With Beam Directing Or Shaping Means In The Wave Path (e.g., Lens, Reflector) Patents (Class 600/472)
  • Patent number: 8491484
    Abstract: The systems and methods described herein provide for a forward looking guidewire having a reduced radial cross-section for increased maneuverability and use of the guidewire within more narrow vasculature. The guidewire can include an elongate tubular member having a distal region, proximal region and inner lumen and a forward looking imaging device coupled with the distal end of the guidewire. The distal region of the guidewire can be relatively more flexible than the proximal region. The guidewire can also include a second, side looking imaging device, which can be coupled around a longitudinal portion of the guidewire in the radial or proximal regions.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: July 23, 2013
    Assignee: Scimed Life Systems, Inc.
    Inventor: Nickola Lewis
  • Publication number: 20130172750
    Abstract: In order to obtain a high-resolution ultrasound diagnostic image while reducing the back side reflection of a ultrasound irradiated to the side opposite to the ultrasound transmission direction of an ultrasound transmission/reception device, disclosed is an ultrasound probe, wherein a substrate is provided thereon with a cavity, insulation layers having the cavity therebetween, and an upper layer electrode and a lower layer electrode having the cavity and the insulation layers therebetween, so as to form an ultrasound vibration element, the substrate is held by a backing with a low-modulus member therebetween, and a direct voltage and a alternating voltage are applied between the electrodes to vibrate the ultrasound vibration element, and wherein a mechanical impedance by the substrate and the low-modulus member has a substantially equal value as an acoustic impedance of the backing.
    Type: Application
    Filed: August 19, 2011
    Publication date: July 4, 2013
    Applicant: HITACHI MEDICAL CORPORATION
    Inventors: Yasuhiro Yoshimura, Tatsuya Nagata, Akifumi Sako
  • Publication number: 20130158411
    Abstract: Measuring is performed by bringing a gel pad GP which is an acoustic coupling medium into contact with a measuring portion which has concavities and convexities and by sending and receiving ultrasound from a probe via the gel pad GP. At this time, the contact pressure of the probe and the gel pad GP is detected using pressure sensors which are provided in the probe (first pressure sensor and second pressure sensor). Then, ultrasound focusing is performed using the detected pressure of the pressure sensors.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 20, 2013
    Applicant: SEIKO EPSON CORPORATION
    Inventor: SEIKO EPSON CORPORATION
  • Publication number: 20130150725
    Abstract: A probe for an ultrasonic diagnostic apparatus which is used for performing a test upon a subject is provided. The probe includes a case which forms an exterior of the probe, a piezoelectric object which is provided on an inside of the case and which generates an ultrasonic wave, a sound absorbing layer which is provided at a rear surface of the piezoelectric object and which prevents the ultrasonic wave from being delivered to a rear portion of the piezoelectric object, an acoustic matching layer which delivers the generated ultrasonic wave to a subject by matching a sound impedance of the piezoelectric object with a sound impedance of the subject, and a sound lens which concentrates the generated ultrasonic wave and radiates the concentrated ultrasonic wave toward the subject.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 13, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130116571
    Abstract: A ruggedized hydrogel product that is formulated to withstand the effects of high-energy sterilization procedures, such as gamma beam and electron beam sterilization, without significant structural degradation is disclosed. This enables the hydrogel product to be suitable for use in medical applications where sterile components are required. In one embodiment a ruggedized hydrogel product is disclosed and comprises a gel component, water for hydrating the gel component, and at least one free radical absorber component that is capable of absorbing free radicals produced when the hydrogel product is sterilized via a high-energy sterilization procedure. The free radical absorber component in one embodiment includes potassium metabisulfite and ascorbic acid. The ruggedized hydrogel product can be included with an ultrasound probe to provide an acoustically transparent interface between the probe and the skin of a patient.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 9, 2013
    Applicant: C. R. BARD, INC.
    Inventor: C. R. Bard, Inc.
  • Patent number: 8423116
    Abstract: A measurement system and method are presented for use for non-invasive measurements in a human body. Acoustic radiation is applied to a certain illuminated region in the body, with at least two different conditions of the applied radiation achievable by varying at least one characteristic of the acoustic radiation. Light scattered from the body part is detected, and measured data indicative of detected photons tagged and untagged by the acoustic radiation is generated. The measured data is analyzed to extract therefrom a data portion corresponding to the tagged photons and being therefore associated with a light response of said certain region, thereby enabling determination of tissue properties of said certain region based on a relation between the measured data portions corresponding to the at least two different operating conditions.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: April 16, 2013
    Assignee: Or-Nim Medical Ltd.
    Inventors: Michal Balberg, Revital Pery-Shechter, Michal Olshansky
  • Publication number: 20130085396
    Abstract: An ultrasonic probe is provided. The ultrasonic probe includes a reflection layer between an ultrasonic transducer and a backing layer, the reflection layer configured to reflect an ultrasonic wave transmitted from the ultrasonic transducer, wherein the backing layer includes a backing material, and wherein a thermally-conductive layer of material having a thermal conductivity higher than that of the backing material is formed over a surface of the backing layer.
    Type: Application
    Filed: September 27, 2012
    Publication date: April 4, 2013
    Applicant: GE MEDICAL SYSTEMS GLOBAL TECHNOLOGY COMPANY, LLC
    Inventor: GE MEDICAL SYSTEMS GLOBAL TECHNOLOGY COMPANY, LLC
  • Publication number: 20130072802
    Abstract: This invention provides a lens for ultrasonic diagnosis apparatuses having requisite acoustic characteristics concerning sonic velocity, acoustic impedance and acoustic attenuation and exhibiting high abrasion resistance; the lens including a base formed from a silicone rubber composition, and a urethane coat layer placed on an outer surface of the base, wherein the urethane coat layer includes 100 parts by mass of a urethane resin and 3-7 parts by mass of silica. This invention also provides a probe therefor having the same characteristics, including a case having at least one open end; the lens arranged so that a tip thereof is exposed at the end; a piezoelectric element housed in the case; an acoustic matching layer placed between the lens and the element; and a backing layer disposed opposite the acoustic matching layer with the element in between.
    Type: Application
    Filed: May 25, 2011
    Publication date: March 21, 2013
    Applicant: SHIN-ETSU POLYMER CO., LTD.
    Inventor: Satoshi Hozumi
  • Patent number: 8356399
    Abstract: A method of protecting a resonating sensor is described. The protected resonating sensor may include at least one passive ultrasonically excitable resonating sensor unit. Each sensor unit has one or more vibratable members having a resonating frequency that varies as a function of a physical variable in a measurement environment. The sensor is protected by forming one or more protective chambers defined between a compliant member and the vibratable member(s). A substantially non-compressible medium is disposed within the protective chamber(s). The compliant member has a first side that may be exposed to a measurement environment and a second side that may be exposed to the substantially non-compressible medium. The substantially non-compressible medium may be a liquid or gel and is in contact with the vibratable member(s). When the medium is a liquid, the chamber is sealed. When the medium is a gel, the chamber may be sealed or non-sealed.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: January 22, 2013
    Assignee: Microtech Medical Technologies Ltd.
    Inventor: Shay Kaplan
  • Patent number: 8333721
    Abstract: An ultrasound medical treatment system includes an end effector insertable into a patient. The end effector includes a tissue-retaining device. The tissue-retaining device includes a first tissue-retaining member having an ultrasound medical-treatment transducer and includes a second tissue-retaining member. The first and second tissue-retaining members are operatively connected together to retain patient tissue between the first and second tissue-retaining members and to release patient tissue so retained. In one example, the second tissue-retaining member has an ultrasound reflector. In the same or a different example, the ultrasound medical-treatment transducer is an ultrasound imaging and medical-treatment transducer.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: December 18, 2012
    Inventors: Inder Raj S. Makin, Robert Dunki-Jacobs, Richard C. Pellegrino, Michael H. Slayton
  • Patent number: 8292818
    Abstract: Provided is an acoustic lens composition which comprises 40 wt % or more of silicone rubber and 15 to 60 wt % of a zinc oxide powder, suppresses ultrasonic attenuation, and has superior molding properties.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: October 23, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yohachi Yamashita, Yasuharu Hosono, Hiroyuki Shikata, Takashi Takeuchi, Yasuhisa Makita
  • Patent number: 8295904
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM, and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient, which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: October 23, 2012
    Assignee: AccuVein, LLC
    Inventors: Ron Goldman, David Hunt, Mark Mock, Graham Marshal, Stephen P. Conlon, Robert Roth
  • Publication number: 20120232401
    Abstract: An ultrasound diagnostic adapter used when diagnosing a subject using an ultrasound probe that transmits and receives ultrasound waves, the ultrasound diagnostic adapter includes: a pad which has (i) a main surface that is a surface on a side where the ultrasound probe is disposed, and (ii) a back surface that is a surface which is opposite to the main surface and is on a side where the subject is disposed; and a first reflective member which is disposed inside the pad and made from a material having a different acoustic impedance than a material included in the pad, wherein the first reflective member is disposed such that at least one of (i) a distance between the first reflective member and the main surface and (ii) a width of the first reflective member viewed from the side of the main surface varies depending on a position in the main surface.
    Type: Application
    Filed: May 24, 2012
    Publication date: September 13, 2012
    Inventors: Kazuya TAKAGI, Satoshi Kondo
  • Patent number: 8231535
    Abstract: An ultrasound catheter is described herein for insertion into a cavity such as a blood vessel to facilitate imaging within a vasculature. The catheter comprises an elongate flexible shaft, a capacitive microfabricated ultrasonic transducer, and a sonic reflector. The elongate flexible shaft has a proximate end and a distal end. A capacitive microfabricated ultrasonic transducer (cMUT) is mounted to the shaft near the distal end. The reflector is positioned such that a reflective surface redirects ultrasonic waves to and from the transducer. In other embodiments, the catheter comprises a plurality of cMUT elements and operates without the use of reflectors. In further embodiments, integrated circuitry is incorporated into the design.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: July 31, 2012
    Assignee: Volcano Corporation
    Inventors: Norman Hugh Hossack, Blair Walker, Stephen Charles Davies, Donald Stanley Mamayek, John F. Sheridan
  • Patent number: 8221321
    Abstract: Ultrasound imaging systems and methods are disclosed. In one embodiment, an ultrasonography method includes creating a database that is representative of a tissue, a fluid, or a cavity of a body, and transmitting ultrasound pulses into a region-of-interest in a patient. Echoes are received from the region of interest, and based upon the received echoes, compiling an ultrasonic pattern of the region-of-interest is compiled. The pattern is processed by comparing the region-of-interest patterns to the pattern information stored in the database. A composition within the region-of-interest of the patient is then determined.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: July 17, 2012
    Assignee: Verathon Inc.
    Inventors: Gerald McMorrow, Vikram Chalana, Jongtae Yuk, Henri Baartmans, Nicolaas Bom, Charles Theodoor Lancee, Egon J. W. Merks
  • Publication number: 20120165669
    Abstract: A medical ultrasound device is disclosed. The device comprises an elongated body having a proximal end and a distal end region (1). One or more ultrasound transducers (4) for generating acoustic radiation are positioned in the distal end region, inside the elongated body. A transmission element (5) which is substantially transparent to acoustic radiation is positioned in the radiation path of the acoustic radiation, and a controller unit is operatively connected to the ultrasound transducer. The transmission element and the one or more ultrasound transducers are mounted so that an acoustic path length (8) between the transmission element (5) and the ultrasound transducer (4) varies with contact force (10) imposed to the distal end region. The controller unit detects the acoustic path length between the ultrasound transducer and the transmission element and determines the contact force from the detected acoustic path length. In an embodiment, the medical device is an ultrasound RF ablation catheter.
    Type: Application
    Filed: September 8, 2010
    Publication date: June 28, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Maya Ella Barley, Godefridus Antonius Harks, Szabolcs Deladi
  • Publication number: 20120143063
    Abstract: An ultrasound transducer matrix array for an ultrasound probe having a large field of view both in azimuth and elevation direction is proposed. The ultrasound transducer matrix array (1?) comprises a center region (11?) and at least three branch regions (13) each comprising a 2-dimensional matrix array (5) of ultrasound transducer elements (3). The center region comprises at least three edges (15) from which the respective branch regions extend. Each branch region (13) is curved around an axis parallel to the edge (15) of the center region (11) from which the respective branch region (13) extends. With an ultrasound probe comprising such ultrasound transducer area with branch regions interconnected by a common, preferably flat center region, an ideal matrix array having a field of view with a spheroidal shape may be approximated.
    Type: Application
    Filed: August 27, 2010
    Publication date: June 7, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Andrew L. Robinson
  • Publication number: 20120123274
    Abstract: An ultrasonic transducer which can attenuate ultrasonic waves emitted toward the rear without increasing a thickness of a backing layer includes: a piezoelectric transducer which emits and receives ultrasonic waves; and the backing layer which is provided in contact with the rear of the piezoelectric transducer and which attenuates the ultrasonic waves emitted in a rear direction from the piezoelectric transducer. The backing layer includes a plurality of acoustic tubes formed in the rear direction from a plane of the backing layer that is in contact with the piezoelectric transducer. Each of the acoustic tubes has a different length based on a principle of superposition of acoustic waves. The acoustic tubes include an acoustic tube which has (i) a portion of the length formed in a direction perpendicular to the rear direction and (ii) the remaining portion of the length formed in a direction parallel to the rear direction.
    Type: Application
    Filed: January 26, 2012
    Publication date: May 17, 2012
    Inventors: Masako IKEDA, Takashi OGURA
  • Patent number: 8170649
    Abstract: An arrangement and method for imaging and/or measuring tissue qualities, such as tissue thickness, tissue surface roughness and degree of tissue fiber linearization. The arrangement includes at least one light generating element, at least one light detecting element, a probe with an extension, and possibly a control apparatus including a signal processor for processing the detected signals and/or images. The extension is designed to convey light from the light generating element to the tissue for visualization and/or measurement. The extension is also designed to convey light back-scattered from the tissue to the light detecting element. The detecting element is designed to measure the intensity and/or spatial distribution of light back-scattered from the tissue.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: May 1, 2012
    Assignee: BioOptico, AB
    Inventors: Anders Johansson, Tommy Sundqvist, Åke Öberg
  • Patent number: 8162839
    Abstract: A protected resonating sensor may include at least one resonating sensor unit. Each sensor unit has one or more vibratable members. The protected sensor includes a compliant member that forms part of one or more chambers. A first side of the compliant member may be exposed to a medium in a measurement environment. The sensor unit may be any resonating sensor unit having a resonance frequency that depends on the value of a physical variable in a measurement environment. The protected sensor includes a substantially non-compressible medium disposed within the chamber(s). The substantially non-compressible medium may be a liquid or a gel. When the medium is a liquid, the chamber is sealed. When the medium is a gel, the chamber may be sealed or non-sealed. The medium is in contact the vibratable member(s) and with a second side of the compliant member. The medium may have a low vapor pressure.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: April 24, 2012
    Assignee: Microtech Medical Technologies Ltd.
    Inventor: Shay Kaplan
  • Publication number: 20120053460
    Abstract: In some illustrative embodiments, an incoming signal from a transducer in an ultrasound imaging beam-former apparatus is applied to an in-phase sample-and-hold and a quadrature sample-and-hold. The quadrature sample-and-hold may be clocked a quarter period behind the in-phase sample-and-hold. The output of the sample-and-holds are applied to in-phase and quadrature analog-to-digital converters. A magnitude calculator receives the in-phase and quadrature digital values, and outputs a magnitude. A phase calculator receives the in-phase and quadrature digital values, and outputs a phase. An apodizer applies a difference between an amplitude of the outgoing signal and the magnitude and applies a first illumination to a image point in substantial proportion to the difference, and a phase rotator applies a second illumination to the image point in substantial proportion to the phase.
    Type: Application
    Filed: August 16, 2011
    Publication date: March 1, 2012
    Applicant: The University of Virginia Patent Foundation
    Inventors: Travis N. Blalock, William F. Walker, John A. Hossack
  • Publication number: 20120022375
    Abstract: The present invention relates to an acoustic device for ultrasonic imaging of an object (21). The device comprises an acoustic transducer (10 and an acoustic lens (20) arranged to variably refract the said acoustic pulse to and/or from the acoustic transducer. The acoustic lens comprising a first (L1) and a second fluid (L2) being separated by an acoustic interface (7), the normal of the said acoustic interface forming a relative angle of incidence (AI) with the said acoustic pulse, e.g. an electrowetting lens. The first and the second fluid of the acoustic lens (20) are specifically chosen so that the acoustic interface (7) has a reflection minima at a non-zero relative angle of incidence (AI). The invention is advantageous for obtaining an improved acoustic device having a substantially lower reflection in a broader interval of incidence angles as compared to hitherto seen ultrasonic imaging utilising acoustic lenses with two or more fluids as the active acoustic refracting entities.
    Type: Application
    Filed: January 25, 2010
    Publication date: January 26, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Szabolcs Deladi, Jan Frederik Suijver, David Maresca
  • Publication number: 20120016243
    Abstract: A high frequency ultrasound analog beamformer comprises a linear array of surface acoustic wave (SAW) devices formed on a single crystal piezoelectric substrate, such as a PMN-PT single crystal piezoelectric substrate. Each SAW device comprises ultrasound input and output electrode structures separated by a variable delay structure. The beamformer further comprises a delay controller operably connected to each variable delay structure to control the delay of each SAW device to dynamically focus signals received at each input electrode.
    Type: Application
    Filed: February 26, 2010
    Publication date: January 19, 2012
    Applicant: DALHOUSIE UNIVERSITY
    Inventors: Jeremy Brown, Robert Bruce Alexander Adamson
  • Patent number: 8092391
    Abstract: An ultrasonic imaging catheter apparatus and a method of using the same to scan the inner wall of a body lumen. The ultrasonic imaging catheter apparatus comprises: (a) a flexible elongate element adapted for insertion into a body lumen, the elongate element having distal and proximal ends; (b) an ultrasonic transducer generating and detecting ultrasonic energy disposed proximate the distal end of the elongate element; (c) a reflective member disposed proximate the ultrasonic transducer and optionally rotatable with respect to an axis of the body lumen, wherein the reflective member is adapted to reflect (i) ultrasonic energy generated by the ultrasonic transducer to a wall of the body lumen and (ii) ultrasonic energy reflected by the wall back to the transducer; and (d) an actuator, for example, an electroactive polymer actuator, adapted to change the angle of incidence of the ultrasonic energy relative to the reflective member.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: January 10, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Lucien Alfred Couvillon, Jr.
  • Patent number: 8088073
    Abstract: A device, in particular a therapy device, for the application of acoustic shock waves aimed at a region to be treated in a human or animal body and comprising a housing with a coupling surface for coupling the shock waves into the body to be treated, a shock wave generating device and a means suitable for focusing the shock waves, in which the shock wave generating device and the means suitable for focusing the shock waves are enclosed in a housing and designed such that they can be moved relative to the coupling surface.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: January 3, 2012
    Assignee: SANUWAVE, Inc.
    Inventors: Erwin Simnacher, Dick van Rijn
  • Publication number: 20110319768
    Abstract: Provided are an ultrasonic transducer, an ultrasonic probe, and an ultrasonic diagnostic device which enable an ultrasonic beam in the depth direction of diagnosis to be narrowly focused in a wide region, thereby obtaining a high-resolution diagnostic image. An ultrasonic transducer (100) is provided with an ultrasonic vibrator (110), a shape change layer (120) which is provided on the subject side of the ultrasonic vibrator and the shape of which is changed by an electrical signal, electrodes (141, 142) which are respectively disposed on both surfaces of the shape change layer (120), and a variable power source (140) which applies the electrical signal between the electrodes (141, 142), wherein the variable power source (140) varies the focus or diffusion of the ultrasonic beam by changing the shape of the shape change layer (120); by controlling the electrical signal to be applied between the electrodes (141, 142).
    Type: Application
    Filed: March 3, 2010
    Publication date: December 29, 2011
    Applicant: PANASONIC CORPORATION
    Inventor: Koetsu Saito
  • Patent number: 8057389
    Abstract: A method and system for ultrasound treatment utilizing a multi-directional transducer to facilitate treatment, such as therapy and/or imaging or other tissue parameter monitoring, in two or more directions. In accordance with an exemplary embodiment, a multi-directional transducer comprises at least two transduction elements configured to provide for ultrasound energy, such as radiation, acoustical energy, heat energy, imaging, positional information and/or tissue parameter monitoring signals in two or more directions. The transduction elements can comprise various materials for providing ultrasound energy or radiation, such as piezoelectric materials, with and without matching layers. In addition, the transduction elements can be configured for substantially uniform, focused and/or defocused radiation patterns, as well as for single, multiple-element and/or multiple-element array configurations.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: November 15, 2011
    Assignee: Guided Therapy Systems, LLC
    Inventors: Peter G Barthe, Michael H Slayton
  • Patent number: 8046055
    Abstract: A sentinel lymph node detecting apparatus 1 according to an embodiment of the present invention includes: a light source unit 2, illuminating an excitation light 10 and an illumination light 11 onto a biological observation location 20 that includes a sentinel lymph node 21 near a tumor, into which a fluorescent dye that emits fluorescence is injected; an optical filter 3, transmitting a fluorescence image 11 and a normal image 13; an image pickup device 5, disposed integral to the light source unit 2 and picking up the fluorescence image 11 and the normal image 13 transmitted through the optical filter 3; and an image display device 7, displaying the observation images that have been picked up. The wavelength of the illumination light 11 is set to a value close to the wavelength of the fluorescence emitted from the fluorescent dye.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: October 25, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Mitsuharu Miwa, Takahiro Shikayama
  • Patent number: 8037766
    Abstract: The present invention relates to a method for generating mechanical waves within a viscoelastic medium (11) comprising a step of generating an acoustic radiation force (15) within the viscoelastic medium (11) by application of acoustic waves focused on an interface (13) delimiting two zones (11, 14) having distinct acoustic properties.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 18, 2011
    Assignee: Super Sonic Imagine
    Inventors: Jérémy Bercoff, Claude Cohen-Bacrie, Mathieu Pernot, David Savery
  • Patent number: 7976483
    Abstract: A catheter system is disclosed. The catheter system includes a catheter body having an external surface and an ultrasound transducer having a side between a first end and a second end. A first medium is positioned adjacent to the first end of the ultrasound transducer and a second medium is positioned adjacent to the external side of the ultrasound transducer. The second medium is harder than the first medium to encourage flexibility of the catheter body adjacent to the first end of the ultrasound transducer and efficient transmission of ultrasound energy from the external side of the ultrasound transducer.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: July 12, 2011
    Assignee: Ekos Corporation
    Inventors: Frederick J. Bennett, James E. Rodriguey
  • Patent number: 7914458
    Abstract: An ultrasound catheter is described herein for insertion into a cavity such as a blood vessel to facilitate imaging within a vasculature. The catheter comprises an elongate flexible shaft, a capacitive microfabricated ultrasonic transducer, and a sonic reflector. The elongate flexible shaft has a proximate end and a distal end. A capacitive microfabricated ultrasonic transducer (cMUT) is mounted to the shaft near the distal end. The reflector is positioned such that a reflective surface redirects ultrasonic waves to and from the transducer. In other embodiments, the catheter comprises a plurality of cMUT elements and operates without the use of reflectors. In further embodiments, integrated circuitry is incorporated into the design.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: March 29, 2011
    Assignee: Volcano Corporation
    Inventors: Norman Hugh Hossack, Blair Walker, Stephen Charles Davies, Donald Stanley Mamayek, John F. Sheridan
  • Patent number: 7909766
    Abstract: The present invention is generally directed towards an imaging transducer assembly. Generally, the imaging transducer assembly includes an imaging transducer located within the lumen of a sheath, wherein the sheath is configured such that an energy beam emitted from the imaging transducer narrows as it exits the sheath, resulting in an image with a higher resolution.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: March 22, 2011
    Assignee: Scimed Life Systems, Inc.
    Inventors: Warren Lee, Jian R. Yuan
  • Publication number: 20110060226
    Abstract: An ultrasonic beamformer may include an input signal line for each ultrasonic transducer element configured to carry a broadband pulse from the ultrasonic element. The ultrasonic beamformer may include a number of signal shifters that is substantially less than the number of transducer elements. Each signal shifter may be configured to shift a broadband pulse in a way that is different from the way the other signal shifters are configured to shift a broadband pulse. For each of the input signal lines, a multiplexer may be configured to electrically connect the broadband pulse received on the input signal line to a selected one of the signal shifters. A multiplexer controller may be configured to generate the control signal for each of the multiplexers in a fashion that causes the ultrasonic beamformer to substantially compensate for the differences in the distances. A comparable configuration may be used for transmission.
    Type: Application
    Filed: September 3, 2010
    Publication date: March 10, 2011
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Jesse Yen, Jay Mung, Man Nguyen
  • Patent number: 7883468
    Abstract: An ultrasound medical system has an end effector including a medical ultrasound transducer and an acoustic coupling medium. The acoustic coupling medium has a transducer-proximal surface and a transducer-distal surface. The medical ultrasound transducer is positioned to emit medical ultrasound through the acoustic coupling medium from the transducer-proximal surface to the transducer-distal surface. The end effector is adapted to change a property (such as the shape and/or the temperature) of the acoustic coupling medium during emission, and/or between emissions, of medical ultrasound from the medical ultrasound transducer during a medical procedure on a patient. In one example, such changes are used to change the focus and/or beam angle of the emitted ultrasound during the medical procedure.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: February 8, 2011
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Inder Raj S. Makin, T. Douglas Mast, Michael H. Slayton, Peter G. Barthe, Jeffrey D. Messerly, Waseem Faidi, Megan M. Runk
  • Patent number: 7844093
    Abstract: A method for enhancing an ultrasound image is provided, wherein the ultrasound image is segmented into a feature region and a non-feature region, while sufficiently utilizing features contained in the ultrasound image, in particular including some inconspicuous features, the enhanced image according to present invention is not susceptive of the image segmentation and avoid dependence of the enhancement effect on the segmentation template, so as not to produce an evident artificial boundary between the feature region and the non-feature region but to highlight some special information in the image and to remove or mitigate invalid information. Thus the enhanced ultrasound image is particularly suitable for the visual system of the human beings.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: November 30, 2010
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Dong Ni, Lei Zhu, Qinjun Hu, Helin Feng
  • Patent number: 7828737
    Abstract: The invention has a structure, in an acoustic lens for an ultrasonic probe comprising leg portions which are connected by a planar shape, and a lens portion which is provided on the leg portions and has curvature in the lengthwise direction, wherein the leg portions are made from an attenuation prevention material having the less ultrasonic propagation loss than for the lens portion. Moreover, the leg portions of the acoustic lens are formed with opposite end sides thereof in a bent L-shape. Furthermore, an ultrasonic probe is constructed by adhering onto a piezoelectric element group where a plurality of piezoelectric elements are arranged side by side, an acoustic lens provided with curvature in the lengthwise direction.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: November 9, 2010
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventor: Takashi Wakabayashi
  • Patent number: 7824347
    Abstract: A device and method for mapping, diagnosing and treating the intestinal tract is provided using a capsule passing through the intestinal tract. Further, a capsule tracking system is provided for tracking a capsule's location along the length of an intestinal tract as various treatment and/or sensing modalities are employed. In one variation, an acoustic signal is used to determine the location of the capsule. A map of sensed information may be derived from the pass of a capsule. Capsules may be subsequently passed through to treat the intestinal tract at a determined location along its length. One variation uses an electrical stimulation capsule to treat and/or diagnose a condition in the intestinal tract.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: November 2, 2010
    Assignee: Entrack, Inc.
    Inventors: Mir A. Imran, Oliver K. Colliou, Ted W. Layman, Sharon L. Lake, Harm Tenhoff, Timothy J. Hughes
  • Patent number: 7806827
    Abstract: An ultrasound breast imaging assembly includes first and second compression plates angled with respect to one another, a breast compression area defined between the first and second compression plates, at least one pivot assembly, and an ultrasound probe. The pivot assembly allows relative motion between the first and second compression plates. The ultrasound probe, which is configured to translate over one of the first and second compression plates, includes an active matrix array (AMA) positioned on one of the first and second compression plates.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: October 5, 2010
    Assignee: General Electric Company
    Inventors: Heidi D. Zhang, Robert F. Lawrence, Gilbert M. Lima, Steven C. Miller, Anne L. Hall
  • Patent number: 7806892
    Abstract: An ultrasound medical treatment system includes an end effector insertable into a patient. The end effector includes a tissue-retaining device. The tissue-retaining device includes a first tissue-retaining member having an ultrasound medical-treatment transducer and includes a second tissue-retaining member. The first and second tissue-retaining members are operatively connected together to retain patient tissue between the first and second tissue-retaining members and to release patient tissue so retained. In one example, the second tissue-retaining member has an ultrasound reflector. In the same or a different example, the ultrasound medical-treatment transducer is an ultrasound imaging and medical-treatment transducer.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: October 5, 2010
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Inder Raj S. Makin, Robert Dunki-Jacobs, Richard C. Pellegrino, Michael H. Slayton
  • Patent number: 7770689
    Abstract: Disclosed is an ultrasonic lens configuration permitting the production of an acoustic field from low frequency ultrasound waves with predictable regions of energy concentration. The lens comprises at least three adjacent convex surface contours. Each surface contour corresponds to an arc of an ellipse. The first surface contour is within the center of the lens and is flanked by two adjacent contours. The flanking contours correspond to arcs from two symmetrical ellipses having semi-latus rectums at least equal to the semi-latus rectum of the ellipse to which the first, central, contour corresponds. The contours of the lens are arranged such that the flanking contours extend past the first contour by positioning the contours so that if the ellipses to which they correspond were drawn the ellipses of the flanking contours directly adjacent to the first contour would have their centers aligned on a plane parallel to and not below the major or minor axis of the ellipse of the first contour.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: August 10, 2010
    Assignee: Bacoustics, LLC
    Inventor: Eilaz Babaev
  • Patent number: 7635334
    Abstract: Elements within each of a plurality of sub-arrays are dynamically grouped as a function of the steering direction. The dynamic grouping allows for partial beamforming with more similar delays within each grouping of elements within the sub-array. A plurality of partial beamformers is provided for each sub-array. Different ones of the elements are mapped to different ones of the partial beamformers as a function of the steering direction. As used herein, steering direction includes one or more of a focal location, a scan line angle, a scan line origin or other beamforming parameters associated with establishing a relative delay between elements. The shape or grouping of elements is changed at the beginning of any acquisition cycle, such as the beginning of transmit and receive operation for a given steering direction. Dynamic sub-array mapping may minimize negative effects of sub-array partial beamforming by providing an optimal shape of the sub-array groupings based on the steering direction.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: December 22, 2009
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Robert N. Phelps
  • Patent number: 7618373
    Abstract: A capacitive microfabricated transducer array used for 3-D imaging, with a relatively large elevation dimension and a bias control of the elevation aperture in space and time, confers the same benefits of mechanical translation, except that image cross-sections are electronically rather than mechanically scanned, and are registered very accurately in space. The 3-D cMUT, when combined with elevation bias control and convex curvature in elevation, increases the volume interrogated by the electronic scanning, thus improving field of view. Further still, the 3-D cMUT can be combined Fresnel focusing of the elevation section to improve the elevation focus.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: November 17, 2009
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Igal Ladabaum, Satchi Panda, Christopher M Daft
  • Patent number: 7517317
    Abstract: Different subarray combinations are provided for ultrasound imaging. A basic building block component supports different subarray sizes. Rather than providing a switching network for all possible combinations, a transducer array is divided into super arrays. Each super array is associated with a plurality of possible subarrays. For example, a 3×12 block of elements is divisible into four 3×3 or three 3×4 subarrays. As another example, a 4×12 block of elements is divisible into four 4×3 and three 4×4 subarrays. For each super array, the block of elements is divided into slices, such as three slices along one dimension for 3×12 block or four slices along that dimension for the 4×12 block. The number of elements along one division in each slice represents a least common multiple of the varying extent of the subarray sizes. Twelve is the least common multiple of three and four. By using small building blocks, the slice inputs are combined into partial subarrays.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: April 14, 2009
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: John C. Lazenby, David A. Petersen
  • Patent number: 7494469
    Abstract: A connection apparatus and method for controlling an ultrasound probe are provided. The ultrasound probe includes a first chamber, a second chamber and a sealing member between the first and second chambers. The ultrasound probe further includes a connection member within the second chamber having a rigid portion and a flexible portion, with the rigid portion forming at least part of the sealing member.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: February 24, 2009
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventor: Reinhold Bruestle
  • Patent number: 7491172
    Abstract: A connection apparatus and method for controlling an ultrasound probe are provided. The ultrasound probe includes a first chamber, a second chamber, a sealing member between the first and second chambers and a flexible connection member within each of the first and second chambers. The ultrasound probe further comprises a rigid connection interface forming at least part of the sealing member and connecting the flexible connection member in the first chamber with the flexible connection member in the second chamber.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: February 17, 2009
    Assignee: General Electric Company
    Inventor: Reinhold Bruestle
  • Patent number: 7491169
    Abstract: A process and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatible components on compartment dimensions and muscle tissue characteristics. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring pressure build-up in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the imparted ultrasonic waves, mathematically manipulating the captured ultrasonic waves and categorizing pressure build-up in the body compartment from the mathematical manipulations.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: February 17, 2009
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: William T. Yost, Toshiaki Ueno, Alan R. Hargens
  • Publication number: 20090018450
    Abstract: Beamforming for N elements in performed in log(N) steps of complexity O(N). The signals measured at each element are treated as a receive beam formed by that element with a beam width equal to the element pattern or the width of the transmit illumination. In each of multiple stages, the number of elements is halved by effectively doubling the pitch. The number of beams formed by each element is doubled by narrowing the beam width by a factor of 2 in sin(?). Since steering and focusing are separated, a single set of delays are applied to each element signal individually prior to the multi-stage beam forming for each finite depth. The data is in a sector format, but by using two beamforming steps, data in a Vector® format is provided.
    Type: Application
    Filed: September 29, 2008
    Publication date: January 15, 2009
    Inventor: John C. Lazenby
  • Publication number: 20090005690
    Abstract: To better position an ultrasonic transducer typically used in non-invasive fetal monitoring during labor, the present invention consists of a transducer-aligning device having a plurality of selectively fillable chambers, each chamber having a resiliently deformable side-wall. A fluid, such as air, can be selectively pumped or released into any combination of the chambers. When coupled to an ultrasonic transducer, the selective use of air pressure in the bladder more precisely aligns and positions the fetal monitor transducer to improve imaging. In a second embodiment, the present invention includes a solid wedge-shaped protrusion extending below the bottom surface of the housing and adapted to rotate about 360-degrees to enable a care-giver to selectively position the wedge and thus align the associated transducer for optimal readings of fetal heart rate.
    Type: Application
    Filed: June 28, 2007
    Publication date: January 1, 2009
    Inventor: Nancy Beck Irland
  • Publication number: 20080200816
    Abstract: An ultrasound diagnostic apparatus of the present invention includes a cap, and an ultrasound transducer which includes a lens provided in a piezoelectric element, is rotatable and swingable and is provided in a cap, and the lens focuses ultrasound transmitted from the piezoelectric element and includes a shape in which a first focal length of a first lens surface on a section parallel with a rotational center axis including a center of a sound beam axis of the ultrasound is shorter than a second focal length of a second lens surface on a section orthogonal to the rotational center axis including the center of the sound beam axis.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 21, 2008
    Applicant: OLYMPUS MEDICAL SYSTEMS CORP.
    Inventor: Takanao FUJIMURA
  • Publication number: 20080194967
    Abstract: A high intensity focused ultrasound transducer includes an ultrasonic emitter having a surface that emits ultrasonic energy along a beam path, at least one low attenuation polymeric ultrasonic lens acoustically coupled to the surface in the beam path of the ultrasonic energy, such that the lens can direct the ultrasonic energy in at least one direction, and at least one stress mitigation feature, such as a kerf, a heat sink, or an acoustic matching layer, to mitigate thermal expansion mismatch stresses within the transducer. For manufacturing simplicity, the first surface is typically either flat or monotonically curvilinear. The lens may take a variety of shapes, including Fresnel features, and may focus, collimate, or defocus the ultrasonic energy. Any orientation and positioning of the at least one ultrasonic lens relative to the first ultrasonic emitter is contemplated. Manufacture is further simplified by molding, casting, or thermoforming the lens.
    Type: Application
    Filed: February 8, 2007
    Publication date: August 14, 2008
    Inventors: John W. Sliwa, Peter Goetz, Zhenyi Ma, Jennifer Teng, Stephen Morse, Frank Callaghan, Timothy E. Ciciarelli