With Therapeutic Device Patents (Class 600/439)
  • Patent number: 10918386
    Abstract: A surgical instrument is disclosed. The instrument includes an end effector comprising a moveable cutting instrument to cut an object and a motor coupled to the end effector. The motor actuates the cutting instrument in response to a current therethrough, causing the cutting instrument to move between a proximal-most position and a distal-most position. The instrument includes an interlock coupled to the end effector and to the motor to prevent actuation of the cutting instrument based on the current through the motor.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: February 16, 2021
    Assignee: Ethicon LLC
    Inventors: Frederick E. Shelton, IV, James R. Giordano
  • Patent number: 10888716
    Abstract: Systems and methods for non-invasive fat reduction can include targeting a region of interest below a surface of skin, which contains fat and delivering ultrasound energy to the region of interest. The ultrasound energy generates a thermal lesion with said ultrasound energy on a fat cell. The lesion can create an opening in the surface of the fat cell, which allows the draining of a fluid out of the fat cell and through the opening. In addition, by applying ultrasound energy to fat cells to increase the temperature to between 43 degrees and 49 degrees, cell apoptosis can be realized, thereby resulting in reduction of fat.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: January 12, 2021
    Assignee: Guided Therapy Systems, LLC
    Inventors: Michael H. Slayton, Peter G. Barthe
  • Patent number: 10888717
    Abstract: A method and system for providing ultrasound treatment to a tissue that contains a lower part of dermis and proximal protrusions of fat lobuli into the dermis. An embodiment delivers ultrasound energy to the region creating a thermal injury and coagulating the proximal protrusions of fat lobuli, thereby eliminating the fat protrusions into the dermis. An embodiment can also include ultrasound imaging configurations using the same or a separate probe before, after or during the treatment. In addition various therapeutic levels of ultrasound can be used to increase the speed at which fat metabolizes. Additionally the mechanical action of ultrasound physically breaks fat cell clusters and stretches the fibrous bonds. Mechanical action will also enhance lymphatic drainage, stimulating the evacuation of fat decay products.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: January 12, 2021
    Assignee: Guided Therapy Systems, LLC
    Inventors: Michael H. Slayton, Peter G. Barthe, Inder Raj S. Makin
  • Patent number: 10888718
    Abstract: A probe for ultrasound treatment of skin laxity are provided. Systems and methods can include ultrasound imaging of the region of interest for localization of the treatment area, delivering ultrasound energy at a depth and pattern to achieve the desired therapeutic effects, and/or monitoring the treatment area to assess the results and/or provide feedback. In an embodiment, a treatment system and method can be configured for producing arrays of sub-millimeter and larger zones of thermal ablation to treat the epidermal, superficial dermal, mid-dermal or deep dermal components of tissue.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: January 12, 2021
    Assignee: Guided Therapy Systems, L.L.C.
    Inventors: Peter G. Barthe, Michael H. Slayton, Inder Raj S. Makin
  • Patent number: 10881482
    Abstract: Operation room devices, methods, and systems are disclosed. One method comprises: receiving, at a processing unit, data associated with a patient; determining, with the processing unit, a treatment for the patient; identifying, with the processing unit, a control setting associated with one or more treatment devices that are (i) in communication with the processing unit, and (ii) operable to perform the treatment; and generating, with the processing unit, a display including the control setting and at least one view of the data. Related devices and systems also are disclosed.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: January 5, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Niraj Rauniyar, Timothy Harrah, Peter J. Pereira, Eric Wong, William Stanhope, Brian MacLean, Brandon Craft, Stuart Perry, William Gastrock
  • Patent number: 10874877
    Abstract: Aspects herein are directed to an anchorable brachytherapy device configured to be permanently implanted in a tumor bed at the time of operative removal of the tumor. In example aspects, the brachytherapy device may comprise a plurality of hollow tubes that form a spherical or ellipsoid shape. Protrusions or grooves may be formed on an outer surface of the tubes to help anchor the brachytherapy device in the tumor bed. Radioactive seeds or strands may be positioned within the tube channels to provide radiation to the tumor bed.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 29, 2020
    Assignee: POSITIVE ENERGY, LLC
    Inventor: Ibrahim Abdalla
  • Patent number: 10874455
    Abstract: Methods for treating polycystic ovary syndrome with therapeutic ovarian neuromodulation and associated systems and methods are disclosed herein. Polycystic ovary syndrome can be associated, for example, with a condition including at least one of oligo/amenorrhea, infertility, hirsutism, obesity, metabolic syndrome, insulin resistance, and increased cardiovascular risk profile. One aspect of the present technology is directed to methods that at least partially inhibit sympathetic neural activity in nerves proximate an ovarian artery of an ovary of a patient. Sympathetic drive in the patient can thereby be reduced in a manner that treats the patient for the polycystic ovary syndrome. Ovarian sympathetic nerve activity can be modulated along afferent and/or efferent pathways. The modulation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly, e.g.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: December 29, 2020
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventor: Paul Sobotka
  • Patent number: 10869727
    Abstract: An interventional procedure can be performed less invasively with live 3D holographic guidance and navigation. Advantageously, the 3D holographic guidance and navigation overcomes the limitations of conventional displays of medical images on standard 2D flat panel screens. The live 3D holographic guidance can utilize a 3D holographic visualization that is derived from complementary imaging modalities (e.g., ultrasound and computed tomography) to provide a complete holographic view of a portion of the patient's body to enable navigation of a tracked interventional instrument/device.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: December 22, 2020
    Assignee: THE CLEVELAND CLINIC FOUNDATION
    Inventors: Jeffrey H. Yanof, Karl West, Sara Al-Nimer
  • Patent number: 10864385
    Abstract: Systems and methods for treating skin and subcutaneous tissue with energy such as ultrasound energy are disclosed. In various embodiments, ultrasound energy is applied at a region of interest to affect tissue by cutting, ablating, micro-ablating, coagulating, or otherwise affecting the subcutaneous tissue to conduct numerous procedures that are traditionally done invasively in a non-invasive manner. Lifting sagging tissue on a face, neck, and/or body are described. Treatment with heat is provided in several embodiments.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: December 15, 2020
    Assignee: Guided Therapy Systems, LLC
    Inventors: Peter G. Barthe, Michael H. Slayton, Inder Raj S. Makin
  • Patent number: 10864034
    Abstract: An ablation catheter comprises: an elongated catheter body extending longitudinally between a proximal end and a distal end along a longitudinal axis; a distal member disposed adjacent the distal end, the distal member including an ablation element to ablate a biological member; one or more acoustic transducers disposed in the distal member and each configured to direct an acoustic signal toward a respective target ablation region and receive reflection echoes therefrom; and an acoustic redirection member disposed in the distal member to at least partially redirect the acoustic signal from at least one of the acoustic transducers toward a tissue target. The distal member includes a most-distal portion, a proximal portion, and a deflectable portion between the most-distal portion and proximal portion to permit deflection between the most-distal portion and proximal portion of the distal member. The transducers and redirection member are mounted on opposite sides of the deflectable portion.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: December 15, 2020
    Assignee: St. Jude Medical, LLC
    Inventors: John W. Sliwa, Zhenyi Ma, Stephen A. Morse
  • Patent number: 10856845
    Abstract: An ultrasound diagnosis device includes: an ultrasound probe which transmits an ultrasound wave toward a examinee and receives a reflected wave from the examinee; and a main device which controls the transmitting and receiving of the ultrasound waves from the ultrasound probe and is operated to receive a receiving signal obtained by receiving the reflected wave from the examinee by the ultrasound probe, to generate an ultrasound image of the examinee, and to display the ultrasound image on a display screen, wherein the ultrasound probe includes a plurality of subarrays having a plurality of element circuits transmitting and receiving ultrasound signals and a plurality of reference voltage sources, and the plurality of subarrays and the plurality of reference voltage sources have a one-to-one correspondence.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: December 8, 2020
    Assignee: HITACHI, LTD.
    Inventors: Yusaku Katsube, Tatsuo Nakagawa, Yasuyuki Okuma, Yohei Nakamura, Takahide Terada, Shinya Kajiyama, Takuma Nishimoto, Yutaka Igarashi
  • Patent number: 10843012
    Abstract: An ultrasound apparatus is described for externally treating kidney stone in human body. The apparatus has one or more ultrasound imaging transducers, a therapeutic ultrasound transducer, and a processing unit. Optimized delivering of ultrasound energy to the kidney stone from the therapeutic ultrasound transducer is based on real-time tracked state (e.g., position, movement shape, size, or combination thereof) of the kidney stone. The ultrasound imaging transducer(s) is configured to image the stone during the application of the therapy treatment. An optimization algorithm is implemented to control the therapeutic ultrasound transducer to apply different force vectors to the region of the stone. The effect of the vectors in the differing directions with respect to the stone may be detected and input to the optimization algorithm, which optimizes the therapy by adjusting one or more of the vectors.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: November 24, 2020
    Assignee: Otsuka Medical Devices Co., Ltd.
    Inventor: Michael Gertner
  • Patent number: 10828020
    Abstract: A surgical retractor includes a shaft and an end effector extending distally from the shaft. The end effector includes a distal finger extending about at least a portion of a perimeter of a geometric shape and configured to facilitate retraction of tissue. The end effector further includes an ultrasound sensor array including a plurality of ultrasound sensors disposed in spaced-apart relation along the distal finger. Each ultrasound sensor of the plurality of ultrasound sensors is configured to emit an ultrasound wave and receive an echoed wave. The echoed waves received by the plurality of ultrasound sensors are output to be reconstructed to produce a real-time 3D ultrasound video image.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: November 10, 2020
    Assignee: COVIDIEN LP
    Inventor: Matthew S. Cowley
  • Patent number: 10806346
    Abstract: An ultrasound imaging system having real-time tracking and image registration includes a fiducial-marker system comprising an ultrasound transmitter structured to provide a localized ultrasound pulse at an optically observable localized spot on a body of interest. The system further includes an optical imaging system, a two-dimensional ultrasound imaging system, an optical image processing system, and an ultrasound image processing system.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: October 20, 2020
    Assignee: The Johns Hopkins University
    Inventors: Emad M. Boctor, Alexis Cheng, Xiaoyu Guo, Haichong K. Zhang, Russell H. Taylor
  • Patent number: 10772646
    Abstract: A method for controlling a histotripsy using a confocal fundamental and harmonic superposition combined with hundred-microsecond ultrasound pulses, including: 1) positioning a target tissue by a monitoring and guiding system and adjusting a position of the target tissue to a focal point of a transducer; 2) first stage: controlling the confocal fundamental and harmonic superposition combined with hundred-microsecond ultrasound pulses to form a shock wave in a focal zone; wherein a negative acoustic pressure exceeds a cavitation threshold; an inertial cavitation occurs to generate boiling bubbles; the boiling bubbles collapse and achieve partial homogenization of the target tissue; 3) second stage: controlling the confocal fundamental and harmonic superposition combined with hundred-microsecond pulsed-ultrasound sequences to simultaneously irradiate a target zone and further mechanically disintegrate and homogenize the target tissue.
    Type: Grant
    Filed: May 25, 2019
    Date of Patent: September 15, 2020
    Assignee: Xi'an Jiaotong University
    Inventors: Mingzhu Lu, Yizhe Geng, Ruixin Li, Xuan Wang, Yanshan Liu, Dan Han, Yehui Liu, Yujiao Li, Rui Wang, Mingxi Wan
  • Patent number: 10772655
    Abstract: The invention relates to an interstitial ultrasound ablation device (5) for being inserted into tissue surrounding, for instance, a tumor. The interstitial ultrasound ablation device comprises an arrangement (7) of ultrasound units (17, 18) for a focal ablation treatment which is modifiable from a folded configuration, to be used while inserting the ultrasound ablation device into the tissue, to an unfolded configuration, to be used after the ultrasound ablation device has been inserted into the tissue, such that the unfolded arrangement of ultrasound units is next to the tumor. This ultrasound ablation device can be easily positioned close to the tumor, where the unfolded arrangement of ultrasound units provides a large ultrasound emission area allowing for a very good focusing of the ultrasound on the tumor. This can lead to a very effective ablation of the tumor with only very few or no unwanted side effects.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: September 15, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Debbie Rem-Bronneberg
  • Patent number: 10765410
    Abstract: The present disclosure relates to the field of endoscopy. In particular, the present disclosure relates to systems and methods for real-time visualization of a target tissue, and which allows the location/orientation of the biopsy needle to be determined prior to its first actuation.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 8, 2020
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Austin G. Johnson, Sean Fleury
  • Patent number: 10758154
    Abstract: A method operates an image system of a medical imaging modality in which a patient data record of a patient is processed. A workflow for an examination is selected from a set of workflows on the basis of an examination specification of the patient data record. Wherein each workflow contains comprises a selection from a set of functions which are carried out in a specific temporal sequence.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 1, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Clemens Joerger, Gudrun Roth-Ganter
  • Patent number: 10751125
    Abstract: A focused-ultrasound or other procedure for treating a target within a tissue region can be planned iteratively by creating a treatment plan specifying a treatment location pattern and stimuli applied thereto, simulating the treatment, computationally predicting an effect of the simulated treatment, comparing the predicted effect against one or more treatment constraints (such as efficacy and/or safety thresholds), and, if a constraint is violated, repeating the simulation for an adjusted treatment plan.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: August 25, 2020
    Assignee: INSIGHTEC, LTD.
    Inventors: Yoav Levy, Benny Assif, Gilad Halevy, Yoni Hertzberg
  • Patent number: 10722169
    Abstract: A physiological state of a patient is detected by at least producing and detecting pressure waves with a free wall of an implantable medical device (IMD) housing. An actuator element may contact the free wall, e.g., a portion of the IMD housing, and cause movement of the free wall that produces a pressure wave within the fluid and tissue of the patient. A detector element contacting the free wall may in turn detect reflected pressure waves received by the free wall. An acoustic module within the IMD may then determine a physiological condition of the patient, e.g., a bladder fullness state, based on the time delay between the transmitted and reflected pressure waves. In some examples in which the IMD also delivers stimulation therapy to the patient, e.g., incontinence therapy, the IMD may also automatically adjust stimulation therapy based on the determined physiological condition.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: July 28, 2020
    Assignee: Medtronic, Inc.
    Inventors: Richard T. Stone, Xuan Wei
  • Patent number: 10722218
    Abstract: A method of generating a 3-D patient-specific bone model, the method comprising: (a) acquiring a plurality of raw radiofrequency (“RF”) signals from an A-mode ultrasound scan of a patient's bone at a plurality of locations using an ultrasound probe that comprises a transducer array; (b) tracking the acquiring of the plurality of raw RF signals in 3-D space and generating corresponding tracking data; (c) transforming each of the plurality of raw RF signals into an envelope comprising a plurality of peaks by applying an envelope detection algorithm to each of the plurality of raw RF signals, each peak corresponding with a tissue interface echo; (d) identifying a bone echo from the tissue interface echoes of each of the plurality of raw RF signals to comprise a plurality of bone echoes by selecting the last peak having a normalized envelope amplitude above a preset threshold, wherein the envelope amplitude is normalized with respect to a maximum peak existing in the envelope; (e) determining a 2-D bone contour f
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: July 28, 2020
    Assignee: JointVue, LLC
    Inventor: Mohamed R. Mahfouz
  • Patent number: 10722219
    Abstract: Systems and methods are provided for diagnosing neuromuscular disease in a patient suspected of having a neuromuscular disease, Phantoms for use in these systems and methods are also provided. Methods are further provided for determining a normalized ultrasound data value for a patient of interest having a known age, weight, height, and sex.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: July 28, 2020
    Assignee: Mayo Foundation for Medical Education and Research
    Inventor: Andrea J. Boon
  • Patent number: 10709337
    Abstract: In a photoacoustic measurement apparatus and a photoacoustic measurement system, blood flow information in a desired region can be generated using a photoacoustic image. A light source emits measurement light. A probe detects a photoacoustic wave generated in a subject after measurement light is emitted to the subject in each of the avascularized condition in which the subject is avascularized and the non-avascularized condition in which the subject is not avascularized. Photoacoustic image generation unit generates a photoacoustic image based on the detection signal of the photoacoustic wave. Blood flow information generation unit generates blood flow information based on the signal value of a photoacoustic image in a region of interest set in the photoacoustic image.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 14, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Dai Murakoshi, Kaku Irisawa, Tetsuro Ebata, Shoji Hara
  • Patent number: 10695798
    Abstract: The invention relates to a method for calibrating a treatment probe comprising at least one cylindrical transducer for generating high-intensity focused ultrasound in a target focus point, the probe being designed to be electrically connected to a power supply source for supplying an electrical signal for the power supply of the transducer, characterised in that the method comprises a step (20) of adjusting a frequency of the electrical signal for the power supply of the transducer in such a way that the variation between the maximum vibration intensity and the minimum vibration intensity of the transducer along the width thereof is minimal.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: June 30, 2020
    Assignee: EYE TECH CARE
    Inventors: Thomas Charrel, Laure Baffie
  • Patent number: 10675482
    Abstract: An intracranial treatment apparatus comprises an outer shaft having a proximal end and a distal end for positioning within the tissue region of the brain. The outer shaft defines a lumen extending between the proximal end and the distal end of the outer shaft and having at least one aperture adjacent the distal end of the outer shaft. An inner light-delivery element having a distal end and a proximal end is adapted to be operatively connected to the light source. The light-delivery element is configured to be received within the lumen and extend from the proximal end of the shaft to adjacent the distal end of the shaft. The light-delivery element is adapted to deliver light from the light source through the at least one aperture of the outer shaft to the tissue region of the brain in proximity to the distal end of the outer shaft.
    Type: Grant
    Filed: January 2, 2015
    Date of Patent: June 9, 2020
    Assignee: Craniovation, Inc.
    Inventors: Vijay Agarwal, Ranjith Babu, Jack Ratcliffe
  • Patent number: 10668299
    Abstract: A brachytherapy system includes a brachytherapy applicator. The brachytherapy applicator includes an applicator tube and a radiation source configured to deliver radiation to a tumor. At least a portion of the applicator tube is configured to conform to at least a portion of a patient's anatomy. At least one ultrasound element or probe is coupled to or embedded with the applicator tube.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: June 2, 2020
    Assignee: Nucletron Operations B.V.
    Inventors: Paulus Cornelis Hendrikus Maria Krechting, Wilhelmus Petrus Martinus Maria Van Erp, Jan F. L. De Becker, Anton J. G. Welberg
  • Patent number: 10667831
    Abstract: Disclosed herein are ultrasonic probes and systems incorporating the probes. The probes are configured to produce an ultrasonic therapy exposure that, when applied to a kidney stone, will exert an acoustic radiation force sufficient to produce ultrasonic propulsion. Unlike previous probes configured to produce ultrasonic propulsion, however, the disclosed probes are engineered to produce a relatively large (both wide and long) therapy region effective to produce ultrasonic propulsion. This large therapy region allows the probe to move a plurality of kidney stones (or fragments from lithotripsy) in parallel, thereby providing the user the ability to clear several stones from an area simultaneously. This “broadly focused” probe is, in certain embodiments, combined in a single handheld unit with a typical ultrasound imaging probe to produce real-time imaging. Methods of using the probes and systems to move kidney stones are also provided.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: June 2, 2020
    Assignees: University of Washington, Sonomotion, Inc.
    Inventors: Michael R. Bailey, Bryan Cunitz, Barbrina Dunmire, Adam Maxwell, Oren Levy
  • Patent number: 10667787
    Abstract: An ultrasound system comprising a portable ultrasound probe and a docking station provides enhanced ultrasound functionality. One or more first transducer elements transmit an ultrasound signal toward a target structure in a region of interest. Processing circuitry controls transmission of the ultrasound signal, while driving circuitry that is operatively coupled to the one or more first transducer elements and the processing circuitry drives the transmission of the ultrasound signal. The ultrasound probe further includes one or more second transducer elements that receive echo signals returning from the target structure in response to transmission of the ultrasound signal, and a power supply that provides power to the driving circuitry for transmission of the ultrasound signal. The docking station includes an interface that is couplable to the ultrasound probe and circuitry that electrically couples to the ultrasound probe via the interface and enhances the ultrasound functionality of the ultrasound probe.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: June 2, 2020
    Assignee: EchoNous, Inc.
    Inventors: Ron Broad, Todd Willsie, Greg Nieminen, Niko Pagoulatos
  • Patent number: 10661309
    Abstract: A dual frequency ultrasound transducer includes a high frequency ultrasound array and a low frequency transducer positioned behind or proximal to the high frequency ultrasound array. In one embodiment, a dampening material is positioned between a rear surface of the high frequency array and the a front surface of the low frequency array. The dampening preferably is high absorbing of signals at the frequency of the high frequency array but passes signals at the frequency of the low frequency transducer with little attenuation. In additional, or alternatively, the low frequency can angled with respect to the plane of the high frequency transducer to reduce inter-stack multipath reflections. Beamforming delays compensate for the differences in physical distances between the elements of the low frequency transducer and the plane of the high frequency transducer.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: May 26, 2020
    Assignee: FUJIFILM SonoSite, Inc.
    Inventors: Nicholas Christopher Chaggares, Guofeng Pang, Desmond Hirson
  • Patent number: 10646200
    Abstract: An intravascular ultrasound (IVUS) imaging system is provided. The IVUS imaging system includes an intravascular device including a transducer shaft with an ultrasound transducer at a distal end. The IVUS imaging system also includes an interface module removably coupled to the intravascular device. The interface module includes a connector rotatably coupled to a proximal end of the transducer shaft; a motor coupled to the connector; a spinning element coupled to the motor, wherein the spinning element comprises four conductive rings; a stationary element comprising a plurality of brushes, wherein the stationary element is disposed proximate the spinning element such that a different one of the plurality of brushes is in mechanical contact with each of the four conductive rings; and four conductors coupled to the connector and the spinning element such that the stationary element and the intravascular device are in electrical communication.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: May 12, 2020
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventors: Sherwood Kantor, Douglas E. Meyer, Duane De Jong, Paul Hoseit
  • Patent number: 10639053
    Abstract: An endoscopic instrument is provided and includes a housing including an elongated shaft assembly extending distally therefrom. The elongated shaft assembly includes inner and outer shaft members. The inner and outer shaft members are removably coupled to the housing and the outer shaft member is movable with respect to the inner shaft member. An end effector is operably supported at the distal end of the outer shaft member and includes a pair of jaw members configured for treating tissue. A bushing operably couples to the inner and outer shaft members of the shaft assembly and selectively and releasably couples to the housing. The bushing includes one or more mechanical interfaces configured to engage one or more slots defined through the inner shaft member and one or more slots defined through the outer shaft member to release the inner and outer shaft members from the housing.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: May 5, 2020
    Assignee: COVIDIEN LP
    Inventors: Robert B. Stoddard, James S. Cunningham, William J. Dickhans, Russell D. Hempstead, Eric R. Larson, Duane E. Kerr, William H. Nau, Jr., Anthony B. Ross, John J. Kappus
  • Patent number: 10639052
    Abstract: The present disclosure provides a system for delivery of therapeutic energy. The system includes an energy unit configured to convert the acoustic energy signals transmitted to therapeutic ultrasound directed to fragment tumors and carcinogenic tissue in the body. The system also includes an energy unit configured to convert the acoustic energy signal transmitted from the energy unit to ultrasonic energy to image and monitor the treatment site with ultrasound. The system also includes a control unit including a computer for data storage and display.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: May 5, 2020
    Assignee: P Tech, LLC
    Inventor: Peter M. Bonutti
  • Patent number: 10639010
    Abstract: Provided are a puncture range determination apparatus and a puncture range determination method in which the hardness of tissue is considered as well as blood vessels. A blood vessel (32) is detected through performing Doppler processing. In addition, a soft region (33) of a subject is detected through performing elastication processing. A range of the soft region (33) excluding the blood vessel (32) is detected as a puncture recommendation range. Guide lines (34) and (35) defining the puncture recommendation range are displayed. A doctor performs puncturing with a needle inside the guide lines (34) and (35) and punctures a puncture target region (31) with the needle.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: May 5, 2020
    Assignee: FUJIFILM Corporation
    Inventor: Hiroaki Yamamoto
  • Patent number: 10639006
    Abstract: Disclosed is a focused ultrasound operation apparatus that includes: an operation hand piece that includes a handle unit that is used as a handle for a user; a cartridge that includes an ultrasound treatment unit, which generates a focused ultrasound, and has the shape of a circular cylinder or bar, the cartridge being attached to, and detached from, the operation hand piece; a window provided on the cartridge to pass the focused ultrasound generated by the ultrasound treatment unit; and a driver that drives the ultrasound treatment unit to move the ultrasound treatment unit forward and backward.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: May 5, 2020
    Assignee: HIRONIC CO., LTD.
    Inventors: Moon Seok Choi, Seon Tai Kim, Sung Won Lee, Jin Woo Lee, Jun Hyung Lee, Sang Hyeon Hwang, Tae Yun Kwon
  • Patent number: 10621305
    Abstract: A wireless medical room control arrangement includes a wireless controller having a wireless router. A room identifier and a device identifier are stored in the controller. A communication interface sends commands to and receives commands from the wireless controller. In response to commands from the interface, the wireless controller sends wireless control signals to operate medical devices in the room. A room monitor adjacent a doorway provides room identifiers to medical devices and wireless controllers entering the room and provides dummy identifiers to medical devices and controllers exiting the room. The room monitors may connect to a global network processor that determines the location of the medical devices in a medical facility.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: April 14, 2020
    Assignee: Stryker Corporation
    Inventors: Prabhu Raghavan, Travis Morgan
  • Patent number: 10610705
    Abstract: A probe for ultrasound treatment of skin laxity are provided. Systems and methods can include ultrasound imaging of the region of interest for localization of the treatment area, delivering ultrasound energy at a depth and pattern to achieve the desired therapeutic effects, and/or monitoring the treatment area to assess the results and/or provide feedback. In an embodiment, a treatment system and method can be configured for producing arrays of sub-millimeter and larger zones of thermal ablation to treat the epidermal, superficial dermal, mid-dermal or deep dermal components of tissue.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 7, 2020
    Assignee: Guided Therapy Systems, L.L.C.
    Inventors: Peter G. Barthe, Michael H. Slayton, Inder Raj S. Makin
  • Patent number: 10610706
    Abstract: Methods and systems for treating skin, such as stretch marks through deep tissue tightening with ultrasound are provided. An exemplary method and system comprise a therapeutic ultrasound system configured for providing ultrasound treatment to a shallow tissue region, such as a region comprising an epidermis, a dermis or a deep dermis. In accordance with various exemplary embodiments, a therapeutic ultrasound system can be configured to achieve depth with a conformal selective deposition of ultrasound energy without damaging an intervening tissue. In addition, a therapeutic ultrasound can also be configured in combination with ultrasound imaging or imaging/monitoring capabilities, either separately configured with imaging, therapy and monitoring systems or any level of integration thereof.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 7, 2020
    Assignee: Guided Therapy Systems, LLC
    Inventors: Peter G. Barthe, Michael H. Slayton, Inder Raj S. Makin
  • Patent number: 10610197
    Abstract: A system for imaging and treating tissue comprises a probe having a deflectable distal tip for carrying an imaging array and a delivery needle for advancement within a field of view of the imaging array. Optionally, the needle will carry a plurality of tines which may be selectively radially deployed from the needle. The imaging array will preferably be provided in a separate, removable component.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: April 7, 2020
    Assignee: Gynesonics, Inc.
    Inventors: Robert K. Deckman, Brian Placek, Michael A. Munrow, Craig Gerbi, Jessica Grossman
  • Patent number: 10610193
    Abstract: A system for continuous ultrasonic monitoring includes an ultrasound transducer. The ultrasound transducer includes an array of ultrasonic transducer elements. The ultrasonic transducer elements are operable to steer and focus an ultrasound beam to a selectable location and to receive an ultrasound signal from the selectable location. A holder is provided for holding the ultrasound transducer, the holder being attachable to a skin surface of a patient. A controller is configured to repeatedly steer and focus the ultrasound beam to identify a target section of an object inside the body of the patient and to acquire an ultrasound image such that the target section is maintained within the acquired ultrasound image.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: April 7, 2020
    Assignee: Hemonitor Medical Ltd.
    Inventors: Avinoam Bar-Zion, Tom Mayblum, Samer Toume
  • Patent number: 10603523
    Abstract: A method and system for providing ultrasound treatment to a tissue that contains a lower part of dermis and proximal protrusions of fat lobuli into the dermis. An embodiment delivers ultrasound energy to the region creating a thermal injury and coagulating the proximal protrusions of fat lobuli, thereby eliminating the fat protrusions into the dermis. An embodiment can also include ultrasound imaging configurations using the same or a separate probe before, after or during the treatment. In addition various therapeutic levels of ultrasound can be used to increase the speed at which fat metabolizes. Additionally the mechanical action of ultrasound physically breaks fat cell clusters and stretches the fibrous bonds. Mechanical action will also enhance lymphatic drainage, stimulating the evacuation of fat decay products.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: March 31, 2020
    Assignee: Guided Therapy Systems, LLC
    Inventors: Michael H. Slayton, Peter G. Barthe, Inder Raj S. Makin
  • Patent number: 10603519
    Abstract: Methods for non-invasive fat reduction can include targeting a region of interest below a surface of skin, which contains fat and delivering ultrasound energy to the region of interest. The ultrasound energy generates a thermal lesion with said ultrasound energy on a fat cell. The lesion can create an opening in the surface of the fat cell, which allows the draining of a fluid out of the fat cell and through the opening. In addition, by applying ultrasound energy to fat cells to increase the temperature to between 43 degrees and 49 degrees, cell apoptosis can be realized, thereby resulting in reduction of fat.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: March 31, 2020
    Assignee: Guided Therapy Systems, LLC
    Inventors: Michael H. Slayton, Peter G. Barthe
  • Patent number: 10595819
    Abstract: A system for imaging and treating tissue comprises a probe having a deflectable distal tip for carrying an imaging array and a delivery needle for advancement within a field of view of the imaging array. Optionally, the needle will carry a plurality of tines which may be selectively radially deployed from the needle. The imaging array will preferably be provided in a separate, removable component.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: March 24, 2020
    Assignee: Gynesonics, Inc.
    Inventors: Robert K. Deckman, Brian Placek, Michael A. Munrow, Craig Gerbi, Jessica Grossman
  • Patent number: 10595944
    Abstract: A mobile surgical robotic cart assembly includes a vertical column supporting a robotic arm thereon, a base, and a plurality of casters each having wheels and each being attached to the base thereby allowing the surgical robotic assembly to move. Each of the plurality of casters has a wheel alignment assembly configured to lock each of the respective wheels in a plurality of orientations.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: March 24, 2020
    Assignee: COVIDIEN LP
    Inventor: James Lattimore
  • Patent number: 10595821
    Abstract: Described herein are example ultrasonic transducer device probes configured to be placed on a patient's body to direct an ultrasonic beam towards an internal structure inside the body and receive ultrasonic echo signals from the internal structure. A probe includes a housing in which an ultrasonic transducer is located, a transceiving face of the transducer being at an acute angle relative to a front plane of the housing. An accelerometer unit and a magnetic field sensing unit are also housed inside the probe. The transducer, accelerometer, and magnetic field sensing unit are embedded in a body of a first material comprising ultrasound non-sonolucent material. A front face of the body of the first material and a recess extending down to the transceiving face is covered by a body of a second material comprising ultrasound sonolucent material having a tacky or non-tacky front surface.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: March 24, 2020
    Assignee: Respinor AS
    Inventors: Torgeir Hamsund, Morten Eriksen, Nicolas Souzy, Nicolay Berard-Andersen
  • Patent number: 10589129
    Abstract: Various approaches for reducing microbubble interference with ultrasound waves transmitted from multiple transducer elements and traversing tissue onto a target region include measuring microbubbles in high-throughput areas of ultrasound exposure and reducing the amount of microbubbles using the ultrasound waves.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: March 17, 2020
    Assignee: INSIGHTEC, LTD.
    Inventors: Kobi Vortman, Shuki Vitek, Eyal Zadicario, Yoav Levy
  • Patent number: 10575819
    Abstract: A rotational intravascular ultrasound probe for insertion into a vasculature and a method of manufacturing the same. The rotational intravascular ultrasound probe comprises an elongate catheter having a flexible body and an elongate transducer shaft disposed within the flexible body. The transducer shaft comprises a proximal end portion, a distal end portion, a drive shaft extending from the proximal end portion to the distal end portion, an ultrasonic transducer disposed near the distal end portion for obtaining a circumferential image through rotation, and a transducer housing molded to the drive shaft and the ultrasonic transducer.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: March 3, 2020
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventors: Stephen Charles Davies, Norman Hugh Hossack, Peter Howard Smith
  • Patent number: 10556132
    Abstract: The present invention comprises methods and devices for modulating the activity or activities of living cells, such as cells found in or derived from humans, animals, plants, insects, microorganisms and other organisms. Methods of the present invention comprise use of the application of ultrasound, such as low intensity, low frequency ultrasound, to living cells to affect the cells and modulate the cells' activities. Devices of the present invention comprise one or more components for generating ultrasound waves, such as ultrasonic emitters, transducers or piezoelectric transducers, composite transducers, CMUTs, and which may be provided as single or multiple transducers or in an array configurations. The ultrasound waves may be of any shape, and may be focused or unfocused.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 11, 2020
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventor: William James P. Tyler
  • Patent number: 10560725
    Abstract: An indication is received, from a content viewing device used by a remote viewer, that specifies a video content sub-area of interest within streamed video content viewed by the remote viewer. Original video content outside of the video content sub-area of interest is designated as a region not of interest (RNOI) within the streamed video content. A transmission rate of image changes of the original video content within the RNOI is reduced within the streamed video content. Image disparity between the video content sub-area of interest and the RNOI is reduced by continuing to transmit the image changes of the original video content within the RNOI at the reduced transmission rate. Bandwidth consumed to transmit the streamed video content is reduced in relation to the reduced transmission rate of the image changes of the original video content within the RNOI.
    Type: Grant
    Filed: December 9, 2018
    Date of Patent: February 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kulvir S. Bhogal, Jonathan F. Brunn, Jeffrey R. Hoy, Asima Silva
  • Patent number: 10549127
    Abstract: Systems for nerve and tissue modulation are disclosed. An example system may include an intravascular nerve modulation system including an elongated shaft having a proximal end region and a distal end region. The system may further include a bar element extending distally from the distal end region of the elongated shaft and one or more ablation transducers affixed to the bar element.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: February 4, 2020
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Binh C. Tran, Mark L. Jenson
  • Patent number: 10542962
    Abstract: Radiation treatment is delivered to a patient by positioning the patient such that a radiation beam is delivered to a lesion within the patient along a beam-delivery path while securing a diagnostic imaging device about the patient such that the diagnostic imaging device does not intersect the beam-delivery path. Radiation therapy is simultaneously delivered along the beam-delivery path while diagnostic images are obtained using the imaging device.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: January 28, 2020
    Assignee: Elekta, LTD
    Inventors: Martin Lachaine, Sebastien Tremblay, Philippe Fortier, Sergei Koptenko, Tony Falco