Catheter Or Endocardial (inside Heart) Type Patents (Class 607/122)
  • Patent number: 9095701
    Abstract: A lead anchor includes an anchor body having a pin lumen and spaced-apart lead lumens extending along an entire length of the anchor body. The pin lumen receives an anchoring pin with a diameter that is larger than a diameter of the pin lumen. The pin lumen has flexible walls that exert a radially-outward-directed force away from the anchoring pin when the anchoring pin is received by the pin lumen. The lead lumens each have flexible walls and receive a different lead body of at least one lead. The radially-outward-directed force exerted by the walls of the pin lumen when the anchoring pin is received by the pin lumen causes corresponding radially-inward-directed forces along the flexible walls of the lead lumens that retain portions of the lead bodies within the anchor body when the portions of the lead bodies are received by the lead lumens.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: August 4, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael X. Govea, William George Orinski
  • Patent number: 9095699
    Abstract: A nerve stimulation system includes a pulse generator and implantable lead. The pulse generator includes a sensing module and a pace circuit. The lead has an electrode array near the distal end and a connector at the proximal end for connection to the pulse generator. Conductors in the lead electrically connect the electrode array with the sensing module and pace circuit. The electrode array includes a first pair of small electrodes and a large electrode close to each other. The small electrodes and large electrode are physically separated from each other by insulative spaces extending generally transversely to a longitudinal axis of the lead. When the conductors are in electrical communication with the sensing module and pace circuit, the first pair of small electrodes are in electrical communication with both the sensing module and the pace circuit and the large electrode is in electrical communication with the pace circuit only.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: August 4, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Stuart Rosenberg, Cecilia Qin Xi
  • Patent number: 9095702
    Abstract: Defibrillator lead designs and methods for manufacturing a lead having attachment between a fibrosis-limiting material covering, a shocking coil electrode, and an implantable lead body are disclosed herein. An electrode coil fitting is disposed within the shocking coil electrode. In an option, the fibrosis limiting material extends past the ends of the electrode coil, and is wrapped between the coil electrode and the electrode coil member.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: August 4, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Devon N. Arnholt
  • Patent number: 9089693
    Abstract: A therapy assembly configured for at least partial insertion in a living body. At least one fixation structure is attached to the therapy delivery element proximate the electrodes. The fixation structure is configured to collapse radially inward and wrap circumferentially around the therapy delivery element to a collapsed configuration when inserted into a lumen of an introducer. The fixation structures deploy to a deployed configuration when the introducer is retracted. The fixation structure includes major surfaces generally parallel with, and extending radially outward from, a central axis of the therapy delivery element, proximal edge surface oriented toward the proximal end, and a distal edge surface oriented toward the distal end. The proximal and distal edge surfaces provide generally symmetrical resistance to displacement of the therapy delivery element within the living body in either a proximal direction or a distal direction along the central axis.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 28, 2015
    Assignee: Greatbatch Ltd.
    Inventors: John Swoyer, James Finley, Lawrence Kane
  • Patent number: 9084872
    Abstract: The disclosure describes an introducer for facilitating implantation of therapy elements into a patient. The introducer has an elongated body that defines a lumen for advancement of a therapy element to an implant site, and includes a curved portion medially located between substantially straight proximal and distal portions. As an example, the shape of the introducer may allow a clinician to more easily, and without substantially damaging surrounding tissue, find the correct tissue depth and follow that tissue depth to the implant site. For example, the introducer may facilitate implantation of a therapy element within or between desired layers of tissue of the patient. In some embodiments, fluid may be injected through the introducer to create a space within the tissue to implant the therapy element. Fluid may also be evacuated through the introducer prior to implantation.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: July 21, 2015
    Assignee: Medtronic, Inc.
    Inventors: Ethan A. Rooney, Gary W. King, Thomas E. Cross, Jr., Richard T. Stone
  • Patent number: 9061155
    Abstract: A medical device system and associated method for guiding ablation therapy sense cardiac signals using implantable electrodes and detect spontaneous cardiac events from the sensed cardiac signals. Pacing pulses are delivered and a return cycle length is measured in response to the plurality of pacing pulses. The spontaneous cardiac event is clustered with a previously detected cardiac event in response to the measured return cycle length, and a targeted ablation site is estimated in response to the measured return cycle length. A transit time interval, corresponding to a distance traversed by a depolarization associated with a last one of the plurality of pacing pulses when a reset condition occurs, is computed using the return cycle length, and the ablation site is estimated in response to the computed transit time interval.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: June 23, 2015
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey M. Gillberg, Mark L. Brown, Christopher J. Gennaro
  • Patent number: 9033916
    Abstract: A catheter for use in a patient's heart, especially for mapping a tubular region of the heart, has a catheter body, a deflectable intermediate section and a distal mapping assembly that has a generally circular portion adapted to sit on or in a tubular region of the heart. A control handle of the catheter allows for single-handed manipulation of various control mechanisms that can deflect the intermediate section and contract the mapping assembly by means of a deflection control assembly and a rotational control assembly. The deflection control assembly has a deflection arm and a rocker member. The rotational control assembly has an outer rotational member, an inner rotational member and a cam. A pair of puller members are responsive to the deflection control assembly to bi-directionally deflect the intermediate section. A third puller member is responsive to the rotational control assembly to contract the generally circular portion of the mapping assembly.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 19, 2015
    Assignee: Biosense Webster, Inc.
    Inventor: Jefferey William Schultz
  • Patent number: 9037242
    Abstract: A system to increase the reliability of the electrical connections between the stimulating electrodes and the battery/controlling electronics of an electrical stimulating device as DBS (Deep Brain Stimulator), heart pacemakers and the like. We disclose a redundant male/female connector and/or a set of redundant wires to improve the reliability of the electrical connections. The redundant male/female connector serves as a backup for a potential loss of electrical continuity due to the adverse effect of body fluids, and the redundant wires serve as a backup for potential loss of electrical continuity due to repetitive muscle movement causing wire movement, stress and breaking. DBS connecting wires, that ran down the neck of the patient, are subjected to repetitive stresses due to neck twisting and therefore at high risk of breaking.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: May 19, 2015
    Inventors: Chong Il Lee, Sergio Lara Pereira Monteiro
  • Patent number: 9037264
    Abstract: A family of catheter electrode assemblies includes a flexible circuit having a plurality of electrical traces and a substrate; a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the electrode. A non-contact electrode mapping catheter includes an outer tubing having a longitudinal axis, a deployment member, and a plurality of splines, at least one of the plurality of splines comprising a flexible circuit including a plurality of electrical traces and a substrate, a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the ring electrode. A method of constructing the family of catheter electrode assemblies is also provided.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: May 19, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Dale E. Just, Troy T. Tegg, Theodore A. Johnson, Sacha C. Hall
  • Patent number: 9033996
    Abstract: The present invention relates to a system and method for positioning a sheath and guiderail catheter into the Coronary Sinus (CS) to introduce pacing therapy within a heart of a subject. The guiderail catheter can be customized into a shape compatible with the subject's anatomy and also provide for shapeability of the guiderail catheter. The method includes introducing the sheath into the heart of the subject, with the sheath positioned in the right atrium. The guiderail catheter is introduced into the heart of the subject through the distal end of the sheath and advanced past the distal end of the sheath into the right atrium of the heart to a position near the septum and further guiding the distal end of the guiderail catheter into the coronary sinus.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: May 19, 2015
    Inventor: Michael B. West
  • Patent number: 9037263
    Abstract: An implantable medical device (IMD) can include a cardiac pacemaker or an implantable cardioverter-defibrillator (ICD). Various portions of the IMD, such as a device body, a lead body, or a lead tip, can be provided to reduce or dissipate a current and heat induced by various external environmental factors. According to various embodiments, features can be incorporated into the lead body, the lead tip, or the IMD body to reduce the creation of an induced current, or dissipate the induced Current and heat created due to an induced current in the lead. For example, an IMD can include at least one outer conductive member and a first electrode. The first electrode can be in electrical communication with the at least one outer conductive member. The first electrode can dissipate a current induced in the at least one outer conductive member via a first portion of the anatomical structure.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 19, 2015
    Assignee: MEDTRONIC, INC.
    Inventor: Mark T. Marshall
  • Patent number: 9031647
    Abstract: Cardiac lead implantation systems, devices, and methods for lead implantation are disclosed. An illustrative cardiac lead implantation system comprises a mapping guidewire including one or more electrodes configured for sensing cardiac electrical activity, a signal analyzer including an analysis module configured for analyzing an electrocardiogram signal sensed by the mapping guidewire, and a user interface configured for monitoring one or more hemodynamic parameters within the body. The sensed electrical activity signal can be used by the analysis module to compute a timing interval associated with ventricular depolarization.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: May 12, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Yinghong Yu, Bruce A. Tockman, Sunipa Saha, Martin McDaniel, Geng Zhang
  • Publication number: 20150119966
    Abstract: A method and system for characterizing an accessibility of potential left ventricular stimulus sites in connection with surgical planning for transvenous implant of a cardiac medical lead in or near a heart of a patient are provided. The method and system include obtaining image data representative of a coronary venous system for the heart of the patient to receive the lead. The method and system generate a venous map, based on the image data, representative of venous pathways for the heart of the patient. The method and system analyze the venous map to identify pathway features of interest (PFOI) within at least one select region of the venous pathways. The method and system assign scores to the PFOI based on at least one of predetermined feature-complexity relations or physician-entered complexity updates. The method and system display treatment planning information to a user based on the scores.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: Pacesetter, Inc.
    Inventors: Sergio Richter, Philipp Sommer, Edith Arnold, Hedi Razavi, Yelena Nabutovsky, Fujian Qu
  • Patent number: 9020610
    Abstract: Electrode systems that may be used with implantable medical devices such as a pacemaker, in addition to one or more conventional electrodes, include a shunt electrode. Under ordinary conditions, the shunt electrode has very little effect upon the operation of the electrode system. When high frequency current is delivered to the electrode system, however, the electrode system shunts a large share of the high frequency current to the shunt electrode. The shunt electrode, which includes a conducting material surrounded by an insulating layer, dissipates heat that may be caused by the high frequency current.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: April 28, 2015
    Assignee: Medtronic, Inc.
    Inventor: Volkert A. Zeijlemaker
  • Patent number: 9014822
    Abstract: A pacing lead for a left cavity of the heart, implanted in the coronary system. This lead (24) includes a lead body with a hollow sheath (26, 28) of deformable material, having a central lumen open at both ends, and at least one telescopic microcable (42) of conductive material. The microcable slides along the length of the lead body and extends beyond the distal end (32) thereof. The party emerging beyond the distal end is an active free part (34) comprising a plurality of distinct bare areas (36, 38, 50, 50?, 50?), intended to come into contact (40) with the wall of a target vein (22) of the coronary system (14-22), so as to form a network of stimulation electrodes electrically connected together in parallel. The microcable further comprises, proximally, a connector to a generator of active implantable medical device such as a pacemaker or a resynchronizer.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: April 21, 2015
    Assignee: Sorin CRM S.A.S.
    Inventor: Jean-François Ollivier
  • Publication number: 20150105729
    Abstract: A catheter with a spring tip that facilitates atraumatic initial placement and also continues to protect tissue contacted by the catheter device subsequent to the initial placement. The spring tip is shock-absorbing and axially compliant and allows enhanced use of various devices in conjunction with the tip such as bioptomes, electrodes, needles, flushing catheters, delivery catheters, and the like. The atraumatic shock-absorbing tip could include conductive or non-conductive materials.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 16, 2015
    Inventors: Uma S. Valeti, Robert F. Wilson, John P. Gainor
  • Patent number: 9005194
    Abstract: An atrial ablation catheter with an electrode array particularly adapted to locate and ablate foci of arrhythmia which are required for sustained atrial fibrillation is provided. The array is easily deployed and retracted from the catheter, and presents a proximally oriented electrode array that can be pulled against the septal wall of the left atrium to engage the septal wall.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 14, 2015
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Hakan Oral, Randell L. Werneth, Thomas M. Castellano, Christopher G. Kunis
  • Patent number: 9002474
    Abstract: Implantable medical leads and implantable lead extensions include a shield. The implantable medical lead is coupled to the implantable lead extension. Stimulation electrodes of the implantable medical lead contact stimulation connectors within a housing of the implantable extension to establish a conductive pathway for stimulation signals from filars of the implantable extension to filars of the implantable medical lead. Continuity is established between the shield of the implantable medical lead and the implantable extension by providing a radio frequency conductive pathway within the housing. The radio frequency conductive pathway extends from a shield of the implantable extension to a shield connector that contacts a shield electrode of the implantable medical lead. The radio frequency conductive pathway may have various forms such as a jumper wire or an extension of the shield within the implantable extension.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: April 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: James M. Olsen, Bruce R. Mehdizadeh, Michael J. Kern
  • Publication number: 20150094792
    Abstract: In general, techniques are described for labeling an implantable medical device (IMD). In one example, an IMD can include a housing including electronic circuitry. The IMD can include a header coupled to the housing and includes a core. The core can define a bore and include a first metal label positioned adjacent to the at least one bore. The IMD includes a lead assembly including at least one lead having a distal end and a proximal end, the at least one lead including a second metal label, the distal end including at least one electrode and the proximal end received within the bore.
    Type: Application
    Filed: September 22, 2014
    Publication date: April 2, 2015
    Inventors: Michael J. Kane, Michael Keane, John O'Rourke
  • Patent number: 8996134
    Abstract: A highly flexible implantable lead that offers improved flexibility, fatigue life and fatigue and abrasion resistance improved reliability, effective electrode tissue contact with a small diameter and low risk of tissue damage during extraction. In one embodiment the lead is provided with both defibrillation electrodes and pacing/sensing electrodes. For defibrillation/pacing leads, the lead diameter may be as small as six French or smaller. The construction utilizes helically wound conductors. For leads incorporating multiple separate conductors, many of the helically wound conductors are arranged in a multi-filar relationship. Preferably, each conductor is a length of wire that is uninsulated at about the middle of its length to create an electrode, wherein the conductor is folded in half at about the middle of the length to create first and second length segments that constitute parallel conductors.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: March 31, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Jeffrey B. Duncan, Aaron J. Hopkinson, Thomas R. McDaniel, Michael J. Vonesh, Jason M. Wiersdorf
  • Patent number: 8996128
    Abstract: Couplings for implanted leads and external stimulators, and associated systems and methods are disclosed. A system in accordance with a particular embodiment includes a cable assembly that in turn includes an electrical cable having a proximal end and a distal end. A first connector is attached to the cable toward the proximal end and has a plurality of first connector contacts positioned to releasably connect to an external patient device. A second connector is attached by the cable toward the distal end, and includes a first portion and a second portion pivotably connected to the first portion. The first portion has a slot elongated along a slot axis and positioned to receive an implantable patient signal delivery element axially along the slot axis.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: March 31, 2015
    Assignee: Nevro Corporation
    Inventors: Jon Parker, Andre B. Walker
  • Patent number: 8996133
    Abstract: The methods and apparatus for lead placement on a surface of the heart are employed using an elongated body having proximal and distal end portions. The body defines a lead receiving passageway extending between a proximal inlet and a distal outlet for receiving a lead therethrough for contact with the heart surface. The elongated body is adapted for insertion between a pericardium and an epicardial surface. At least a portion of the body may have a non-circular cross-sectional shape adapted to retain the body orientation between the pericardium and the epicardial surface.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: March 31, 2015
    Assignee: SentreHEART, Inc.
    Inventors: Aaron V. Kaplan, Kevin F. Hahnen
  • Patent number: 8996136
    Abstract: An implantable medical device, which is connected or is to be connected to at least two elongated electric function conductors for the transmission of treatment signals or diagnostic signals or both, and at least one electrode pole connected to at least one of the function conductors, via which electrode pole electric current can be delivered in the case of use to surrounding tissue of the body or with which electric potentials can be sensed in the surrounding tissue or both. Includes a wave transfer module connected to the function conductor and which is embodied to transform waves arriving via a function conductor and to switch them as transformed waves onto another function conductor or the same function conductor in such a controlled manner that the waves are destructively superimposed at the electrode pole.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 31, 2015
    Assignee: Biotronik SE & Co. KG
    Inventor: Ingo Weiss
  • Patent number: 8996135
    Abstract: A device and method for implanting a catheter between the left atrium and/or left ventricle of the heart from a prepectoral region through a less invasive and lower-risk approach is provided that allows the implantation of the catheter in the left cardiac chambers through a femoral approach atrial transseptal puncture, and the removal of the catheter proximal end by a retrograde venous route. The device includes a transseptal sheath for slidably carrying the catheter, an elongate pulling element attached to a proximal end of the catheter, a runner slidable within the transseptal sheath and operable for biasing against the proximal end of the cardiac catheter, and a loop catheter having a loop formed at one end thereof, wherein the loop is dimensioned for receiving the transseptal sheath and for receiving the elongate pulling element therein when the loop and the elongate pulling element are separated from the transseptal sheath.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: March 31, 2015
    Inventor: Benjamin Daniel Elencwajg
  • Patent number: 8989871
    Abstract: A pacing lead (20) having a lead body (22) with a central lumen and provided with structure for retaining the lead body to a wall of the coronary network, and a hollow tubular extension (26), bearing an active region of the lead and also traversed by a central lumen (28) communicating with the inner lumen of the lead body, so as to allow implantation by an over the wire technique. The hollow tubular extension has an outside diameter of between 2 and 3 French (0.66 and 1 mm) to allow implantation deep in the coronary sinus network, and it comprises on its outer surface an electrically insulated peripheral conductor, except for denuded areas intended to come into contact with the wall of a target vein and form a network of stimulation electrodes (32, 34) electrically connected together.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: March 24, 2015
    Assignee: Sorin CRM SAS
    Inventor: Jean-Francois Ollivier
  • Patent number: 8989873
    Abstract: Implantable medical devices and methods use an intravascular implantable medical device having an elongated housing module to contain one or more circuitry components. An opening is defined through the elongated housing module. A lead, including at least one electrode, is coupled towards the distal end of the elongated housing module and at least a portion of the at least one electrode is in a stowed position within the opening defined through the elongated housing module during implant of the implantable medical device. The at least one electrode is advanceable from the stowed position to a location distal of the distal end of the elongated housing module.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: March 24, 2015
    Assignee: Medtronic, Inc.
    Inventor: Brent L. Locsin
  • Publication number: 20150080997
    Abstract: A medical implant and an electrode device for a medical implant, wherein the electrode device includes a distal end, a proximal end, and an electric transmission line that extends between the distal end and the proximal end. The transmission line includes at least one adaptive element. The at least one adaptive element includes a magnetodielectric material, which, under the action of a magnetic field, changes one or more of its electric and magnetic properties.
    Type: Application
    Filed: August 25, 2014
    Publication date: March 19, 2015
    Applicant: BIOTRONIK SE & CO. KG
    Inventors: Heinrich BUESSING, Jens RUMP
  • Patent number: 8983622
    Abstract: Medical lead body configurations that reduce conductor flexural fatigue. The various lead body embodiments include a support section and can also include other features such as a semi-straight portion of a lumen or semi-straight sides that optimize the reduction in conductor flexural fatigue.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: March 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ronald W. Kunkel, Andrew De Kock, Steven B. Rasmussen, Patrick Willoughby
  • Patent number: 8977368
    Abstract: An implantable medical device having at least one first and one second longitudinally extended electrical functional conductor to transmit therapeutic signals or diagnostic signals or both. The implantable medical device includes one electrode pole connected to the functional conductor, wherein electrical current is delivered to the surrounded bodily tissue using the electrode pole. Electrical potentials may be sensed in the surrounding tissue using the electrode pole, such that the two electrical functional conductors are inductively coupled for defined resonant frequencies and such that RF energy of a first functional conductor is diverted to the second functional conductor. The RF energy is delivered to the surrounding tissue via the second functional conductor and via an electrode pole connected to the second functional conductor.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 10, 2015
    Assignee: Biotronik SE & Co. KG
    Inventors: Thomas Doerr, Ingo Weiss
  • Patent number: 8974454
    Abstract: An electrophysiology catheter for use with a steerable introducer sheath includes a flexible catheter body having a proximal end and a distal end and at least one hollow elongate tip electrode disposed at the distal end of the catheter body. The hollow elongate tip electrode includes a sidewall having at least one elongate gap that provides flexibility allowing the tip electrode to bend relative to a longitudinal axis of the catheter body. The catheter body is an independent, non-steerable structure, and can be moved via movement of the steerable introducer through which it is introduced into a patient.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: March 10, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Alan de la Rama, Cary Hata, William Du, Yongxing Zhang, James V. Kauphusman, Troy T. Tegg
  • Patent number: 8968299
    Abstract: A circuit (10, 110, 210) configured for connecting an electrode (28, 126, 228) to a catheter or sheath is disclosed. The circuit (10, 110, 210) includes a member (12, 112, 212) having a longitudinal axis (14, 214) and configured to extend along at least a portion of the length of the catheter or sheath. The circuit (10, 110, 210) further includes a trace (16, 116, 230) printed on the member (12, 112, 212), where the trace (16, 116, 230) includes at least a longitudinal segment (18, 118) extending generally along at least a portion of the longitudinal axis (14, 214) and a transverse segment (20, 120) extending generally transverse to the longitudinal axis (14, 214). In an embodiment, the circuit further includes a pad (26, 126, 226) integral with and extending from the (10, 110, 210) proximal the transverse segment (20, 120) of the trace (16, 116, 230). A catheter or sheath assembly comprising the circuit (10, 110, 210) and an electrode (28, 126, 228) connected to the circuit (10, 110, 210) is also disclosed.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: March 3, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: James V. Kauphusman, Allan M. Fuentes, Troy T. Tegg, Dale E. Just
  • Publication number: 20150057732
    Abstract: An elongate implantable electrical line including an end component at one longitudinal end of the electrical line, wherein the end component includes at least one electrically conductive electrode surface electrically connected to the electrical line. The end component is a composite component that includes at least one thin metal layer with a layer thickness less than 1 ?m. The at least one thin metal layer is applied to electrically insulating material of the composite component and is conductively connected to the electrical line, such that the at least one thin metal layer includes, or acts as, an electrode surface. The at least one thin metal layer includes an outer surface and is completely covered completely by at least one outer ceramic layer on the outer surface, such that the at least one thin metal layer is electrically insulated from a surrounding environment.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 26, 2015
    Applicant: BIOTRONIK SE & CO. KG
    Inventors: Jens RUMP, Heinrich BUESSING
  • Publication number: 20150051682
    Abstract: An implantable leadless cardiac pacing device and associated delivery and retrieval devices. The implantable device includes a docking member extending from the proximal end of the housing of the implantable device configured to engage with the delivery and/or retrieval device to facilitate delivery and/or retrieval of the implantable leadless cardiac pacing device.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 19, 2015
    Inventors: Brian L. Schmidt, Benjamin J. Haasl, Keith R. Maile, Dana Sachs
  • Patent number: 8951201
    Abstract: An apparatus for performing a transesophageal cardiovascular procedure includes an elongated tubular main access device having a first lumen with an open proximal end and a distal side opening, and a second lumen with a rigid outer wall and a collapsible inner wall. The second lumen is adapted to receive an elongated probe or surgical device. The apparatus further includes an inflatable sealing means on the outside of the main access device above and below the side opening, and a first fluid conduit extending along the main access device for inflating the sealing means so that when the main access device is inserted into a patient's esophagus and the sealing means are inflated. The portion of the esophagus opposite the side opening is isolated from the remainder of the esophagus above and below the side opening.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: February 10, 2015
    Assignee: Microaccess Inc.
    Inventor: Sameh Mesallum
  • Patent number: 8948882
    Abstract: A fixation component for a medical electrical lead includes a tubular sidewall that has an outer surface from which a plurality of deformable barb-like projections extend, each projection being in proximity to an aperture that extends through the sidewall. The projections are spaced apart from one another along a length of the component, and each extends from a first end, attached to the sidewall, in proximity to an edge of the corresponding aperture, to a second, free end, spaced apart from the outer surface of the sidewall, when the projection is un-deformed. The outer surface of the sidewall preferably includes reduced diameter end portions, to maintain a relatively low profile, when tubing members overlap thereon to secure the component around a body of the medical electrical lead. The body of the lead may include a conductor coil whose outer surface is directly overlaid by the component.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: February 3, 2015
    Assignee: Medtronic, Inc.
    Inventors: Brian T. Stolz, Carole A. Tronnes
  • Publication number: 20150031975
    Abstract: Herein is disclosed a probe, including a first electrode disposed at least partially on the probe surface, a second electrode disposed at least partially on the probe surface, a first conductor electrically coupled to the first electrode, a second conductor electrically coupled to the second electrode, and a reactive element electrically coupling the first conductor and the second conductor.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 29, 2015
    Inventors: Ergin Atalar, Robert Susil, Albert Lardo, Henry R. Halperin
  • Patent number: 8942828
    Abstract: A family of minimally-invasive surgical (MIS) cardiac interventional tools with tactile feedback based upon cardiac mechanical data and physiologic parameters derived from sensors positioned upon the tools are configurable for optimal placement of an end-effector to provide acute cardiac resuscitation and/or remote cardiovascular intervention for a subject. A haptic interface (e.g., a haptic handle, haptic glove or a simulated haptic heart) provides a clinician with real, not virtual, interaction with the cardiovascular anatomy (including intrathoracic organs) of the subject to optimize end-effector placement. The MIS tools optionally include webbed blade portions for exploration of extracardiac or intrathoracic spaces.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: January 27, 2015
    Assignee: Stuart Schecter, LLC
    Inventor: Stuart O. Schecter
  • Patent number: 8942826
    Abstract: Implantable medical device with at least one long extended electrical conductor that is insulated from the surrounding material by a dielectric. The implantable medical device includes an electrode pole that emits therapy signals or detects diagnostic signals, at least one first longitudinal section of a first characteristic impedance between a proximal end and the electrode pole; and at least one second longitudinal section adjacent to the at least one first longitudinal section. The at least one second longitudinal section includes a second characteristic impedance and is shorter than the first longitudinal section. The second characteristic impedance is either larger or smaller than a load characteristic impedance.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 27, 2015
    Assignee: Biotronik SE & Co. KG
    Inventor: Heinrich Buessing
  • Patent number: 8942825
    Abstract: A temporarily or permanently implantable medical device having at least one elongated electrical function conductor for transmitting therapeutic signals or diagnostic signals or both. At least one additional conductor is provided which together with the function conductor forms, at least in places, a double line which is separated from the function conductor by a dielectric and which is coupled to the function conductor via a coupling impedance. The coupling impedance is dimensioned so that the value of the line wave impedance of the function conductor for frequency ranges far above a frequency range of the therapeutic or diagnostic signals is much greater than the in the frequency range of the therapeutic or diagnostic signals, so that currents in a frequency range above the frequency range of the therapeutic or diagnostic signals are damped more intensely than the currents which form therapeutic or diagnostic signals.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 27, 2015
    Assignee: Biotronik SE & Co. KG
    Inventors: Thomas Doerr, Ingo Weiss
  • Patent number: 8938310
    Abstract: Techniques for biventricular pacing include a rigid shaped stylet approximating curves of a coronary sinus and branch vein. Some techniques include a parasternal coronary sinus cannula comprising an outer sheath and an obturator. The obturator is removeably disposed inside the outer sheath from a device end of the hollow shaft. The obturator includes a flexible stem that fits snugly inside the hollow shaft, a malleable core disposed inside the flexible stem, a tapered tip that extends beyond a cardiac end of the shaft when the obturator is disposed inside the outer sheath, and a sensor for determining properties of the subject in a vicinity of the tapered tip. An optional pressure-seal, such as a tent, connected to suction maintains negative intrepleural pressure for insertion under local anesthesia.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: January 20, 2015
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Henry M. Spotnitz, Daniel Y. Wang, Santos Cabreriza
  • Publication number: 20150018923
    Abstract: An implantable pulse generator includes a core assembly, a seal plug, and an outer layer overmolded over the core assembly adjacent the seal plug. The core assembly defines a core hole extending through the core assembly from a core interior to a core outer surface. The core hole has a hole outer portion and a hole inner portion. A first diameter of the hole outer portion is less than a second diameter of the hole inner portion. The seal plug is positioned in the core hole and has a plug outer portion aligned with the hole outer portion and a plug inner portion aligned with the hole inner portion. A third diameter of the plug outer portion is less than a fourth diameter of the plug inner portion. The outer layer leaves a top of the seal plug exposed.
    Type: Application
    Filed: June 19, 2014
    Publication date: January 15, 2015
    Inventors: Daragh Nolan, James M. English, John O'Rourke, Sean Walsh
  • Patent number: 8929969
    Abstract: A catheter assembly for use in an anatomy can include an elongated body, which can have a proximal end and a distal end. The body can also define a lumen from the proximal end to the distal end. The assembly can include at least one electrode, which can be coupled to the distal end to sense an electrical activity within the anatomy. The assembly can include a core wire, which can be received within the lumen from the proximal end to the distal end. The core wire can be configured to move the distal end from a first configuration to a second configuration. The assembly can also include a necked portion, which can be formed between the proximal end and the distal end to provide increased stiffness to the distal end of the body.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: January 6, 2015
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Edward M. Gillis, Christine Beltran
  • Patent number: 8925191
    Abstract: In one embodiment, a method of fabrication of a stimulation lead comprising a plurality of segmented electrodes for stimulation of tissue of a patient, the method comprises: providing an elongated, substantially cylindrical substrate, the substrate comprising a plurality of recesses defined in an outer surface of the substrate; coating the substrate with conductive material; patterning conductive material on the substrate to form a plurality of electrode surfaces for at least the plurality of segmented electrodes and a plurality of traces connected to the plurality of electrode surfaces, wherein each electrode surface and its corresponding trace are defined in the recesses on the outer surface of the substrate and are electrically isolated from other electrode surfaces and traces; providing insulative material over at least the plurality of traces; and electrically coupling the plurality of traces to conductive wires of a lead body.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: January 6, 2015
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: John Swanson, Kevin Turner, Jerome Boogaard
  • Publication number: 20150005862
    Abstract: Scientific and medical system circuitry for diagnosis of implantable cardioverter defibrillator (ICD) lead conductor anomalies, in particular conductor migration and externalization within an ICD implantable cardiac lead. The system determines an “imaginary” component of the high frequency transmission line impedance having certain spectral changes that correspond to radially outward movements or local externalization of a conductor within a lead body allowing for the detection of conductor migration and small insulation failures.
    Type: Application
    Filed: March 11, 2014
    Publication date: January 1, 2015
    Inventors: Mark Kroll, Charles Swerdlow
  • Patent number: 8920418
    Abstract: A PFO closing device includes: a clamper including a stick portion provided at a distal portion of a catheter for sticking to a foramen ovale valve and a sandwich member for sandwiching a biological tissue composed of the foramen ovale valve and an atrial septum secundum in cooperation with the stick portion; a cautery device including at least one electrode portion to be inserted into the foramen ovale between the foramen ovale valve and the atrial septum secundum; and an electric energy supply unit for supplying electric energy to the electrode portion, wherein the electrode portion is inserted into the foramen ovale and at the same time, the foramen ovale valve and the atrial septum secundum are sandwiched by the clamper, electric energy is supplied from the electric energy supply unit to the electrode portion and the foramen ovale valve and the atrial septum secundum are mutually fused.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: December 30, 2014
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Seiichi Ootsubo
  • Patent number: 8920432
    Abstract: A medical apparatus includes a guidewire and a fixator catheter. The fixator catheter comprises a tubular body with a distal portion and a proximal portion, and further includes a distal opening, a fixator secured to the distal portion, and a body opening arranged between the fixator and the proximal portion. The guidewire passes through the body opening and the distal opening of the fixator catheter. The fixator is movable between a compact configuration and an expanded configuration and, in the expanded condition, is capable of anchoring the guidewire and fixator catheter in a lumen of a blood vessel.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: December 30, 2014
    Assignee: Medtronic, Inc.
    Inventors: Ronald Alan Drake, Lindsey Marie Tobin, Stanten C. Spear, Scott William Hayden, Andrea Jean Asleson, Steven Lawrence Waldhauser, Kendra Yasger
  • Patent number: 8923989
    Abstract: A lead assembly includes a ring component having mechanical coupling features, and at least one polymer component mechanically coupled with the mechanical coupling features of the ring component. Elongate tubing is disposed over the polymer component and is secured with the polymer component.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: December 30, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Paul E. Zarembo, Elliott Rodriguez Roman
  • Patent number: 8918192
    Abstract: A lead for an implantable cardiac prosthesis, with protection against the thermal effects of MRI fields by terminating the lead head (10) with an electrically insulating tubular outer housing (28) and an anchoring mechanism. The tubular housing (28) carries an electrically isolated thermally conductive solid part in the outer region of its distal end forming a heat sink. The heat sink thermally conductive material is for example titanium, associated with an electrically insulating coating such as a diamond deposition. The anchor may be a projecting helical anchoring screw (20), axially extending the tubular housing, which is an electrically conductive active screw on at least one end portion.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: December 23, 2014
    Assignee: Sorin CRM SAS
    Inventors: Jean-François Ollivier, Philippe d'Hiver
  • Publication number: 20140371831
    Abstract: A method and system for the diagnosis of anomalies in a lead attached to an implantable medical device, such as an implantable cardioverter defibrillator (ICD), including an insulation breach resulting in a short circuit of the high-voltage shock pulse. Determination that the defibrillation pathway is shorted may be made by initial analysis of a Reference EGM and Diagnostic EGM and subsequent analysis of Differential Diagnostic EGMs. Upon determining if a specific defibrillation pathway is shorted, the nonessential defibrillation electrode of that pathway may be excluded from the defibrillation circuit, delivering defibrillation current only between functioning defibrillation electrodes. Alternatively, the ICD system can confirm the presence of a lead anomaly with one or more alternative diagnostic approaches. Patient and remote-monitoring alerts may be initiated.
    Type: Application
    Filed: March 25, 2014
    Publication date: December 18, 2014
    Applicant: Lamda Nu, LLC
    Inventor: Charles D. Swerdlow
  • Patent number: 8910376
    Abstract: A method for forming a lead or lead extension having an arrangement of elongated conductors disposed in a body of a lead or lead extension includes ablating a plurality of spaced-apart channels in proximity to at least one of the proximal end or the distal end of the body to expose at least part of at least one of the conductors. A C-shaped contact is disposed into each of a different one of the transverse channels. Each C-shaped contact is electrically coupled to at least one of the conductors. Each C-shaped contact is closed so that opposing ends of the C-shaped contact are adjacent to one another and aligned over one of the elongated conductors. The two opposing ends of each C-shaped contact is coupled together such that each C-shaped contact forms a continuous path around the arrangement within the transverse channel in which the C-shaped contact is disposed.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: December 16, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Matthew Lee McDonald