With Feed Back Control Patents (Class 606/38)
  • Patent number: 11786293
    Abstract: A bipolar surgical instrument comprises a body first and second opposed jaws located at the distal end of a shaft, the first jaw being movable with respect to the second jaw between an open position in which the first and second jaws are spaced apart from one another, and a closed position in which the first and second jaws are adjacent one another. The first and second elongate jaw members have respective first and second electrodes. A controller is operable to determine a boiling point for tissue between the jaws using a measure of impedance therebetween.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 17, 2023
    Assignee: GYRUS MEDICAL LIMITED
    Inventors: Wayne Williams, Lewis Jones
  • Patent number: 11730535
    Abstract: This invention relates to high-frequency ablation of tissue in the body using a cooled high-frequency electrode connected to a high frequency generator including a computer graphic control system and an automatic controller for control the signal output from the generator, and adapted to display on a real time graphic display a measured parameter related to the ablation process and visually monitor the variation of the parameter of the signal output that is controlled by the controller during the ablation process. In one example, one or more measured parameters are displayed simultaneously to visually interpret the relation of their variation and values. In one example, the displayed one or more parameters can be taken from the list of measured voltage, current, power, impedance, electrode temperature, and tissue temperature related to the ablation process.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: August 22, 2023
    Assignee: Cosman Instruments, LLC
    Inventors: Eric R. Cosman, Jr., Eric R. Cosman, Sr.
  • Patent number: 11684438
    Abstract: Methods and systems for detecting undesirable electrocautery arcing events during an electrocautery surgical procedure may include introducing an electrosurgical treatment instrument to a surgical site to perform an electrocautery surgical procedure. A healthcare provider may view the surgical site with a surgical camera assembly having a surgical field-of-view. The healthcare provider also may view a portion of the electrosurgical treatment instrument with an electrocautery arc detection system including an arc detection camera having an arc detection field-of-view different than the surgical field-of-view obtained by the surgical camera. The electrocautery arc detection system may identify thermal infrared emission or tissue color changes as indicators of undesirable electrocautery arcing. Some implementations alert a healthcare provider of undesirable electrocautery arcing.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: June 27, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventor: Jason Paul Watson
  • Patent number: 11666372
    Abstract: Apparatus and associated methods relate to controlling electrical power of an electrotherapeutic signal that is provided to a biological tissue engaged by an electrosurgical instrument during a medical procedure. Electrical power—a product of a voltage difference across and an electrical current conducted by the engaged biological tissue—is controlled according to a therapeutic schedule. The electrotherapeutic schedule can be reduced or terminated in response to a termination criterion being met. In some examples, the termination criterion is a current characteristic, such as, for example, a decrease in current conducted by the engaged biological tissue. In some examples, the termination criterion is a biological tissue resistance characteristic, such as, for example, an increase in the biological tissue resistance that exceeds a predetermined delta resistance value.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: June 6, 2023
    Assignee: Gyrus ACMI, Inc.
    Inventors: Kester Julian Batchelor, Wayne Williams, Frank Breitsprecher
  • Patent number: 11464561
    Abstract: An end effector assembly of a forceps includes a first jaw with a tissue sealing surface and an electrode on the sealing surface, and a second jaw with a tissue sealing surface and an electrode on the sealing surface. The first jaw and the second jaw move between an open position and a closed position. The sealing surface of at least one of the first jaw and the second jaw has a rigid medial section and flexible lateral sections.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: October 11, 2022
    Assignee: Gyrus ACMI, Inc.
    Inventors: Huisun Wang, Kester J. Batchelor, William Butler
  • Patent number: 11395653
    Abstract: A surgical stapling device includes a tool assembly including a jaw assembly and an impedance assembly. The jaw assembly includes an anvil assembly and a cartridge assembly. The tool assembly supports an impedance assembly for measuring the impedance of tissue grasped within the jaw assembly.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: July 26, 2022
    Assignee: Covidien LP
    Inventors: Robert Knapp, Matthew Eschbach, Johana Marinelli
  • Patent number: 11344362
    Abstract: Aspects of the present disclosure are presented for a medical instrument configured to adjust the power level for sealing procedures to account for changes in tissue impedance levels over time. In some aspects, a medical instrument may be configured to apply power according to a power algorithm to seal tissue by applying a gradually lower amount of power over to time as the tissue impedance level begins to rise out of the “bathtub region,” which is the time period during energy application where the tissue impedance is low enough for electrosurgical energy to be effective for sealing tissue. In some aspects, the power is then cut once the tissue impedance level exceeds the “bathtub region.” By gradually reducing the power, a balance is achieved between still applying an effective level of power for sealing and prolonging the time in which the tissue impedance remains in the “bathtub region.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: May 31, 2022
    Assignee: Cilag GmbH International
    Inventors: David C. Yates, Amy M. Krumm, Mark A. Davison
  • Patent number: 11304744
    Abstract: A bipolar surgical instrument comprises a body, first and second opposed jaws located at the distal end of a shaft, the first jaw being movable with respect to the second jaw between an open position in which the first and second jaws are spaced apart from one another, and a closed position in which the first and second jaws are adjacent one another. The first and second elongate jaw members have respective first and second electrodes. A controller is operable to determine a boiling point for tissue between the jaws using a measure of impedance therebetween.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: April 19, 2022
    Assignee: GYRUS MEDICAL LIMITED
    Inventors: Wayne Williams, Lewis Jones
  • Patent number: 11284936
    Abstract: A flexible electrode of a surgical instrument is disclosed. The flexible electrode includes a therapeutic electrode, a sensing electrode and an insulative layer. The therapeutic electrode is couplable to a source of radiofrequency energy. The insulative layer is positioned between the therapeutic electrode and the sensing electrode. The therapeutic electrode and the sensing electrode are configured to contact tissue positioned between first and second jaws of the surgical instrument.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: March 29, 2022
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris
  • Patent number: 11246643
    Abstract: Provided is a medical system comprising a medical device, a feature sensor and a logic controller or processor wherein the logic controller is configured to monitor or control an operation of the medical device in response to the input of the feature sensor. Also provided is a method of monitoring or controlling an operation of a medical device by a logic controller through a plurality of sensors. Further provided is a method of minimizing or preventing tissue sticking of an electrosurgical device during a medical procedure on a patient.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: February 15, 2022
    Assignee: Gyrus Acmi, Inc.
    Inventors: Ming J. Cheng, David C. Church
  • Patent number: 11141213
    Abstract: A method for coagulating and dissecting tissue. The method includes measuring a tissue property and delivering multiple energy modalities to the tissue based on the tissue property. The energy modalities being delivered from a generator either alone or in combination.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: October 12, 2021
    Assignee: Cilag GmbH International
    Inventors: David C. Yates, Ashvani K. Madan, Benjamin J. Danziger, Eitan T. Wiener, Kristen G. Denzinger, Kevin L. Houser
  • Patent number: 11135001
    Abstract: The electrosurgical systems and methods according to the present disclosure use a multi-stage power converter for generating electrosurgical energy. The electrosurgical systems include an electrosurgical generator having a power converter coupled to an electrical energy source and configured to generate electrosurgical energy. The power converter includes a boost converter configured to convert a first direct current from the electrical energy source to a second direct current, and a phase-shifted pulse width modulation (PS-PWM) resonant inverter configured to invert the second direct current to an alternating current. The electrosurgical generator also includes a plurality of sensors configured to sense a voltage and a current of the generated electrosurgical energy and a controller coupled to the power converter and the plurality of sensors.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: October 5, 2021
    Assignee: Covidien LP
    Inventor: Joshua H. Johnson
  • Patent number: 11103241
    Abstract: A surgical cutting and fastening device is disclosed including a handle assembly, a power supply, and a control circuit. The handle assembly includes a motor configured to drive a cutting member. The control circuit operably couples the power supply and the motor. A firing switch allows the power supply to provide power to the motor in a first energizing direction. A forward control circuit is configured to control current flow from the power supply to the motor. The forward control circuit includes a first flow path and a second flow path including a power control switch. The power control switch prevents current from flowing through the second flow path. The power control switch allows current to flow through the first flow path and the second flow path. A reverse flow path is configured to allow the power supply to provide power to the motor in a second energizing direction.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: August 31, 2021
    Assignee: Cilag GmbH International
    Inventors: David C. Yates, Frederick E. Shelton, IV, Bret W. Smith, Brett E. Swensgard
  • Patent number: 10987160
    Abstract: An end effector assembly for use with an instrument for sealing vessels and cutting vessels includes a pair of opposing first and second jaw members which are movable relative to one another from a first spaced apart position to a second position for grasping tissue therebetween. Each jaw member includes a pair of spaced apart electrically conductive tissue contacting surfaces which each have an insulator disposed therebetween, the conductive surfaces are connected to an electrosurgical energy source. The first jaw member includes an electrically conductive cutting element disposed within the insulator which extends towards the second tissue contacting surface to create a gap therebetween. The cutting element is inactive during the sealing process while the two pairs of electrically conductive surfaces are activated to seal tissue.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: April 27, 2021
    Assignee: Covidien AG
    Inventors: Kristin D. Johnson, Robert Sharp, Jeff Unger, Gary M. Couture
  • Patent number: 10939951
    Abstract: Disclosed is a high-frequency surgical appliance for cutting and/or coagulating biological tissue, having a high-frequency generator designed to produce a high-frequency alternating current during operation, and also a method for operating a high-frequency surgical appliance that involves a high-frequency alternating current produced by means of a high-frequency generator for of cutting and/or coagulating biological tissue. The high-frequency surgical appliance according to the invention has a power setting device that is arranged and designed to set or limit an output power of the high-frequency surgical appliance to a power value selected by a user. In addition, the high-frequency surgical appliance according to the invention has a spark control device that is arranged and designed to set or limit a spark voltage to a setpoint spark value, the spark control device also being designed to ascertain the setpoint spark value on the basis of the power value selected by a user.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: March 9, 2021
    Assignee: OLYMPUS WINTER & IBE GMBH
    Inventor: Thomas Stein
  • Patent number: 10918859
    Abstract: The present disclosure provides a resistive electric transfer (RET)-based high-frequency massaging device with a suction function, the device comprising: a main body including an upper cover and a lower cover having a suction hole defined in a bottom center thereof; a plurality of electrode pads arranged on a bottom outer face of the lower cover in a circumferentially; a high-frequency generator mounted on the lower cover; a suction channel assembly communicating with the suction-hole defined in the lower cover; a suction motor operatively connected to the suction channel assembly; and a controller configured to control the high frequency output from the high-frequency generator and suction-drive of the suction motor, wherein the plurality of electrode pads is configured such that adjacent electrode pads have alternating polarities.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: February 16, 2021
    Assignee: SHENB CO., LTD.
    Inventor: Sun Young Kang
  • Patent number: 10912580
    Abstract: A medical device is described having a handle, a shaft coupled to the handle and an end effector coupled to the shaft. In one embodiment, the device includes an ultrasonic transducer and is arranged so that ultrasonic or electrical energy can be delivered to a vessel or tissue to be treated. Various novel sensing circuits are described to allow a measure of the drive signal to be measured and fed back to a controller. An active fuse circuit is also described for protecting one or more batteries of the device from an over-current situation.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: February 9, 2021
    Assignee: Ethicon LLC
    Inventors: Alan Edward Green, Paul Christopher Roberts, Mark David Tuckwell, Peter Ralph Bonham
  • Patent number: 10828008
    Abstract: Medical apparatus includes an elongate probe for insertion into a body of a patient. The probe includes an ablation element and an acoustic transducer disposed at a distal end of the probe. An array of acoustic sensors is placed over the body. While the distal end of the probe is positioned in a target location in the body, a control unit drives the acoustic transducer in a training phase to emit an acoustic signal, receives electrical signals from the acoustic sensors in response to the acoustical signal, and processes the electrical signals so as to derive a phase profile focused at the target location. In an operational phase, the control unit drives the ablation element to ablate tissue in the body at the target location, and receives and filters the electrical signals from the acoustic sensors using the phase profile so as to detect acoustical activity at the target location.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: November 10, 2020
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventor: Assaf Govari
  • Patent number: 10806506
    Abstract: A method comprising sealing a vessel residing within tissue between jaws of forceps by sensing an amount of tissue held within the forceps, the sensing by passing electrical current through the tissue by way of the forceps. The method comprises heating the tissue using electrical current, the heating such that impedance of the tissue changes at a first predetermined rate, the first predetermined rate selected based on the sensing. The method comprises desiccating the tissue using electrical current, such that the impedance of the tissue changes at a second predetermined rate different than the first predetermined rate. The method comprises ceasing application of the electrical current to the tissue when impedance of the tissue reaches a predetermined value. Sensing the amount of tissue held within the forceps comprises varying electrical current flowing through the tissue through the forceps such that impedance of the tissue changes at a third predetermined rate.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: October 20, 2020
    Assignee: Smith & Nephew, Inc.
    Inventors: Jonathan L. Gaspredes, Robert P. Lathrop, Thomas P. Ryan, David J. Miller, Jean Woloszko, Philip M. Tetzlaff
  • Patent number: 10805018
    Abstract: A radio transmitter adjusts the spectral, amplitude, and/or phase characteristics of its transmissions to defeat radio fingerprinting identification without destroying the content of the transmissions. The transmitter determines a threshold of signal distortion that impedes RF fingerprint identification while providing an acceptable amount of degradation to data transmissions and then synthesizes a distortion of its unique RF fingerprint to impede identification. The transmitter may create RF fingerprint “personalities” to be paired with different radio protocol behaviors and subscriber terminal identification codes (e.g., MAC addresses or SMSIs) for generating different radio identities.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: October 13, 2020
    Inventors: Robi Sen, Steve Shattil
  • Patent number: 10779876
    Abstract: A medical instrument is disclosed. The medical instrument includes at least one electrical contact element, a battery, a radio frequency (RF) generation circuit coupled to and operated by the battery and operable to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact, and a battery discharge circuit coupled to the battery. A processor is coupled to the battery discharge circuit and a memory is coupled to the processor. The memory stores machine executable instructions that when executed cause the processor to monitor activation of the RF generation circuit and disable the RF generation circuit when the RF drive signal is fired a predetermined number of times. The medical instrument may include an activation switch and/or a disposal switch supported by the housing.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: September 22, 2020
    Assignee: Ethicon LLC
    Inventors: Gavin M. Monson, Gregory A. Trees, Gordon J. Leather, David J. Stocks, David A. Snowdon, John Hefin Bowen Evans, David I. Ruddenklau, Alan E. Green, Robin M. Lee, Paul C. Roberts, Paulo Alexandre da Torre Pinheiro, Clive Styler
  • Patent number: 10778159
    Abstract: A power amplifier includes initial-stage and output-stage amplifier circuits, and initial-stage and output-stage bias circuits. The initial-stage amplifier circuit includes a first high electron mobility transistor having a source electrically connected to a reference potential, and a gate to which a radio-frequency input signal is inputted, and a first heterojunction bipolar transistor having an emitter electrically connected to a drain of the first high electron mobility transistor, a base electrically connected to the reference potential in an alternate-current fashion, and a collector to which direct-current power is supplied and from which a radio-frequency signal is outputted.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: September 15, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Isao Obu, Satoshi Tanaka, Takayuki Tsutsui, Yasunari Umemoto
  • Patent number: 10765470
    Abstract: Various forms are directed to systems and methods for dissection and coagulation of tissue. A surgical instrument includes an end effector configured to dissect and seal tissue at a distal end thereof, and a generator that is electrically coupled to the surgical instrument and that is configured to deliver energy to the end effector. The surgical instrument includes an end effector configured to interact with a tissue at a distal end thereof, a generator electrically coupled to the surgical instrument and configured to deliver radio frequency (RF) energy and ultrasonic energy to the end effector to allow the end effector to interact with the tissue. The energy delivered to the end effector switches between RF energy and ultrasonic energy based on a determination of various factors such as tissue impedance.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: September 8, 2020
    Assignee: Ethicon LLC
    Inventors: David C. Yates, Kevin L. Houser, Eitan T. Wiener, Kristen G. Denzinger, Ryan M. Asher, Phillip H. Clauda, Cameron R. Nott, Jeffrey D. Messerly, Frederick E. Shelton, IV, Geoffrey S. Strobl
  • Patent number: 10743928
    Abstract: An energy treatment device includes a treatment portion that receives a supply of energy and treats a treatment target, a controller that controls the supply of energy with respect to the treatment portion, a converter that is configured to receive heat energy generated with the treatment of the treatment target, and to convert a temperature difference into an electric energy, and a receiver that receives the electric energy converted at the converter.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: August 18, 2020
    Assignee: OLYMPUS CORPORATION
    Inventor: Yoshitaka Honda
  • Patent number: 10749961
    Abstract: A sensor assembly includes an impedance sensor element, an impedance sensor reader and a communications module. The communications module is configured to communicate with a remote computing device. The impedance sensor reader is coupled to the impedance sensor element. The impedance sensor reader includes a synthesizer and a detector. The synthesizer is configured to output an excitation signal having known values for a plurality of signal characteristics to the impedance sensor element and to generate the excitation signal based on a plurality of direct digital synthesizer (DDS) coefficients received from the remote computing device through the communications module. The detector is coupled to the impedance sensor element and configured to detect a response of the impedance sensor element to the excitation signal and determine an impedance of the impedance sensor element based at least in part on the response of the impedance sensor element to the excitation signal.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 18, 2020
    Assignee: General Electric Company
    Inventors: Krishnakumar Sundaresan, Radislav Alexandrovich Potyrailo, Feng Chen, Emad Andarawis Andarawis, S M Shajedul Hasan
  • Patent number: 10575865
    Abstract: A forceps includes first and second shaft members each having a jaw member disposed at a distal end thereof. One (or both) of the first and second jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. The first jaw member includes a jaw frame fixedly engaged to the first shaft member and a disposable jaw housing releasably engageable with the jaw frame. The disposable jaw housing includes a knife assembly disposed therein. The knife assembly includes a knife blade biased toward an initial position, wherein the knife blade is disposed within the jaw housing. The knife blade is moveable between the initial position and an extended position, wherein the knife blade extends at least partially from the jaw housing to cut tissue grasped between the first and second jaw members.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: March 3, 2020
    Assignee: Covidien LP
    Inventors: Grant T. Sims, Chase Collings, Jeffrey R. Townsend
  • Patent number: 10463425
    Abstract: Systems and methods are disclosed for performing an ablation procedure by obtaining a signal from an acoustic sensor used to detect occurrence of a steam pop and adjust the ablation in response to the steam pop detection.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: November 5, 2019
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Ryan A. Hoitink, John Hardy Ashton, Jeffrey L. Clark, Kelvin Chuu, Jeffrey Schultz
  • Patent number: 10433900
    Abstract: An end effector including a first jaw, a second jaw, a longitudinal slot, and a cutting member is disclosed. The first jaw includes a first lateral side and a second lateral side. At least one of the first jaw and the second jaw is moveable through a range of positions to move the end effector between an open configuration and a fully clamped configuration. The longitudinal slot extends intermediate a proximal portion and a distal portion. The longitudinal slot transects the first jaw between the first lateral side and the second lateral side and extends distally beyond a portion of the second jaw. The cutting member is movable along the longitudinal slot. The first jaw is expandable laterally relative to the longitudinal slot to apply a tensile force to tissue clamped between the first jaw and the second jaw when the end effector is in the fully clamped configuration.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: October 8, 2019
    Assignee: Ethicon LLC
    Inventors: Jason L. Harris, Jeffrey S. Swayze, Foster B. Stulen, Gregory W. Johnson, Prasanna Malaviya, Paul Guerra
  • Patent number: 10278763
    Abstract: A system for controlling an electrosurgical electrode of a medical device includes a hand-held electrosurgical electrode having cutting probe. A return electrode is positioned remote from the electrosurgical electrode. An RF generator is coupled to the electrosurgical electrode and to the return electrode, and includes an RF amplifier. The RF generator generates an RF signal at a first RF power level for tissue cutting and generates the RF signal at a second RF power level greater than the first RF power level to initiate tissue cutting. A sensor monitors an electrical characteristic associated with the electrosurgical electrode. A controller coupled to the RF amplifier maintains a desired RF power output and a desired RF duty cycle at the first RF power level by adjusting a DC input voltage applied to an output stage of the RF amplifier based on the monitored electrical characteristic associated with the electrosurgical electrode.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: May 7, 2019
    Assignee: SenoRx, Inc.
    Inventors: Derek J. Daw, James H. Dabney
  • Patent number: 10251694
    Abstract: An operation method of an electric power source device for operating a high-frequency treatment instrument configured to perform a high-frequency treatment on a biological tissue includes causing a high-frequency electric power source circuit to output electric power; specifying an initial state of the biological tissue; acquiring a value relating to an impedance of the biological tissue; determining an additional impedance value based on the initial state; setting a stop impedance value which is the sum of the additional impedance value and a change-over impedance value; and causing the high-frequency electric power source circuit to stop the output, if the value relating to the impedance reaches the stop impedance value after the value relating to the impedance reached the change-over impedance value.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: April 9, 2019
    Assignee: OLYMPUS CORPORATION
    Inventors: Tsuyoshi Hayashida, Danilo Legaspi
  • Patent number: 10130411
    Abstract: In a method of controlling electrosurgical power delivery based on a comparison of sensed tissue impedance to various impedance threshold values, energy is delivered to tissue in a sealing cycle as a series of pulses. An initial pulse has a profile with a preset energy starting value that increases at a ramping rate to a preset end value. Sensed impedance data are monitored throughout each pulse and compared to an impedance threshold value for RF setpoint, an impedance threshold value for cumulative time, and an impedance threshold value for energy cutback. Based on sensed impedance during a pulse, the profile of a subsequent pulse can be modified. In a high impedance event that reflects low tissue presence, energy may be cutback. A sealing cycle is stopped when a cumulative amount of time with an impedance value over the impedance cumulative time threshold value reaches a sealing cycle duration limit.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: November 20, 2018
    Assignee: Aesculap AG
    Inventors: Tim Koss, Miriam H. Taimisto, Roseanne Varner
  • Patent number: 10111703
    Abstract: This invention relates to high-frequency ablation of tissue in the body using a cooled high-frequency electrode connected to a high frequency generator including a computer graphic control system and an automatic controller for control the signal output from the generator, and adapted to display on a real time graphic display a measured parameter related to the ablation process and visually monitor the variation of the parameter of the signal output that is controlled by the controller during the ablation process. In one example, one or more measured parameters are displayed simultaneously to visually interpret the relation of their variation and values. In one example, the displayed one or more parameters can be taken from the list of measured voltage, current, power, impedance, electrode temperature, and tissue temperature related to the ablation process.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: October 30, 2018
    Assignee: COSMAN INSTRUMENTS, LLC
    Inventors: Eric R. Cosman, Jr., Eric R. Cosman, Sr.
  • Patent number: 10098688
    Abstract: A treatment system includes a pair of holding members, a high-frequency energy output section, a heat generating section and a control section. At least one of the pair of holding members moves to the other holding member. The high-frequency energy output section and the heat generating section are provided on at least one of the holding members. The high-frequency energy output section exerts high-frequency energy to a living tissue to denature the living tissue, and collects the biological information of the living tissue. The heat generating section applies heat to it held between the holding members, generates the heat owing to the supply of the energy, and conducts the heat therefrom to denature the living tissue. The control section controls the output of the energy to the high-frequency energy output section and the heat generating section based on the biological information collected by the high-frequency energy output section.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: October 16, 2018
    Assignee: OLYMPUS CORPORATION
    Inventors: Tomoyuki Takashino, Kenichi Kimura
  • Patent number: 9974607
    Abstract: Methods and systems are disclosed for treating diseased tissue by gentle heating. The method induces vasodilation on tissue disposed about an lumen having both healthy tissue and diseased tissue. The method includes coupling a probe surface to the luminal tissue at a target location and transmitting desired quantities of tissue remodeling energy from the coupled probe into each of a plurality of discrete remodeling zones in the luminal tissue so that the tissue remodeling energy heats the plurality of remodeling zones, the remodeling energy being configured to avoid muscular contraction and inhibit both acute and long-term occlusion of the lumen.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: May 22, 2018
    Assignee: VESSIX VASCULAR, INC.
    Inventors: Corbett W. Stone, Michael F. Hoey, Rolfe Tyson Gustus, Mike Perry, Arthur G. Blanck, Linas R Kunstmanas
  • Patent number: 9966999
    Abstract: To provide a wireless power receiving device, and a wireless power transmission device capable of improving the reliability of a protection circuit while preventing breakage of a circuit element upon occurrence of any abnormality, such as overvoltage or overcurrent. A wireless power receiving device includes a power receiving coil; a rectifier unit that performs full-wave rectification of the power received by the power receiving coil and supplies the power to a load; power-receiving-side detecting unit that detects an output voltage value or an output current value from the rectifier unit; and switching unit that short-circuits one of two current paths through the rectifier unit if the value detected by the power-receiving-side detecting unit exceeds a predetermined reference value.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: May 8, 2018
    Assignee: TDK CORPORATION
    Inventors: Tsunehiro Saen, Masahide Ohnishi, Ryo Miyazawa
  • Patent number: 9921243
    Abstract: An electrosurgical system is disclosed. The system includes a radio frequency output stage configured to output at least one radio frequency waveform and a current sensor coupled to the output stage and configured to output a first differentiated signal corresponding to a current of the at least one radio frequency waveform, the current sensor coupled to a first conditioning circuit configured to integrate the first differentiated signal to output a processed current signal indicative of the current. The system further includes a voltage sensor coupled to the output stage and configured to output a second differentiated signal corresponding to a voltage of the at least one radio frequency waveform, the voltage sensor coupled to a second conditioning circuit configured to integrate the second differentiated signal to output a processed voltage signal indicative of the voltage, wherein the first and second conditioning circuits have a substantially similar bandpass and phase response.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: March 20, 2018
    Assignee: COVIDIEN LP
    Inventors: Patrick J. Digmann, James A. Gilbert, David Farrell
  • Patent number: 9895056
    Abstract: An ophthalmic laser illuminator 10 includes multiple laser devices 12-16. There are at least three different wavelengths of light emitted by the multiple laser devices 12-16 and each wavelength of light emitted by each laser device is outside of wavelengths blocked by a safety filter used for surgical treatment lasers 52. A controller 18 controls the multiple laser devices 12-16. A graphical user interface 32 is operably attached to the controller 18 for allowing a user to select a plurality of light parameters for a light beam exiting the illuminator 10.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: February 20, 2018
    Assignee: Bausch & Lomb Incorporated
    Inventors: David K. Klaffenbach, Brian McCary, John Goewert, David H. Mordaunt
  • Patent number: 9750562
    Abstract: A treatment instrument includes a first clamping surface, a second clamping surface configured to cooperate with the first clamping surface and to clamp a living body tissue, a pressure application member provided on one of the first and second clamping surfaces, and configured to apply a pressure to the living body tissue in a line shape by causing the first and second clamping surfaces to relatively approach each other, and a moving mechanism provided on the first clamping surface, and configured to move the first clamping surface in a manner to apply tensile forces to the living body tissue, clamped between the first and second clamping surfaces, in directions deviating away from a direction along a line formed on the living body tissue by the pressure application member.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: September 5, 2017
    Assignee: OLYMPUS CORPORATION
    Inventors: Yusuke Takei, Tomoyuki Takashino
  • Patent number: 9579142
    Abstract: An electrosurgical device wherein a probe is provided having one or more active tissue-contacting electrodes and one or more active non-tissue-contacting electrodes. The tissue-contacting and non-tissue-contacting electrodes can simultaneously operate in different modalities from one another or can operate in the same modality. The probe tip can include a non-conductive feature which provides a useful tool for providing physical tissue manipulations in conjunction with an electrosurgical procedure.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: February 28, 2017
    Assignee: NuOrtho Surgical Inc.
    Inventors: Roy E. Morgan, Wayne K. Auge, II
  • Patent number: 9543750
    Abstract: A surgical generator and related method for mitigating overcurrent conditions are provided. The surgical generator includes a power supply, a radio frequency output stage, an overcurrent detection circuit in operative communication with an interrupt circuit, and a processor. The power supply generates a power signal and supplies the power signal to the radio frequency output stage. The radio frequency output stage generates a radio frequency signal from the power signal. The overcurrent detection circuit detects an overcurrent of the power signal and/or an overcurrent of the radio frequency signal. The interrupt circuit provides an interrupt signal in response to a detected overcurrent. The processor receives the interrupt signal and supplies a pulse-width modulation signal to the power supply and incrementally decreases the duty cycle of the pulse-width modulation signal in response to the interrupt signal. The radio frequency output stage may be disabled in response to the detected overcurrent.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: January 10, 2017
    Assignee: Covidien LP
    Inventors: Robert B. Smith, Steven C. Rupp
  • Patent number: 9504855
    Abstract: Various embodiments are directed to a method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. The method comprises generating at least one electrical signal. The at least one electrical signal is monitored against a first set of logic conditions. A first response is triggered when the first set of logic conditions is met. A parameter is determined from the at least one electrical signal.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: November 29, 2016
    Assignee: Ethicon Surgery, LLC
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Foster B. Stulen, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch
  • Patent number: 9498275
    Abstract: Controlling a level of electrosurgical energy provided to tissue based on detected arcing patterns or impedance changes. The drag force imposed on an electrode or blade of an electrosurgical instrument may be controlled by adjusting the level of electrosurgical energy based on the arcing patterns or impedance changes. The arcing patterns or impedance changes may be detected by sensing and analyzing voltage and/or current waveforms of the electrosurgical energy The current and/or voltage waveform analysis may involve calculating impedance based on the voltage and current waveforms and calculating changes in impedance over time. The waveform analysis may involve detecting harmonic distortion using FFTs, DFTs, Goertzel filters, polyphase demodulation techniques, and/or bandpass filters. The waveform analysis may involve determining a normalized difference or the average phase difference between the voltage and current waveforms.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: November 22, 2016
    Assignee: COVIDIEN LP
    Inventors: Robert H. Wham, James A. Gilbert, Craig A. Keller, Brian L. Roberts
  • Patent number: 9456862
    Abstract: An electrosurgical generator includes an electrosurgical energy output configured to deliver electrosurgical energy to a bipolar end effector assembly in a conductive fluid environment for treating tissue. A controller having a processor is configured to control a waveform of the electrosurgical energy such that the waveform oscillates between a cut phase for initiating and sustaining tissue cutting, wherein the waveform includes a cut energy greater than the energy needed to create and sustain arcing, and a hemostasis phase, for desiccating/coagulating tissue, wherein the waveform includes a hemostasis energy less than the energy needed to sustain arcing.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: October 4, 2016
    Assignee: COVIDIEN LP
    Inventors: Arlen K. Ward, Joe D. Sartor, Robert H. Wham
  • Patent number: 9381039
    Abstract: Transdermal insertion of a transcutaneous filling apparatus, for the purpose of filling a fill chamber of an implanted therapy delivery device, is monitored by measuring each impedance between pairs of electrodes of a needle of the apparatus, and comparing each to a threshold impedance; the electrodes, preferably at least three in number, are isolated and spaced apart from one another along a length of the needle. A confirmation signal is generated when at least one of the measured impedances is greater than the threshold impedance, and another is less than the threshold, the condition indicating that one of the electrodes is located within a non-conductive septum, through which the apparatus must pass to access the fill chamber. A detection circuit, which may be located in a housing of the apparatus that is attached to a proximal end of the needle, measures and compares the impedances.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 5, 2016
    Assignee: Medtronic, Inc.
    Inventors: Keith A. Miesel, Scott A. Sarkinen, Emem D. Akpan, Douglas E. Hentges, Mark E. Dunlap, Darrin Schauble, Cindy Konen, Mark R. Bilitz
  • Patent number: 9289260
    Abstract: The solution of the problem to be solved is the provision of a means for determining timing both accurately and securely at which a treatment is shifted from gripping and coagulation (hemostasis or sealing) to resection by using a multifunctional treatment tool capable of exfoliation, gripping, coagulation (hemostasis or sealing) and resection of the treated region in a bipolar microwave treatment tool. A microwave surgical device control method and a device, in which the completion of coagulation (hemostasis or sealing) of tissue is detected and a microwave oscillation output is controlled by making use of the change in the direct current electric resistance value due to the reduction in the amount of water as the temperature rise of the tissue at the time of heating and coagulation of the tissue in the treated region with microwaves.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: March 22, 2016
    Assignee: NATIONAL UNIVERSITY CORPORATION SHIGA UNIVERSITY OF MEDICAL SCIENCE
    Inventors: Tohru Tani, Shigeyuki Naka
  • Patent number: 9277962
    Abstract: A method of controlling electrosurgical power delivery is based on a comparison of sensed tissue impedance to various impedance threshold values. Energy is delivered to tissue in a sealing cycle as a series of pulses. A pulse has a profile with a preset energy starting value that increases at a ramping rate to a preset end value. Sensed impedance data are monitored throughout each pulse and compared to each of an impedance threshold value for RF setpoint, an impedance threshold value for cumulative time, and an impedance threshold value for energy cutback. Based on sensed impedance during a pulse, the profile of a subsequent pulse can be modified. In the event of a high impedance event that reflects low tissue presence, energy may be cutback. A sealing cycle is stopped when a cumulative amount of time with an impedance value over the impedance cumulative time threshold value reaches a limit.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 8, 2016
    Assignee: Aesculap AG
    Inventors: Tim Koss, Miriam H. Taimisto, Roseanne Varner
  • Patent number: 9265561
    Abstract: A surgical system and associated method for fusing tissue are disclosed. The system has an electrosurgical generator capable of delivering electrosurgical power, a surgical instrument, and a power control circuit. The surgical instrument is electrically connected to the electrosurgical generator and adapted to transfer electrosurgical power from the electrosurgical generator to a distal end of the surgical instrument. The power control circuit controls the delivery of radio frequency energy to tissue in contact with the distal end of the surgical instrument. The surgical system is configured to deliver radio frequency energy at a non-pulsing power to the tissue for a period of time of 3 seconds or less. The non-pulsing power has no less than 7 Watts and no more than 35 Watts, and further causes the tissue to begin to desiccate and to fuse within the period of time.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: February 23, 2016
    Assignee: JUST RIGHT SURGICAL, LLC
    Inventors: Jenifer Kennedy, Dale Schmaltz, David Schechter, Joel Helfer, David Ross
  • Patent number: 9270202
    Abstract: An electrosurgical generator is provided. The generator includes a DC-DC buck converter configured to output a DC waveform, the DC-DC buck converter including at least one first switching element operated at a first duty cycle; a DC-AC boost converter coupled to the DC-DC buck converter and including at least one second switching element operated at a second duty cycle, the DC-AC boost converter configured to convert the DC waveform to generate at least one electrosurgical waveform; and a controller coupled to the DC-DC buck converter and the DC-AC boost converter and configured to adjust the first duty cycle and the second duty cycle to operate the at least one electrosurgical waveform in at least one of constant current, constant voltage, or constant power modes.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: February 23, 2016
    Assignee: Covidien LP
    Inventors: Joshua H. Johnson, Donald Tonn
  • Patent number: 9241756
    Abstract: A method for performing a medical procedure, includes, coupling a probe to tissue in an organ of a patient. Ablation energy is applied to the tissue using the probe. A model of an evolution of steam pressure in the tissue, caused by the ablation energy, as a function of time is estimated. Based on the model, an occurrence time of a steam pop event caused by the steam pressure is predicted, and the predicted occurrence time of the steam pop event is indicated to an operator.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: January 26, 2016
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Abraham Berger, Meir Bar-Tal, Avri Hazan, Daniel Osadchy
  • Patent number: 9168083
    Abstract: A high-frequency surgical generator including a power supply for supplying rectified electrical energy, a power oscillator for supplying a potential-free, DC current-free and DC voltage-free high frequency voltage and a control device for controlling the high frequency voltage wherein the power supply is configured as a current source for supplying a load-independent output current, such that the load-independent output current of the power supply serves as the control variable for controlling the high-frequency voltage. The target value of the load-independent output current is pre-determined by the control device. The high-frequency surgical generators configured as such achieve improved modulation capability.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: October 27, 2015
    Assignee: ERBE ELEKTROMEDIZIN GMBH
    Inventors: Heiko Schall, Florian Eisele