Measuring Breath Flow Or Lung Capacity Patents (Class 600/538)
  • Publication number: 20150094607
    Abstract: Methods and apparatus for diagnosing and treating disorders of the lung are provided, which may include any number of features. In one embodiment, a method comprises obtaining diagnostic information relating to a patient's lungs, compiling a list of potential treatment plans for lung volume reduction in the first and second lungs, excluding treatment plans from the list of potential treatment plans that propose treatment of a lung segment that falls within a segment exclusion rule, and identifying at least one preferred treatment plan from the list of potential treatment plans that targets sufficiently diseased lung segments while also targeting a preferred combined volume of the first and second lungs.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Robert Lawrence BARRY, Erik HENNE, Avina GUPTA, Sourish BANDYOPADHYAY
  • Patent number: 8986216
    Abstract: A process is provided for leak testing in a respirator (10) with overpressure operation. An indicator of a breathing gas consumption is compared with an indicator of an expiration volume and a leak is detected in case of a deviation of the result of the comparison (58) from a desired value. A device is also provided for carrying out the process as well as to a respirator (10) with overpressure operation with such a device.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: March 24, 2015
    Assignee: Dräger Saftey AG & Co. KGaA
    Inventor: Jürgen Unger
  • Publication number: 20150073292
    Abstract: A bi-directional flow sensor may be adapted for reducing pneumatic noise during pressure sensing with a flow passing through the flow sensor. The flow sensor may include a hollow, tubular member having a throat section disposed between a ventilator end and a patient end. A flow restrictor may be disposed in the throat section and may be adapted to measure differential pressure in the flow. A baffle may be mounted at the ventilator end and may be adapted to minimize non-axial flow at pressure taps located on opposing ends of the flow restrictor. The patient end may include a flow obstruction configured to promote uniform velocity across the flow at the pressure taps during exhalation flow from the patient end to the ventilator end. The flow sensor can minimize pneumatic noise to less than 0.1 LPM to allow accurate patient flow measurement and triggering of inhalation and exhalation phases at flow rates of 0.2 LPM.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 12, 2015
    Inventors: Todd W. ALLUM, Malcolm R. WILLIAMS, Joseph CIPOLLONE
  • Publication number: 20150065904
    Abstract: The present invention provides a system and method for delivery of nitric oxide to the upper respiratory tract without resulting in nitric oxide delivery to the lungs. In certain embodiments, the invention comprises the use of a flow sensor to sense the exhalation of the subject, and delivering a nitric oxide containing gas upon sensed exhalation.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicant: 12th Man Technologies, Inc.
    Inventors: Alex Stenzler, Steve Han
  • Patent number: 8967140
    Abstract: A drug package comprising a plurality of drug vials containing drugs for delivery to a patient in a drug delivery device; and a data carrier including drug treatment information for use by the drug delivery apparatus.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: March 3, 2015
    Assignee: Profile Respiratory Systems Limited
    Inventors: Jonathan Stanley Harold Denyer, Anthony Dyche
  • Publication number: 20150045634
    Abstract: Monitoring systems are provided for monitoring physiologic parameters of at least one subject. The systems generally include a monitoring device or a plurality of monitoring devices, and a transmission device associated with the one or the plurality of the monitoring devices. The monitoring device(s) includes at least one physiologic sensor for measuring at least one physiologic parameter of a subject and a wireless communication unit. The transmission device includes at least one communication unit for communicating with the monitoring device wirelessly and for communicating with a remote computer. The monitoring device(s) communicate data measured with the monitoring device to the transmission device wirelessly and the transmission device communicates the measured data to the remote computer.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: Jason Goldberg, Thomas C. Beckerman
  • Publication number: 20150038867
    Abstract: A method of a processor for detecting a presence of Cheyne-Stokes respiration from a respiration signal includes accessing data representative of a respiration signal. Data is assessed to detect apnea and/or hypopnea events. A cycle length histogram is determined based on the events and an incident of Cheyne-Stokes respiration is detected based on the cycle length histogram.
    Type: Application
    Filed: January 25, 2013
    Publication date: February 5, 2015
    Inventors: Jeffrey Peter Armitstead, Dinesh Ramanan
  • Publication number: 20150038868
    Abstract: A method of operating a CPAP apparatus in which the interface pressure is controlled to rapidly drop at the start of expiration by an expiratory relief pressure (ERP) that is independent of instantaneous respiratory flow, following which the pressure rises to an inspiratory level at or shortly before the end of expiration, or at the onset of an expiratory pause, if any. The ERP is an increasing function of the inspiratory pressure. The expiratory pressure follows a template that is a function of the expected expiration time, the magnitude of the template being equal to the ERP. The current estimated proportion of expiration is determined by comparing the expiration time of the breath in progress to low-pass filtered expiratory durations measured for a number of the preceding breaths.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventor: David John Bassin
  • Publication number: 20150038866
    Abstract: Systems and methods for detecting a worsening of a patient's heart failure condition based, at least in part, on a declining trend in a representative tidal volume value over multiple days. The tidal volume value may be a maximum tidal volume, and more particularly, a maximum tidal volume determined for an afternoon portion of each of the multiple days or a selected portion of each of the multiple days that excludes a night portion. The maximum tidal volume during these portions of the day may be more sensitive to changes in a patient's respiration, particularly when a patient is expected to be more active, and thus, may more readily exhibit a declining trend when the patient's heart failure status is in decline.
    Type: Application
    Filed: August 4, 2014
    Publication date: February 5, 2015
    Inventors: Yi Zhang, Viktoria A. Averina, Kenneth C. Beck, Pramodsingh Thakur, Ramesh Wariar
  • Patent number: 8936556
    Abstract: A respiration pattern of a number of respiration cycles is detected and breath intervals (BI) and tidal volume (TVOL) measurements of each of the respiration cycles are respectively determined. An unevenly sampled instantaneous minute ventilation (iMV) signal is produced using the BI and TVOL measurements, and an evenly sampled iMV signal (resampled iMV signal) is produced using the unevenly sampled iMV signal. Disordered breathing is detected based on a comparison between a baseline threshold and the resampled iMV signal.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: January 20, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kent Lee, Yi Zhang, Paul F. Emerson, Jesse W. Hartley, John D. Hatlestad, Jonathan T. Kwok, Weiguang Shao
  • Patent number: 8938299
    Abstract: A system is disclosed for applying a treatment therapy for sleep disordered breathing. The system includes a sensing module configured to sense physiologic conditions and an implantable pulse generator in communication with the sensing module and including an automatic therapy manager. The automatic therapy manager operates in a first state to detect sleep indicative behavior, a second state to detect sleep disordered breathing behavior, and a third state to apply a nerve stimulation signal.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: January 20, 2015
    Assignee: Inspire Medical Systems, Inc.
    Inventors: Mark A. Christopherson, Quan Ni, Timothy P. Herbert, John Rondoni
  • Patent number: 8932227
    Abstract: The disclosed embodiments relate to a patient monitor for evaluating a patient. The patient monitor may comprise a capnometer that is adapted to receive at least a portion of exhaled flow from the patient and to produce a first output indicative of exhaled carbon dioxide associated with the exhaled flow, an oximeter that is adapted to receive an input from the patient and to produce a second output indicative of oxygen saturation of blood of the patient, and a processor adapted to receive at least the first output and the second output and to correlate the first output with the second output.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: January 13, 2015
    Inventor: Lawrence A. Lynn
  • Publication number: 20150011906
    Abstract: Disclosed are biofeedback methods and devices suitable for providing biofeedback useful for helping a user control an own breathing, for example, to help in inducing deep breathing, and such biofeedback devices further comprising a dispenser for dispensing an inhalable substance.
    Type: Application
    Filed: November 20, 2012
    Publication date: January 8, 2015
    Inventor: Orna LEVIN
  • Publication number: 20150005659
    Abstract: The region extraction unit extracts lung regions from three-dimensional images of a plurality of time phases, the alignment unit aligns pixel position in the lung region extracted from each three-dimensional image between the three-dimensional images. This calculates a displacement vector field at each time phase of the three-dimensional images. The function generation unit calculates a local ventilation volume function representing a temporal change in ventilation volume at each point in the displacement vector field, and the quantification unit calculates a difference function, which is a function of difference values between the local ventilation volume function and benchmark ventilation volume function, as a quantitative value representing a difference between the local ventilation volume function and the benchmark ventilation volume function. The display control unit displays lung VR images on which the difference function is mapped on the display in time series order.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventor: Jun Masumoto
  • Publication number: 20140378858
    Abstract: An apparatus for the mobile determination of at least one physiological stress threshold value of an athlete. The apparatus includes a sensor for determining the respired air volume at each point in time of a plurality of points in time. A processing unit is configured to compute a sum value for each point in time of the plurality of points in time at least based on the respired air volume of a present point in time and a sum value of a previous point in time, to set the sum value to an initial value, if the previous point in time is not within the plurality of points in time, and to determine the physiological stress threshold value based on the computed sum values.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 25, 2014
    Inventors: Roger Armitage, Christian Heyde
  • Publication number: 20140378792
    Abstract: An anti-fouling sleeve for an endotracheal tube, a method of placement, and the tools for placement. The anti-fouling sleeve occupies the entire length of endotracheal tube, and can be installed permanently or made removable and disposable. The sleeve may be instrumented with sensors and/or a UV light source to reduce and potentially eliminate biofilm formation. Once placed inside the endotracheal tube the sleeve expands to conform to the inner diameter of the tube. After use, any accumulated biofilm on the inner portion of the sleeve is removed leaving the inner portion of the endotracheal tube essentially sterile.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: William S. Krimsky, Murat Yasar, Gregory J. Hiemenz, Amit Navin Shah
  • Patent number: 8915861
    Abstract: An adaptor is adapted to be attached on a face of the subject to collect expiration gas of the subject. An airway case is formed with a chamber, and adapted to be coupled with a carbon dioxide sensor so that carbon dioxide in the expiration gas flowing through the chamber is detected by the carbon dioxide sensor. Nasal tubes are adapted to be inserted into nostrils of the subject when the adaptor is attached on the face of the subject. The nasal tubes are adapted to lead nasal expiration gas of the subject to the chamber. A mouth guide is adapted to lead oral expiration gas of the subject to the chamber when the adaptor is attached on the face of the subject. A branch tube is communicating with the nasal tubes and adapted to lead pressure generated by the nasal expiration gas to an external pressure sensor.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: December 23, 2014
    Assignee: Nihon Kohden Corporation
    Inventors: Shinji Yamamori, Noriaki Tadokoro
  • Publication number: 20140371618
    Abstract: A method, system and computer-readable medium are provided for determining compliance with one or more patient care rules and protocols, the method including the steps of sending infusion information from a pump to a processor pertaining to one or more drugs provided to a patient, sending ventilation information from a ventilator to the processor pertaining to ventilation provided to the patient and determining, with the processor, a variation between actual care of the patient and a set of rules and protocols associated with care of the patient at least in part based on the infusion information and the ventilation information.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 18, 2014
    Applicant: CareFusion 303, Inc.
    Inventors: Tom Steinhauer, Terry Lee Blansfield, Leonard Mulkowsky, Andres Jesus Calderon, III
  • Patent number: 8914107
    Abstract: A cardiac rhythm management (CRM) device can extract ventilation information from thoracic impedance or other information, and adjust a delivery rate of the CRM therapy. A tidal volume of a patient is measured and used to adjust a ventilation rate response factor. The measured tidal volume can optionally be adjusted using a ventilation rate dependent adjustment factor. The ventilation rate response factor can also be adjusted using a maximum voluntary ventilation (MVV), an age predicted maximum heart rate, a resting heart rate, and a resting ventilation determined for the patient. In various examples, a global ventilation sensor rate response factor (for a population) can be programmed into the CRM device, and automatically tailored to be appropriate for a particular patient.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: December 16, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Paul F. Emerson, Gary T. Seim, Michael A. Querimit, Donald L. Hopper, Stephen R. Pitzl, Daniel O'Brien
  • Patent number: 8911380
    Abstract: A respiration monitoring system includes a thermoelectric generator that may be mounted within a mask enclosure or free-standing, covering all or part of the nose and/or mouth of a subject. A first temperature sensor is attached to the thermoelectric generator for measuring the subject's breath. A power controller develops a difference between a preset temperature and the subject's breath temperature that is then inserted into a feedback error signal and then into a power controller which regulates the power to the thermoelectric generator to maintain a preset temperature.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: December 16, 2014
    Assignee: Linshom, L.P.
    Inventors: Doron Feldman, Jerrold Lerman, Ronen Feldman, John Moser, Uri Feldman
  • Publication number: 20140364706
    Abstract: Devices and systems provide methods of detecting a heart failure condition of a patient that may be based on one or more respiratory parameters of a patient. In an example embodiment, a monitoring device determines one or more heart failure condition indicators based on a measure of the patient respiratory airflow and/or a measure of treatment pressure. Respiratory parameters such as respiration rate, hypopneas, apneas, Cheyne-Stokes breathing patterns or apnea-hypopnea counts may be compared to thresholds that are selected to represent a change in the condition of a heart failure patient such as an onset of a decompensation event. Results of the comparisons may trigger a pressure treatment change and/or one or more warnings or messages to notify a patient or physician of a pending change to the patient's heart failure condition so that the patient may more immediately seek medical attention to treat the heart failure condition.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 11, 2014
    Inventors: Klaus Henry Schindhelm, Ian Wilcox, Rachel Ann Coxon
  • Patent number: 8905024
    Abstract: Systems and methods are described for application of a transitory corrective modification to a hot-wire anemometer flow voltage and/or calculated flow rate to compensate for transient thermal response of the anemometer during a change in mixture of a mixed gas being measured. According to one embodiment a method of applying the transitory corrective modification is provided. An output signal of an exhalation flow sensor of a medical ventilator is received. The flow sensor includes a hot-wire anemometer. The output signal is indicative of a rate of flow of expired gas by a patient. Transient thermal response of the hot-wire anemometer is compensated for by applying a corrective modification to the output signal or a value based thereon. The corrective modification is based at least in part on a fraction of inspired oxygen (FiO2) being supplied by the medical ventilator to the patient.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 9, 2014
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Rhomere S. Jimenez, Edward R. McCoy, Jeffrey K. Aviano
  • Publication number: 20140350367
    Abstract: A peak flow meter, breathalyzer, and pulse oximeter for use with a mobile device, such as a smartphone, are disclosed. In one embodiment, the peak flow meter receives air flow from the patient, converts it into an electrical signal using a pressure transducer, and transmits the signal to a mobile device over an interface. In another embodiment, the microphone of the mobile device is used to directly receive the airflow, and the mobile device converts the airflow into an electrical signal indicating the peak flow. In another embodiment, a breathalyzer receives air flow from a patient, converts it into an electrical signal using a sensor, and transmits the signal to a mobile device over an interface. In another embodiment, a pulse oximeter measures oxygen saturation in a patient's blood and transmits an electrical signal for that measurement to a mobile device over an interface.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 27, 2014
    Applicant: GestIn Time, Inc.
    Inventor: Suresh SUBRAMANIAM
  • Publication number: 20140350354
    Abstract: An oral appliance assembly is described. The assembly includes an oral appliance component having an upper teeth tray and a lower teeth tray. The assembly further includes a module releasably connected to the oral appliance. The module includes at least one sensor that is positioned outside of the mouth and underneath the nares of a subject's nose when the oral appliance component is positioned in the subject's mouth. A method of measuring user compliance of an oral appliance is also described. The method includes positioning an oral appliance in the mouth of a subject, measuring at least one parameter of airflow from the subject's nose or mouth, and determining compliance based on the at least one measured parameter. A method of measuring effectiveness of an oral appliance is also described.
    Type: Application
    Filed: August 6, 2013
    Publication date: November 27, 2014
    Applicant: 12th Man Technologies, Inc.
    Inventors: Alex Stenzler, William Ross, Steve Han, Jeffory Wyscarver
  • Publication number: 20140350430
    Abstract: A respiratory function testing apparatus capable of testing a respiratory function of a subject more accurately. In the apparatus, a respiratory state detection unit acquires a first signal representative of different inspiratory volumes corresponding to a plurality of breaths of the subject and a second signal representative of intrapleural pressures corresponding to the respective different inspiratory volumes, and detects a plurality of respiratory states corresponding to the different inspiratory volumes and their corresponding intrapleural pressures. A respiratory state determination unit captures a state of the respiratory function of the subject on the basis of the plurality of respiratory states corresponding to the different inspiratory volumes and their corresponding-respective intrapleural pressures.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 27, 2014
    Applicant: DENSO CORPORATION
    Inventors: Rie OSAKI, Shinji NANBA, Mitsuyuki KOBAYASHI, Taiji KAWACHI
  • Patent number: 8888711
    Abstract: A bi-directional flow sensor is adapted for reducing pneumatic noise during pressure sensing with a flow passing through the flow sensor. The flow sensor comprises a hollow, tubular member having a throat section disposed between a ventilator end and a patient end. A flow restrictor is disposed in the throat section and is adapted to measure differential pressure in the flow. A baffle is mounted at the ventilator end and is adapted to minimize non-axial flow at pressure taps located on opposing ends of the flow restrictor. The patient end includes a flow obstruction configured to promote uniform velocity across the flow at the pressure taps during exhalation flow from the patient end to the ventilator end. The flow sensor minimizes pneumatic noise to less than 0.1 LPM to allow accurate patient flow measurement and triggering of inhalation and exhalation phases at flow rates of 0.2 LPM.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: November 18, 2014
    Assignee: Carefusion 203, Inc.
    Inventors: Todd W. Allum, Malcolm R. Williams, Joseph Cipollone
  • Publication number: 20140336484
    Abstract: Methods and systems for targeting, accessing and diagnosing diseased lung compartments are disclosed. The method comprises introducing a diagnostic catheter with an occluding member at its distal end into a lung segment via an assisted ventilation device; inflating the occluding member to isolate the lung segment; and performing a diagnostic procedure with the catheter while the patient is ventilated. The proximal end of the diagnostic catheter is configured to be attached to a console. The method may also comprise introducing the diagnostic catheter into the lung segment; inflating the occluding member to isolate the lung segment; and monitoring blood oxygen saturation. The method may further comprise introducing the diagnostic catheter into the lung segment; determining tidal flow volume in the lung segment; determining total lung capacity of the patient; and determining a flow rank value based on the tidal flow volume of the lung segment and the total lung capacity.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Inventors: Surag Mantri, Srikanth Radhakrishnan
  • Patent number: 8858457
    Abstract: A method implemented, e.g., as software and a device operating according to the method for the automatic evaluation and analysis of a capnogram are provided. Measured values for an expired volume—volume measured values—and measured values for a carbon dioxide concentration—concentration measured values—are recorded for the breathing gas of a test subject. An automatic approximation of at least one part of the curve of the concentration measured values over the volume measured values is performed, by using three mutually adjacent straight lines for the approximation. The area is determined using the third straight line according to Fowler for the determination of the serial dead space Vds.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: October 14, 2014
    Assignee: Dräger Medical GmbH
    Inventor: Hans-Joachim Kohl
  • Patent number: 8851073
    Abstract: A medical device may include a patient interface for use in a breathing assistance system, an electronic device coupled to the patient interface, and one or more electrical conductors at least partially integrated with the patient interface. The patient interface may include a connection end configured for receiving gas communicated by a gas delivery apparatus, and a patient end configured for insertion into or more breathing passageways of a patient. The one or more electrical conductors at least partially integrated with the patient interface may be capable of facilitating communication of electrical signals between the electronic device and the gas delivery apparatus when the patient interface is communicatively coupled to the gas delivery apparatus.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: October 7, 2014
    Assignee: Covidien LP
    Inventor: Joseph Douglas Vandine
  • Publication number: 20140276176
    Abstract: The disclosure describes an exhalation valve sensor assembly. The disclosure describes a novel exhalation valve sensor assembly that is configured for refurbishing. Accordingly, the disclosure further describes systems and methods for maintaining an exhalation valve assembly and describes a kit for refurbishing an exhalation valve sensor assembly.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Covidien LP
    Inventor: David Phillip Winter
  • Publication number: 20140270448
    Abstract: The present invention relates to systems and methods for attenuation correction to improve reconstructed image quality and quantitative accuracy and reduce radiation dose in emission computed tomography. In one embodiment, the present invention provides an interpolated average CT (IACT) method and breathing control devices.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: UNIVERSITY OF MACAU
    Inventors: Seng Peng MOK, Tao SUN
  • Publication number: 20140275820
    Abstract: A resuscitator has a patient airway interface device, a bag, a flow passage coupled between the bag and patient airway interface device, and a sensor assembly. The patient airway interface device may be a mask or an endotracheal tube. The sensor assembly has a display, at least one sensor coupled to the flow passage and configured to provide a measurement of at least one parameter, and a processor coupled to the display and the at least one sensor. The processor is configured to receive the measurement from the sensor and provide information on the display based on the received measurement. The information may include a current breath rate, a pressure-vs-time curve, and guidance to the user to assist in achieving a target breath rate.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: CareFusion 2200, Inc.
    Inventors: Christopher VARGA, Dennis WHITE, Michael MCMAHON
  • Patent number: 8834387
    Abstract: An airflow signal corresponding to the breathing of the patient is obtained. A section corresponding to inspiration, having a front portion and a middle portion, is found within the airflow signal. A peak value of the front portion is found, which is compared with a value representing the airflow of the middle portion. The presence of resisted breathing is determined based on the comparison between the peak value of the front portion with a value representing the airflow of the middle portion. A baseline value of the airflow signal is found by calculating the mode of values within an airflow signal representing the pressure within a patient's naris. The section corresponding to inspiration is determined by finding peak inspiration and baseline values within a breath and searching from the peak until the baseline is reached to find the section of inspiration.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: September 16, 2014
    Assignee: Sagatech Electronics Inc.
    Inventor: Ronald S. Platt
  • Patent number: 8834848
    Abstract: A drug and device combination system used in a method for treatment of patients suffering from severe and oral corticosteroid-dependent asthma and other respiratory diseases requiring a treatment with orally administered steroids. The method for administration of the inhalable corticosteroid by a flow rate and volume regulated inhalation. The combination system of the inhalable corticosteroid and the device for regulating flow rate and volume of the inhalable corticosteroid and thus achieving delivery of said inhalable corticosteroid into the small airways of the lungs. The individually programmable device that assures safe and reproducible corticosteroid delivery compliant with treatment protocol.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: September 16, 2014
    Assignee: Activaero GmbH Research & Development
    Inventors: Bernard Muellinger, Gerhard Scheuch, Thomas Hofmann, Philipp Kroneberg
  • Patent number: 8834379
    Abstract: A system for providing an indication of cardiovascular function, includes a respiration input (1) for receiving a respiration-related signal indicative of a physical property of respiration gases administered to a patient. A hemodynamic input (2) is provided for receiving a hemodynamic-related signal indicative of a hemodynamic property. An inspiration detector (3) is provided for processing the respiration-related signal to detect times of inspiration and a measure of the size of the inspiration. A correlator (5) is provided for correlating the sizes of inspiration with the hemodynamic-related signal, to obtain the indication of cardiovascular function. The respiration-related signal is indicative of inspiration pressure, inspiration volume, or inspiration flow. The hemodynamic-related signal is indicative of blood pressure.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: September 16, 2014
    Assignee: Dräger Medical GmbH
    Inventor: Marc Van Houwelingen
  • Patent number: 8814806
    Abstract: A device for detecting the condition of flow in a respiration system combines the function of a nonreturn valve with the function of flow measurement in a common device. The device includes a valve arrangement (1) with a valve disk (9) and with a valve body (8), wherein the position of a valve disk (9) in relation to a valve seat (11) is detected. An indicator for a flow and a direction of flow (5), (6) is determined from the position of the valve disk (9). The position of the valve disk (9) can be determined inductively, electrically, electromechanically or optically. The flow and direction of flow (5), (6) determined can be used to control the respiration in a medical device.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: August 26, 2014
    Assignee: Dräger Medical GmbH
    Inventors: Götz Kullik, Hans-Ullrich Hansmann, Dieter Settgast
  • Patent number: 8808194
    Abstract: Methods and systems for targeting, accessing and diagnosing diseased lung compartments are disclosed. The method comprises introducing a diagnostic catheter with an occluding member at its distal end into a lung segment via an assisted ventilation device; inflating the occluding member to isolate the lung segment; and performing a diagnostic procedure with the catheter while the patient is ventilated. The proximal end of the diagnostic catheter is configured to be attached to a console. The method may also comprise introducing the diagnostic catheter into the lung segment; inflating the occluding member to isolate the lung segment; and monitoring blood oxygen saturation. The method may further comprise introducing the diagnostic catheter into the lung segment; determining tidal flow volume in the lung segment; determining total lung capacity of the patient; and determining a flow rank value based on the tidal flow volume of the lung segment and the total lung capacity.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 19, 2014
    Assignee: Pulmonx Corporation
    Inventors: Surag Mantri, Srikanth Radhakrishnan
  • Publication number: 20140228657
    Abstract: A system and method for monitoring respiration of a user, comprising: a respiration sensing module including a sensor configured to detect a set of respiration signals of the user based upon movement resulting from the user's respiration; a supplementary sensing module comprising an accelerometer and configured to detect a set of supplemental signals from the user; an electronics subsystem comprising a power module configured to power the system and a signal processing module configured to condition the set of respiration signals and the set of supplemental signals; a housing configured to facilitate coupling of the respiration sensing module and the supplementary sensing module to the user; and a data link coupled to the electronics subsystem through the housing and configured to transmit data generated from the set of respiration signals and the set of supplemental signals, thereby facilitating monitoring of the user's respiration.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 14, 2014
    Applicant: Spire, Inc.
    Inventors: Jonathan Paul K. Palley, Zhao Zhao
  • Publication number: 20140228700
    Abstract: A method for pulmonary testing includes, while a patient inspires through the testing device, injecting a test gas at a selected flowrate toward an open end of the testing device. The method also includes measuring a flow rate of the inspired gas, which comprises the test gas. The method further includes measuring a concentration of a selected test gas component in the inspired gas.
    Type: Application
    Filed: April 16, 2014
    Publication date: August 14, 2014
    Applicant: nSpire, Inc.
    Inventors: Norman THOMAS, Edmond CHU
  • Patent number: 8795189
    Abstract: A system and method for determining pulmonary performance from transthoracic impedance measures is provided. Transthoracic impedance measures collected by an implantable medical device are correlated to pulmonary functional measures. The pulmonary functional measures are grouped by respiratory pattern. Pulmonary performance is evaluated. Differences are determined by comparing the pulmonary functional measures for each respiratory pattern to the pulmonary functional measures for at least one previous respiratory pattern. A trend is identified from the differences. An alert is generated upon sufficient deviation of the trend from a threshold criteria.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: August 5, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Quan Ni, Jesse W. Hartley, Kent Lee, Jeffrey E. Stahmann
  • Publication number: 20140213925
    Abstract: This disclosure is directed to devices, systems, kits and methods for measuring peak expiratory or inspiratory flow-rate and dynamically predicting respiratory episodes. Additionally, systems for analyzing and processing the measurement in a communication networked environment are also provided. An aspect of the disclosure is directed to a respiratory device, In some configurations the respiratory device comprises a housing adaptable and configurable to communicate with an electronic device, a mouth piece having a proximal end and a distal end configurable to engage a mouth of a patient and transmit an air flow, one or more diaphragm sensors configured to detect a breath vibration from the air flow in the mouth piece, and a processor adaptable and configurable to analyze the breath vibration detected by the one or more diaphragm sensors.
    Type: Application
    Filed: September 20, 2012
    Publication date: July 31, 2014
    Inventors: Johnny Yat Ming Chan, Stephen Anthony Tunnell, Michael Joseph Thomas
  • Patent number: 8790271
    Abstract: A portable device for measuring a consumed calories includes: a respiration measurement device measuring an amount of air inhaled into a user's nose to acquire and output a respiration signal; a plurality of movement detection devices acquiring and outputting acceleration signals reflecting (or indicating) the magnitude and direction of a movement of each part of the user's body; and a controller recognizing the amount of a user's movements and movement patterns by analyzing the acceleration signal, recognizing an intensity of an exercise by analyzing the respiration signal, and calculating a consumed calories in consideration of the amount of the user's movements, the movement patterns, and the intensity of exercise. A user's consumed calories can be precisely calculated by recognizing the user's movement and even the user's respiration rate.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: July 29, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Yong Won Jang
  • Patent number: 8790270
    Abstract: A method of monitoring lung ventilation of a subject is disclosed. The method comprises recording signals from a plurality of sensing location on the chest of the subject, at least a portion of the signals being indicative of a local motion of the chest at a respective sensing location. The method further comprises operating a data processing system to analyze the signals such as to determine a status of the ventilation, thereby to monitor the lung ventilation of the subject.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: July 29, 2014
    Assignee: Technion Research & Development Foundation Ltd.
    Inventors: Amir Landesberg, Dan Waisman, Carmit Levy
  • Publication number: 20140207014
    Abstract: A micromachined fluid flow regulating device is disclosed comprising a fluid flow channel, at least one flow orifice formed in the channel, defining an inlet portion of the channel upstream of the flow orifice, an outlet portion of the channel downstream of the flow orifice, the fluid having a flow direction from the inlet portion to the outlet portion of the channel. At least one piston is arranged upstream of the flow orifice, movably suspended in the channel by a spring means such that the piston is movable by the fluid in the flow direction of the fluid, towards the flow orifice, to regulate a fluid flow through the flow orifice. The disclosure further relates to the use of a micromachined flow regulating device in a breath analysis device and to a method of fabricating a flow regulating device.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 24, 2014
    Inventors: Niclas Roxhed, Staffan Johansson, Goran Stemme, Hans Peter Starck Johnson
  • Publication number: 20140207016
    Abstract: A nebulizer includes a nebulizer body having an air channel section, medication reservoir and nebulizer outlet. An air line has an inlet at one end and extends through the air channel section and has a venturi nozzle oriented horizontally when in use and an outlet and configured to form a low pressure mixing chamber. The air line provides a pulsed flow of gas between the inlet and outlet end. The venturi nozzle and medication reservoir are received within an oral cavity of a patient when in use. A primary suction line extends from the medication reservoir to the low pressure mixing chamber through which medication is drawn upward and mixed with gas passing through the venturi nozzle and nebulized for pulsed discharge through the nebulizer outlet during nebulization.
    Type: Application
    Filed: January 29, 2014
    Publication date: July 24, 2014
    Applicant: PNEUMOFLEX SYSTEMS, LLC
    Inventors: W. Robert ADDINGTON, Stuart P. Miller
  • Publication number: 20140194705
    Abstract: An evaluation of heart failure status is provided based on a disordered breathing index. Patient respiration is sensed and a respiration signal is generated. Disordered breathing episodes are detected based on the respiration signal. A disordered breathing index is determined based on the disordered breathing episodes. The disordered breathing index is trended and used to evaluate heart failure status. The disordered breathing index may be combined with additional information and/or may take into account patient activity, posture, sleep stage, or other patient information.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Jonathan T. Kwok, Marina Brockway, Kent Lee, Quan Ni, Yachuan Pu, Jeffrey E. Stahmann, Yi Zhang, Jesse W. Hartley
  • Publication number: 20140194767
    Abstract: Determining the lung compliance and lung resistance of a subject undergoing respiratory therapy using non-invasive ventilation requires taking the presence of leaks into account. In particular, variable and unintentional leaks at or near a subject interface appliance may be dynamically determined based on an average resistance of the leak orifice of the subject.
    Type: Application
    Filed: July 25, 2012
    Publication date: July 10, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Han Zheng, Samir Ahmad, Masahiro Taniguchi
  • Patent number: 8775093
    Abstract: A method employing pattern recognition techniques for identifying the functional status of patients with Pulmonary Hypertension is described. This method describes a process by which sets of cardiopulmonary exercise gas exchange variables are measured during rest, exercise and recovery and stored as unique data sets. The data sets are then analyzed by a series of feature extraction steps, yielding a multi-parametric index (MPIPH) which reflects the current functional status of a patient. The method also employs a description scheme that provides a graphical image that juxtaposes the measured value of MPI to a reference classification system. An additional description scheme provides a trend plot of MPI values measured on a patient over time to provide feedback to the physician on the efficacy of therapy provided to the patient.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: July 8, 2014
    Assignee: Shape Medical Systems, Inc.
    Inventors: Stephen T. Anderson, Dean J. MacCarter
  • Patent number: 8771205
    Abstract: A device for detecting and counting coughing events is provided. In one embodiment a sensor for sensing and transducing low frequency and high frequency mechanical vibrations, sends signals to a coincidence detector that determines if high and low signals coincide. In another embodiment, ultrasonic energy is introduced to the trachea and if Doppler shift in frequency is detected, association is made to a coughing event. In another embodiment a change in the impedance of the neck is considered associated with coughing event if correlated over time with a specific mechanical frequency sensed.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: July 8, 2014
    Assignee: Isonea Limited
    Inventors: Oren Gavriely, Noam Gavriely
  • Publication number: 20140171817
    Abstract: The present invention describes a method and apparatus for detecting and quantifying intrinsic positive end-expiratory pressure (PEEPi) of a respiratory patient breathing with the assistance of a ventilator. A processing device receives respiratory airway data from one or more sensors adapted to non-invasively monitor a respiratory patient, calculates from the respiratory airway data two or more parameters that are indicative of or quantify intrinsic positive end-expiratory pressure of the patient, and generates an indication intrinsic positive end-expiratory pressure (PEEPi).
    Type: Application
    Filed: September 28, 2013
    Publication date: June 19, 2014
    Inventors: Paul B. Blanch, Vikas Meka, Neil R. Euliano