibration marker extends along a first plane of the target surface and a second marker extends along a second plane of the target surface. The planes are different and asymmetric relative to the field of view as seen through the endoscope. Three-dimensional targets, in particular, enable endoscopic calibration using a single image (or pair of images for a stereoscopic endoscope) to reduce the calibration process complexity, calibration time and chance of error as well as allow the efficient calibration of cameras at different focus positions.
    Type: Application
    Filed: September 20, 2012
    Publication date: April 4, 2013
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Tyler J. Morrissette, Tao Zhao, Joseph P. Orban, III, Brian David Hoffman
  • Patent number: 8398541
    Abstract: In one embodiment of the invention, a method for a minimally invasive surgical system is disclosed. The method includes capturing and displaying camera images of a surgical site on at least one display device at a surgeon console; switching out of a following mode and into a masters-as-mice (MaM) mode; overlaying a graphical user interface (GUI) including an interactive graphical object onto the camera images; and rendering a pointer within the camera images for user interactive control. In the following mode, the input devices of the surgeon console may couple motion into surgical instruments. In the MaM mode, the input devices interact with the GUI and interactive graphical objects. The pointer is manipulated in three dimensions by input devices having at least three degrees of freedom. Interactive graphical objects are related to physical objects in the surgical site or a function thereof and are manipulatable by the input devices.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: March 19, 2013
    Assignees: Intuitive Surgical Operations, Inc., Johns Hopkins University
    Inventors: Simon P. DiMaio, Christopher J. Hasser, Russell H. Taylor, David Q. Larkin, Peter Kazanzides, Anton Deguet, Bálazs Peter Vágvölgyi, Joshua Leven
  • Publication number: 20130041221
    Abstract: In a minimally invasive surgical system, an image capture unit includes a prism assembly and sensor assembly. The prism assembly includes a beam splitter, while the sensor assembly includes coplanar image capture sensors. Each of the coplanar image capture sensors has a common front end optical structure, e.g., the optical structure distal to the image capture unit is the same for each of the sensors. A controller enhances images acquired by the coplanar image capture sensors. The enhanced images may include (a) visible images with enhanced feature definition, in which a particular feature in the scene is emphasized to the operator of minimally invasive surgical system; (b) images having increased image apparent resolution; (c) images having increased dynamic range; (d) images displayed in a way based on a pixel color component vector having three or more color components; and (e) images having extended depth of field.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 14, 2013
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Ian McDowall, John Stern
  • Patent number: 8372002
    Abstract: An image converter receives image data of an object and performs a kind of image conversion on the image data to generate converted image data for display. A measurement section measures at least one spatial characteristic of the object based on: the converted image data, and optical data, which relates to optical characteristics of an optical system through which the image data of the object has been obtained, and which is made to correspond to the kind of image conversion performed by the image converter. Alternatively, a measurement section measures at least one spatial characteristic of the object by relating, based on the kind of image conversion, coordinates of the converted image data to coordinates of the image data of the object before the image conversion, and by measuring the at least one spatial characteristic based on the coordinates of the image data of the object before the image conversion.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: February 12, 2013
    Assignee: Olympus Corporation
    Inventor: Sumito Nakano
  • Patent number: 8360964
    Abstract: A wide angle HDTV endoscope includes at least two optical imaging channels. Lenses close each channel at the distal end of the endoscope. The imaging channels each have a different field of view in complementary directions, and have overlapping or cross-over field of view areas. Received images are transmitted along the longitudinal axis of the imaging channels of the endoscope to a camera head that contains a wide screen image sensing device. An external light source provides the required lighting and an image processing device can provide necessary software algorithms to format the images and to control any overlapping or cross-over field of view areas to obtain a single display image. In another arrangement, optical blocking elements provided at the proximal end of the endoscope or within the imaging channels eliminate portions of one or more images from the imaging channels so that at the cross-over areas only a single image is provided to the imaging device.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: January 29, 2013
    Assignee: Stryker Corporation
    Inventor: Hasan Ertas
  • Publication number: 20130023730
    Abstract: A virtual field of view of a virtual endoscope, which is positioned at a position corresponding to a detected position of an endoscope in a 3D medical image, is determined based on a position of a structure of interest, the corresponding position and a posture of the endoscope, and an angle of view of the endoscope, such that the position of the structure of interest is contained within the virtual field of view and the virtual field of view has continuity with the field of view of the endoscope. From the 3D medical image inputted, a virtual endoscopic image having the determined virtual field of view with the view point thereof being the corresponding position of the endoscope is generated. The generated virtual endoscopic image is displayed on a WS display.
    Type: Application
    Filed: March 30, 2011
    Publication date: January 24, 2013
    Applicant: FUJIFILM CORPORATION
    Inventors: Yoshiro Kitamura, Keigo Nakamura
  • Patent number: 8337397
    Abstract: Landmark directional guidance is provided to an operator of an endoscopic device by displaying graphical representations of vectors adjacent a current image captured by an image capturing device disposed at a tip of the endoscopic device and being displayed at the time on a display screen, wherein the graphical representations of the vectors point in directions that the endoscope tip is to be steered in order to move towards associated landmarks such as anatomic structures in a patient.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: December 25, 2012
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Giuseppe Prisco, Vincent Duindam
  • Publication number: 20120316392
    Abstract: An imaging device, for example a endoscopic capsule, comprising a core base (1) having a plurality of faces, said faces supporting at least one an imaging device with an illumination means, said device further comprising electronic means and being contained in a spherical envelope (8).
    Type: Application
    Filed: February 1, 2011
    Publication date: December 13, 2012
    Inventor: Séraphin Nicaise Itoua
  • Patent number: 8323182
    Abstract: An endoscope including a rigid section having opposed first and second ends and an opening situated between the first and second ends, the rigid section defining a longitudinal axis; a handle portion coupled to a first end of the rigid section and having first and second scissor-type handles suitable for grasping by a user; and a base part situated at the second end of the rigid section and coupled to the first handle of the scissor-type handles such that displacement of the first handle causes a rotation of the base part.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 4, 2012
    Inventors: Harish M. Manohara, Anna Liao, Youngsam Bae, Hrayr Karnig Shahinian
  • Publication number: 20120289781
    Abstract: A surgical camera assembly includes a proximal member defining a longitudinal axis and a distal member defining a pointed tip configured to puncture tissue to permit insertion of the surgical camera assembly therethrough. The distal member is pivotably coupled to the proximal member and is movable relative thereto between a first position, wherein the distal member is aligned with the longitudinal axis, and a second position, wherein the distal member is angled off the longitudinal axis. First and second surgical cameras are disposed within the distal member in fixed position and longitudinally-spaced relative to one another. Each of the cameras is oriented to define a viewing area in a direction extending from an outer lateral periphery of the distal member. The cameras are configured to produce video images that are used in conjunction with one another to provide a three-dimensional video image of the internal surgical site.
    Type: Application
    Filed: April 2, 2012
    Publication date: November 15, 2012
    Applicant: TYCO HEALTHCARE GROUP LP
    Inventor: Ashwini K. Pandey
  • Publication number: 20120289782
    Abstract: A surgical camera assembly includes a base and first and second spaced-apart legs extending distally from the base. The legs are configured for positioning within an internal surgical site and are disposed in parallel orientation relative to one another. The legs are slidable relative to one other and to the base. A first camera is disposed within the first leg and is configured to produce a video image of the area extending distally and radially outwardly from the distal end of the first leg. A second camera is disposed within the second leg and is configured to produce a video image of the area extending distally and radially outwardly from the distal end of the second leg. The video images produced by the first and second cameras are used in conjunction with one another to provide a three-dimensional video image of the internal surgical site.
    Type: Application
    Filed: April 9, 2012
    Publication date: November 15, 2012
    Inventor: Frank Viola
  • Patent number: 8221304
    Abstract: There is disclosed an operation microscope in which an observing and displaying system of an operating instrument are selected, and an endoscope image for observing a dead angle of the microscope and a navigation image are selectively displayed in a microscope observation field, so that a tomographic image, three-dimensionally constructed image, and the like can be selectively displayed in a display screen in accordance with a treatment position displayed in a monitor or an observation position of the operation microscope.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: July 17, 2012
    Assignee: Olympus Corporation
    Inventors: Keiji Shioda, Kazuhito Nakanishi, Masakazu Mizoguchi, Takashi Fukaya, Wataru Ohno, Masahiko Kinukawa, Masaaki Ueda, Motokazu Nakamura, Toru Shinmura, Kazuo Morita
  • Patent number: 8197397
    Abstract: Image splitting device for videoendoscope, comprising an image splitting optical component to form on the sensitive surface of a video sensor housed in the distal end part of a videoendoscope a single composite image formed from two images of an observed target, viewed from two different angles; the image splitting optical component comprises two sections of identical convergent lenses, integrated into an opaque central element, maintaining the space between the two sections of lenses, each of the two sections of lenses are at least equal to a half-moon so that it is crossed by the optical axes of the lens.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 12, 2012
    Assignee: Tokendo
    Inventor: Jean Rovegno
  • Patent number: 8199984
    Abstract: Medical image observation assisting system 1 including CT-image-data retrieving portion 10, CT-image-data storing portion 11, information extracting portion 12, anatomical information DB13, point of view/line of view setting portion 14, luminal organ image generating portion 15, anatomical nomenclature information generating portion 16, branch specifying portion 17, image synthesizing and displaying portion 18 and user I/F control portion 19. The point of view/line of view setting portion 14 sets a point of view and line of view for observing an external profile of a luminal organ, on the basis of structure information of the luminal organ extracted by the information extracting portion 12, while a point of interest is kept substantially on a centerline of the organ.
    Type: Grant
    Filed: February 17, 2007
    Date of Patent: June 12, 2012
    Assignee: National University Corporation Nagoya University
    Inventors: Kensaku Mori, Takayuki Kitasaka, Daisuke Deguchi
  • Publication number: 20120130168
    Abstract: An endoscope apparatus is adapted to be inserted into an inside of a subject and observe the inside of the subject and includes: an observation optical system which has a first optical path and a second optical path with parallax; an imaging portion on which a light passing through the first optical path and a light passing through the second optical path are formed; a diaphragm portion which selectively blocks out the first optical path or the second optical path; a distance measurement portion which measures a distance to the subject on the basis of parallax between a first image formed on the imaging portion via the first optical path and a second image formed on the imaging portion via the second optical path; a displacement amount detection portion which detects a displacement amount between two first images acquired with a time interval therebetween; and a measurement environment determination portion which determines, on the basis of the displacement amount, whether or not the first image and the secon
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Applicant: OLYMPUS CORPORATION
    Inventor: Yutaka KONOMURA
  • Patent number: 8162820
    Abstract: A system and method for acquiring measurements of a portion of a patient's anatomy are provided. For example, the system includes a stereovideoscope including a scope coupled to a flexible tubing and configured to be positioned within the patient's body. The scope includes a plurality of stereoscopic lenses configured to capture data indicative of the portion of the patient's anatomy, and the flexible tubing includes a biocompatible material. In addition, the system includes a processing element that is in communication with the stereovideoscope and that is configured to generate an image based on the captured data in order to acquire at least one geometrical measurement indicative of the portion of the patient's upper airway and to determine a probabilty of the patient's response to a tongue-base treatment based on the at least one geometrical meaurement.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: April 24, 2012
    Inventor: Kent Moore
  • Patent number: 8118730
    Abstract: Improved optical devices and methods transmit optical images along elongate optical paths with relatively limited cross-sectional dimensions using an improved objective, relay, and ocular systems. In a first aspect, at least one intermediate image formed within an optical component, rather than being formed in a gap between optical components. In a preferred embodiment, a first intermediate image is formed within glass of the most proximal objective lens, with the first intermediate image extending axially along a curved image location within the glass. The last intermediate image may similarly be disposed within a distal lens of the ocular system. By making use of a first and/or last intermediate image disposed in this manner within a lens, endoscopes can exhibit a significantly larger Numerical Aperture than known endoscopes having similar cross-sectional dimensions.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: February 21, 2012
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mina Farr, Wolfgang Braxmeier
  • Patent number: 8105233
    Abstract: An endoscopic system and method that is adaptable for therapeutic applications as well as sensor operation and is capable of producing 3-dimensional human vision simulated imaging with real dynamic convergence, not virtual convergence. Applications may include use in any space, including but not limited to, intra-abdominal cavities, intra-thoracic cavities, and intra-cranial cavities. Further, two or more diagnostic/sensor probes may be used, with at least two being the same kind to create the 3-dimensional effect, such as but not limited to, camera, ultrasound, and magnetic-resonance imaging. Diagnostic/sensor probes are each mounted to the end of a different arm, with the other ends of the two arms both being attached to the same hinge that allows them to turn freely on the same axis from side-to-side within a 180 degree angle range of movement on the distal end of a main tubular shaft system. Medical, as well as other applications, are contemplated.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: January 31, 2012
    Inventor: Tarek Ahmed Nabil Abou El Kheir
  • Patent number: 8075478
    Abstract: A system, apparatus, and method for viewing a visually obscured portion of a body cavity. The system includes an endoscopic-type instrument, an imaging apparatus, and a human interface apparatus. The endoscopic-type instrument includes a face tip assembly connected to a shaft assembly, the shaft assembly being connected to a handle and viewing assembly. The face tip assembly includes a plurality of input/output ports and a working channel extension to protect an optical image collector. The shaft assembly includes an actively flexible shaft segment and a passively flexible shaft. The method for viewing a visually obscured portion of a cavity includes the steps of providing an instrument having an actively flexible shaft segment and manipulating the actively flexible shaft segment to a desired angular deflection.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: December 13, 2011
    Inventor: Jorge A. Campos
  • Patent number: 8033990
    Abstract: An endoscope insertion portion of the invention includes a distal end portion, and a plurality of image pickup portions each including an image pickup device for obtaining an endoscope image, wherein the plurality of image pickup portions are disposed in the distal end portion such that agreement is made between first and second electric charge transfer directions in which electric charges are transferred from each photoelectric conversion device of the respective image pickup devices, thus avoiding a sense of incongruity (stress to a user) from being caused by endoscope images displayed on a monitor, which are obtained by a plurality of image pickup units.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: October 11, 2011
    Assignee: Olympus Medical Systems Corp.
    Inventor: Takashi Otawara
  • Patent number: 8016747
    Abstract: A capsule endoscope capable of implementing stereoscopic photography, with which protruding/recessed states are easily recognized, for a nearby subject. The capsule endoscope includes imaging devices for respectively imaging a common subject, a driving/sampling section which drives the imaging devices, focusing optical systems which correspond one-to-one with the imaging devices and focus subject images onto imaging regions of the corresponding imaging devices, and a control section which controls imaging operations of the imaging devices with the driving/sampling section. At least one of the focusing optical systems is inclined such that an optical axis direction thereof is oriented forward in a direction of imaging by the plurality of imaging devices and toward a perpendicular direction that passes through a central point between the imaging regions of the plurality of imaging devices.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: September 13, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Youichi Sawachi
  • Patent number: 8004560
    Abstract: An endoscope apparatus includes: a video signal acquisition portion; a video signal processing portion that processes a video signal to generate a display video signal; a measurement processing portion that performs measurement; and a display portion that displays the display video signal. The video signal processing portion generates a first display video signal based on one image extracted from the video signal, and a second display video signal based on the one image and other image of the video signal. During a period regarding measurement, the display portion displays the first display video signal or the second display video signal along with at least one of operation-related information and measurement information. A position where at least one of the operation-related information and the measurement information is displayed is controlled according to the first display video signal or the second display video signal displayed by the display portion.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: August 23, 2011
    Assignee: Olympus Corporation
    Inventors: Saichi Sato, Yuusuke Kuwa
  • Publication number: 20110152615
    Abstract: A surgical manipulator includes an intracorporeal unit that is completely arrangeable within a body cavity and that includes a coupling member and an effector. An extracorporeal unit includes a manipulator to manipulate at least the effector, and a connecting unit for connecting the intracorporeal unit to the extracorporeal unit when the intracorporeal unit is arranged within the body cavity and for transferring manipulating activities from the extracorporeal unit to the intracorporeal unit.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 23, 2011
    Inventors: Sebastian Schostek, Rudiger Proßt, Fabian Rieber, Marc Oliver Schurr
  • Patent number: 7935048
    Abstract: Method for navigating a flexible medical device within a flexible organ of the body of a patient, toward a target region of interest of an inner wall of the flexible organ, by employing a previously acquired global three-dimensional (3D) model of the flexible organ, the method including the procedures of acquiring an initial stereoscopic image of an initial region of the flexible organ and reconstructing an initial local 3D model of the initial region according to the initial stereoscopic image, identifying and registering the initial local 3D model with an initial segment of the previously acquired global 3D model, acquiring a successive stereoscopic image of a successive region of the flexible organ and reconstructing a successive local 3D model of the successive region according to the successive stereoscopic image, identifying and registering the successive local 3D model with a successive segment of the previously acquired global 3D model, detecting the target region of interest by identifying a topograp
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: May 3, 2011
    Assignee: Visionsense Ltd.
    Inventors: Avi Yaron, Tami Frenkel
  • Publication number: 20100261961
    Abstract: In one embodiment, an endoscopic camera for a robotic surgical system includes a stereo camera module mounted to a robotic arm of a patient side cart. The optical and electro-optic components of the camera module are hermetically sealed within a first housing. Signals from an electro-optic component travel through traces in a ceramic substrate forming one side of the hermetically sealed first housing. A second housing surrounds the first housing and optical fibers are dispersed between the housings to provide lighting in a body cavity. The camera module may be sterilized by an autoclave.
    Type: Application
    Filed: May 15, 2010
    Publication date: October 14, 2010
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: David D. Scott, David C. Shafer, Dominique Brichard, Peter M. Herzlinger
  • Patent number: 7773122
    Abstract: An image pick-up module, especially for an endoscope, comprises an electronic image sensor, a single-piece circuit board which is electrically bonded to the image sensor, with at least one cable leading away from the circuit board being further electrically bonded to the circuit board. The circuit board has at least three sections, with a first section and a second section extending in spaced relation one to the other and obliquely or crosswise to the image sensor and a third section being arranged between the first and the second section. In order to provide for strain relief of the at least one cable, it is proposed that the image sensor be arranged on one side of the circuit board opposite the third section.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: August 10, 2010
    Assignee: Karl Storz GmbH & Co. KG
    Inventors: Klaus M. Irion, Peter Schwarz, Mark Kocher, Ulrich Kehr
  • Patent number: 7762949
    Abstract: An endoscope with a flexible elongate insertion shaft, an illumination guide extending longitudinally through the insertion shaft, and an image guide extending longitudinally through the insertion shaft. The insertion shaft is formed along an outer surface with at least one longitudinally extending channel longitudinally traversable by an elongate endoscopic instrument. The channel having a longitudinally extending slot so that the channel is open to the ambient environment along at least a portion of its length.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: July 27, 2010
    Assignee: Granit Medical Innovation, LLC
    Inventor: Naomi L. Nakao
  • Publication number: 20100048995
    Abstract: The invention relates to an imaging system and a method for three-dimensional imaging of the interior of an object. The imaging system comprises illumination means (10), detection means (11) and reconstruction means. The illumination means is adapted to illuminate the interior of the object with light, wherein the illumination means (10) is capable of generating different spatial light intensity distributions on the interior of the object. The detection means (11) is adapted to detect the different spatial light intensity distributions, and the reconstruction means is adapted to reconstruct a three-dimensional image from the detected different spatial light intensity distributions. The invention relates further to an optical fiber system comprising a transfer mechanism to transfer the optical fiber system from a first condition, in which optical fibers diverge from each other, to a second condition, in which optical fibers are parallel to each other, and vice versa.
    Type: Application
    Filed: May 2, 2007
    Publication date: February 25, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Freek Suijver, Benno Hendriks
  • Publication number: 20090292171
    Abstract: A medical device for examination or treatment based on a reference point, includes: a virtual endoscopic image generation section configured to generate a virtual endoscopic image of a bronchus from a plurality of different line-of-sight positions using three-dimensional image data of the bronchus of a subject that is obtained in advance; an image retrieval section configured to retrieve a virtual endoscopic image highly similar to an endoscopic image of the bronchus picked up by an image pickup section arranged at a distal end portion of an insertion section; a reference-point setting section configured to set a reference point based on a line-of-sight position of the highly similar virtual endoscopic image; and a relative-position calculation section configured to calculate a relative position of a treatment instrument to the reference point.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 26, 2009
    Applicant: OLYMPUS MEDICAL SYSTEMS CORP.
    Inventors: Seiichi ITO, Shunya AKIMOTO, Junichi ONISHI, Akira SUZUKI, Soichi IKUMA
  • Publication number: 20090292170
    Abstract: A stereo-endoscope is provided having a hollow shank with two axially parallel optical channels, which channels run through the hollow shank and respectively form at least a section of an image path to respective oculars of a binocular observation device arranged on the proximal end of the hollow shank. Moreover, the stereo-endoscope includes a camera connection, and one of the optical channels also forms at least one section of an image path to the camera connection.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 26, 2009
    Applicant: RICHARD WOLF GMBH
    Inventors: Manfred BOEBEL, Alexander FRANK, Klaus-Peter HIPP, Rudolf HEIMBERGER, Felix BITROLF, Friedrich HAHNLE, Carl-Sebastian WAGNER, Stephan PRESTEL, Gerhard Fritz BUESS
  • Publication number: 20090268010
    Abstract: An illumination channel, a stereoscopic optical channel and another optical channel are held and positioned by a robotic surgical system. A first capture unit captures a stereoscopic visible image from the first light from the stereoscopic optical channel while a second capture unit captures a fluorescence image from the second light from the other optical channel. An intelligent image processing system receives the captured stereoscopic visible image and the captured fluorescence image and generates a stereoscopic pair of fluorescence images. An augmented stereoscopic display system outputs a real-time stereoscopic image comprising a three-dimensional presentation of a blend of the stereoscopic visible image and the stereoscopic pair of fluorescence images.
    Type: Application
    Filed: June 30, 2008
    Publication date: October 29, 2009
    Applicant: Intuitive Surgical, Inc.
    Inventors: Wenyi Zhao, Christopher J. Hasser, Brian D. Hoffman, Catherine J. Mohr, John D. Stern, Tao Zhao
  • Publication number: 20090268012
    Abstract: An endoscope with a stereoscopic optical channel is held and positioned by a robotic surgical system. A capture unit captures (1) a visible first image and (2) a visible second image combined with a fluorescence second image from the light. An intelligent image processing system receives (1) the visible first image and (2) the visible second image combined with the fluorescence second image and generates at least one fluorescence image of a stereoscopic pair of fluorescence images and a visible second image. An augmented stereoscopic display system outputs a real-time stereoscopic image including a three-dimensional presentation including in one eye, a blend of the at least one fluorescence image of a stereoscopic pair of fluorescence images and one of the visible first and second images; and in the other eye, the other of the visible first and second images.
    Type: Application
    Filed: June 30, 2008
    Publication date: October 29, 2009
    Applicant: Intuitive Surgical, Inc
    Inventors: David Scott, Wenyi Zhao, Brian D. Hoffman, John D. Stern, Tao Zhao
  • Publication number: 20090268011
    Abstract: An endoscope with a stereoscopic optical channel is held and positioned by a robotic surgical system. A first capture unit captures: a visible first color component of a visible left image combined with a fluorescence left image from first light from one channel in the endoscope; a visible second color component of the visible left image from the first light; and a visible third color component of the visible left image from the first light. A second capture unit captures: a visible first color component of a visible right image combined with a fluorescence right image from second light from the other channel in the endoscope; a visible second color component of the visible right image from the second light; and a visible third color component of the visible right image from the second light. An augmented stereoscopic outputs a real-time stereoscopic image including a three-dimensional presentation including the visible left and right images and the fluorescence left and right images.
    Type: Application
    Filed: June 30, 2008
    Publication date: October 29, 2009
    Applicant: Intuitive Surgical, Inc.
    Inventors: David Scott, Wenyi Zhao, Brian D. Hoffman, Ian McDowell, Catherine J. Mohr, John D. Stern
  • Publication number: 20090259102
    Abstract: The present invention relates to a novel endoscope or an optical large view endoscopic system with improved depth perception. In particular, a multiple viewpoint endoscope system comprising a multiple viewpoint camera setup and/or an intelligent or cognitive image control system and display device particularly adapted for localising internal structures within a cavity or an enclosing structure, such as an animal body, for instance the abdomen of an animal or human, or for localising a real or synthetic image of such internal structures within an overview image or on an overview 3D model.
    Type: Application
    Filed: July 9, 2007
    Publication date: October 15, 2009
    Inventors: Philippe Koninckx, Thomas Koninckx, Luc Van Gool
  • Patent number: 7601119
    Abstract: A manipulator includes a distal end having a manipulating instrument configured for manipulation at a manipulation site, and a proximate end connectable to an interface. A pair of detectors is configured to capture stereoscopic images of the manipulation site. The pair of detectors and manipulating instrument are connected to the interface, by at least a flexible guide and a wired and/or wireless communication link. The detectors are co-locatable at the manipulation site with the manipulating instrument and may be removable attached to manipulating instrument. A force detector may also be removable attached to manipulating instrument.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: October 13, 2009
    Inventor: Hrayr Kamig Shahinian
  • Patent number: 7507201
    Abstract: Image splitting device for videoendoscope, comprising an image splitting optical component to form on the sensitive surface of a video sensor housed in the distal end part of a videoendoscope a single composite image formed from two images of an observed target, viewed from two different angles; the image splitting optical component comprises two sections of identical convergent lenses, integrated into an opaque central element, maintaining the space between the two section of lenses, each of the two sections of lenses are at least equal to a half-moon so that it is crossed by the optical axis of the lens.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: March 24, 2009
    Assignee: Tokendo
    Inventor: Jean Rovegno