Chemical Substance In Blood Patents (Class 607/22)
  • Patent number: 11890113
    Abstract: A method for processing a neural measurement obtained in the presence of artifact, in order to detect whether a neural response is present in the neural measurement. A neural measurement is obtained from one or more sense electrodes. The neural measurement is correlated against a filter template, the filter template comprising at least three half cycles of an alternating waveform, amplitude modulated by a window. From an output of the correlating, it is determined whether a neural response is present in the neural measurement.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: February 6, 2024
    Assignee: Saluda Medical Pty Ltd
    Inventors: Peter Scott Vallack Single, Dean Michael Karantonis
  • Patent number: 10220180
    Abstract: A system for infusing medication into a mammalian subject is provided. The system includes an injection system for controlling a flow of fluid from a fluid reservoir to a needle. A sensor is provided that detects a characteristic indicative of the fluid pressure in the needle. The injection system controls the flow of fluid to the needle in response to the characteristic detected by the sensor and the sensor continuously detects the characteristic as the needle is inserted into the subject. The system further includes a conductive element for providing electric nerve stimulation, wherein the system provides electric nerve stimulation in response to the sensor detecting a pressure exceeding an upper limit.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: March 5, 2019
    Assignee: MILESTONE SCIENTIFIC, INC.
    Inventor: Mark N. Hochman
  • Patent number: 9409025
    Abstract: Various aspects of the present subject matter relate to a device. In various embodiments, the device comprises at least one port adapted to connect at least one lead, a CRM functions module connected to the port and adapted to provide at least one CRM function using the lead, a neural function module, and a controller connected to the CRM functions module and the neural function module. The at least one CRM function includes a function to provide an electrical signal to the lead to capture cardiac tissue. The neural function module includes a signal processing module connected to the port and adapted to receive and process a nerve traffic signal from the lead into a signal indicative of the nerve traffic. The controller is adapted to implement a CRM therapy based on the signal indicative of the nerve traffic. Other aspects are provided herein.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: August 9, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, Julia Moffitt
  • Patent number: 9079038
    Abstract: An implantable medical device having at least one elongated electrical function conductor and an electrode pole connected to the at least one elongated function conductor. The at least one elongated function conductor transmits therapeutic signals or diagnostic signals or both. The electrode pole delivers electrical current or field or sense electrical potentials, or both, in surrounding tissue during use. The implantable medical device includes a sensing device connected to a field-generating electrode pole, a potential-sensing electrode pole, and a reference pole. The sensing device detects generated electrical potentials via the potential-sensing electrode pole in relation to the reference pole, and generates an output signal that represents a detected electrical potential.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: July 14, 2015
    Assignee: BIOTRONIK SE & CO. KG
    Inventors: Thomas Doerr, Ingo Weiss
  • Patent number: 9014809
    Abstract: An exemplary embodiment includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: April 21, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Brian J. Wenzel, Taraneh Ghaffari Farazi
  • Patent number: 9008770
    Abstract: A medical implant system is described for inhibiting infection associated with a joint prosthesis implant. An inventive system includes an implant body made of a biocompatible material which has a metal component disposed on an external surface of the implant body. A current is allowed to flow to the metal component, stimulating release of metal ions toxic to microbes, such as bacteria, protozoa, fungi, and viruses. One detailed system is completely surgically implantable in the patient such that no part of the system is external to the patient while the system is in use. In addition, externally controlled devices are provided which allow for modulation of implanted components.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: April 14, 2015
    Assignee: ArgentumCidalElectrics, Inc.
    Inventors: Thomas A. Fuller, Richard A. Wysk, Wayne J. Sebastianelli
  • Patent number: 8972013
    Abstract: An implantable medical system includes an implantable medical device (IMD) and an electrode coupleable to the IMD. The electrode is operative to deliver a first electrical signal from the IMD to a neural structure. The system includes a sensor coupleable to the IMD. The sensor is operative to sense a physiological parameter. The physiological parameter may include at least one of a neurotransmitter parameter, a neurotransmitter breakdown product parameter, a neuropeptide parameter, a norepinephrine parameter, a glucocorticoid (GC) parameter, a neuromodulator parameter, a neuromodulator breakdown product parameter, an amino acid parameter, and a hormone parameter. The IMD includes a controller operative to change a parameter of the first electrical signal based upon at least one sensed physiological parameter to generate a second electrical signal and to apply the second electrical signal to the neural structure.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Cyberonics, Inc.
    Inventor: Steven E. Maschino
  • Patent number: 8942779
    Abstract: Apparatus and methods are described, including a method for detecting an onset of a hypoglycemia episode in a subject. One or more critical parameters for hypoglycemia are monitored without contacting the subject. A variation of at least one of the critical parameters is detected, and an alarm is activated when at least one of the critical parameters deviates from an accepted value. Other applications are also described.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: January 27, 2015
    Assignee: Early Sense Ltd.
    Inventors: Avner Halperin, Arkadi Averboukh, Roman Karasik, Guy Meger
  • Patent number: 8929982
    Abstract: An implantable medical device comprises a connector connectable to an implantable oxygen sensor configured to generate a sensor signal representative of oxygen concentration in coronary sinus blood in a subject's heart. An ischemia detector is connected to the connector and configured to detect an ischemic event in the heart if the sensor signal indicates a temporary decrease in oxygen concentration in the coronary sinus blood below a normal level followed by a temporary increase in oxygen concentration in the coronary sinus blood above the normal level.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: January 6, 2015
    Assignee: St. Jude Medical AB
    Inventors: Nils Holmstrom, Michael Broome
  • Patent number: 8918171
    Abstract: A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a monitoring module detecting a cardiac event in response to the sensed cardiac signals using first detection criteria, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy, and a controller coupled to the monitoring module, the therapy delivery module and the sensor, the controller configured to determine tissue oxygenation measurements in response to the output signal, determine a tissue oxygenation trend in response to the tissue oxygenation measurements, determine a recovery index in response to the determined tissue oxygenation trend, and control one or both of detecting a cardiac event by the monitoring module and delivery of therapy by the therapy deliver
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: December 23, 2014
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Can Cinbis, David A. Anderson, William J. Havel
  • Patent number: 8903492
    Abstract: In general, the invention is directed to methods and devices for determining an ion concentration in the extracellular fluid of a patient. As examples, the ion may be one or more of potassium, sodium, chloride, or calcium. A system includes an electrode deployed in or near a tissue, such as a skeletal muscle, of the patient. A pulse generator supplies one or more stimulations to the tissue, and a sensor, such as an accelerometer, detects the response of the tissue to the stimulations. A processor determines a concentration of ions in the extracellular fluid as a function of the response. The system may detect an ion imbalance based upon the determined concentration of ions.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: December 2, 2014
    Assignee: Medtronic, Inc.
    Inventors: Orhan Soykan, Timothy H. Robinson, James K. Carney, Tara L. Nahey, Cygni Chan
  • Patent number: 8788033
    Abstract: An energy-releasing carbon nanotube transponder comprising a nanocapacitor connected to at least one carbon nanotube and method of using same are described. An adjustable amount of electric energy is stored within the nanocapacitor so that the energy-releasing carbon nanotube transponder delivers either a biologically destructive or a biologically non-destructive electrical charge to target cells in response to biological, chemical or electrical stimuli. An optional biocompatible coating onto the outer surface of the carbon nanotube transponder improves cellular targeting, cellular binding or body tolerance towards the carbon nanotube transponder. Optionally, a molecular label attached to at least one carbon nanotube allows for in vivo tracking of the carbon nanotube transponder.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 22, 2014
    Assignee: Rush University Medical Center
    Inventor: Marvin A. Rossi
  • Patent number: 8718764
    Abstract: An implantable cardiac rhythm/function management system integrates cardiac contractility modulation (CCM) and one or more other therapies, such as to preserve device safety, improve efficacy, enhance sensing and detection, or enhance therapy effectiveness and delivery. Examples of the one or more other therapies can include pacing, defibrillation/cardioversion, cardiac resynchronization therapy (CRT), or neurostimulation.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: May 6, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Jeffrey E. Stahmann
  • Patent number: 8712518
    Abstract: The invention relates to methods and systems for determining phase-specific parameters of a physiological variable, and a related computer program and a related machine-readable storage medium, which are usable in particular to determine parameters of physiological variables that are subject to circadian variation. To this end, phase-specific parameters of a physiological variable X(t) are determined by calculating, at least for a portion of values x lying in a specifiable time period, a mean g(x|?) in each case of values X(t+?) for which X(t)=x applies for their predecessors, ? describing a time interval, and determining the phase-specific parameters by evaluating the mean g(x|?).
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 29, 2014
    Assignee: Biotronik SE & Co. KG
    Inventors: Jens Kirchner, Christian Rockstroh, Thomas Kraemer
  • Patent number: 8660644
    Abstract: A method of operating a neurostimulation device comprises outputting a pulsed electrical waveform from the neurostimulation device between a plurality of electrodes while at least one of the electrodes has a first polarity, thereby stimulating neural tissue adjacent the electrode(s), allowing the neural tissue to undergo neurological accommodation in response to the electrical energy output between the electrodes, switching the electrode(s) from the first polarity to a second polarity, outputting the pulsed electrical waveform from the neurostimulation device between the electrodes while the electrode(s) has the second polarity, thereby hyperpolarizing the neural tissue to reverse the neurological accommodation, switching the electrode(s) from the second polarity to the first polarity, and outputting the pulsed electrical waveform from the neurostimulation device between the electrodes while the electrode(s) has the first polarity, thereby stimulating the previously hyperpolarized neural tissue.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: February 25, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kristen Jaax, Courtney Lane, Michael Moffitt, Andrew DiGiore, Mark Pierre, Kerry Bradley, Gregory Baldwin
  • Patent number: 8634930
    Abstract: Various system embodiments include a glucose control input, a low physical activity input, and a diabetic therapy delivery system adapted to respond to the glucose control input and the low physical activity input to deliver diabetic therapy. According to various embodiments, the diabetic therapy includes an anti-arrhythmia therapy, a hypertension therapy, a neural stimulation therapy adapted to reduce a risk of myocardial infarction, a neural stimulation therapy adapted to be applied after a myocardial infarction to reduce an infarct area, a neural stimulation therapy adapted to reduce a risk of sudden cardiac death, a therapy adapted to secrete insulin, or a therapy to reduce a workload of a diabetic heart. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: January 21, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yousufali Dalal, Andrew P. Kramer, Lizbeth M. Mino
  • Patent number: 8620431
    Abstract: A medical implant system is described for inhibiting infection associated with a joint prosthesis implant. An inventive system includes an implant body made of a biocompatible material which has a metal component disposed on an external surface of the implant body. A current is allowed to flow to the metal component, stimulating release of metal ions toxic to microbes, such as bacteria, protozoa, fungi, and viruses. One detailed system is completely surgically implantable in the patient such that no part of the system is external to the patient while the system is in use. In addition, externally controlled devices are provided which allow for modulation of implanted components.
    Type: Grant
    Filed: March 11, 2012
    Date of Patent: December 31, 2013
    Assignee: ArgentumCidalElectrics, Inc.
    Inventors: Thomas A. Fuller, Richard A. Wysk, Wayne J. Sebastianelli
  • Patent number: 8588907
    Abstract: A device and method for delivering electrical stimulation to the heart in order to improve cardiac function in heart failure patients. The stimulation is delivered as high-output pacing in which the stimulation is excitatory and also of sufficient energy to augment myocardial contractility. In order to provide a consistent hemodynamic response, the high-output pacing is optimized by delivering it using different parameter sets, evaluating the hemodynamic response thereto as reflected by one or more measured physiological variables, and selecting the parameter set with the best hemodynamic response.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: November 19, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Allan C. Shuros, Christopher Hartemink
  • Patent number: 8583224
    Abstract: The invention relates to systems, devices, and methods for detecting infections associated with implantable medical devices. In an embodiment, the invention includes a method of detecting infection in a patient including measuring a physiological parameter using a chronically implanted sensor at a plurality of time points and evaluating the physiological parameter measurements to determine if infection is indicated. In an embodiment, the invention includes an implantable medical device including a first chronically implantable sensor configured to generate a first signal corresponding to a physiological parameter and a controller disposed within a housing, the controller configured to evaluate the first physiological parameter signal to determine if an infection is indicated. Other embodiments are also included herein.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: November 12, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kent Lee, Jonathan T. Kwok, Hugo Andres Belalcazar, Jennifer Lynn Pavlovic, Ronald W. Heil, Jr.
  • Patent number: 8571659
    Abstract: In an embodiment, the invention includes an implantable medical device with a pulse generator and a chemical sensor in communication with the pulse generator, the chemical sensor configured to detect an ion concentration in a bodily fluid. In an embodiment, the invention includes a method for providing cardiac arrhythmia therapy to a patient including sensing a physiological concentration of an analyte, communicating data regarding the physiological concentration of the analyte to an implanted pulse generator, and delivering therapy to the patient based in part on the physiological concentration of the ion. In an embodiment, the invention includes a method for monitoring diuretic therapy. In an embodiment, the invention includes a method for controlling delivery of an active agent into a human body. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 29, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael John Kane, Jeffrey Allen Von Arx, James Gregory Bentsen
  • Patent number: 8565877
    Abstract: Methods for monitoring a patient's level of B-type natriuretic peptide (BNP), and implantable cardiac systems capable of performing such methods, are provided. A ventricle is paced for a period of time to provoke a ventricular evoked response, and a ventricular intracardiac electrogram (IEGM) indicative of the ventricular evoked response is obtained. Based on the ventricular IEGM, there is a determination of at least one ventricular evoked response metric (e.g., ventricular evoked response peak-to-peak amplitude, ventricular evoked response area and/or ventricular evoked response maximum slope), and the patient's level of BNP is monitored based on determined ventricular evoked response metric(s). Based on the monitored level's of BNP, the patients heart failure (HF) condition and/or risks and/or occurrences of certain events (e.g., an acute HF exacerbation and/or an acute myocardial infarction) can be monitored.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: October 22, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Allen Keel, Steve Koh, Taraneh Ghaffari Farzi
  • Patent number: 8391979
    Abstract: An implantable medical device that includes an optical sensor for providing a signal corresponding to light attenuation by a volume of blood perfused tissue, a control module coupled to the optical sensor controlling the light emitted by the optical sensor, a monitoring module receiving an optical sensor output signal and measuring light attenuation, a tissue electrode for stimulating the volume of blood perfused tissue, a pulse generator coupled to the tissue electrode for delivering electrical stimulation to the volume of blood-perfused tissue, and a processor coupled to the cardiac electrode and the monitoring module and configured to detect an arrhythmia in response to the depolarization signals, compute a tissue oxygenation measurement and control the pulse generator to deliver electrical stimulation to the volume of blood-perfused tissue in response to detecting the arrhythmia, and detect a hemodynamic status of the arrhythmia in response to at least one of a detected rate of tissue oxygenation decline
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 5, 2013
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, Can Cinbis, David A. Anderson, James K. Carney
  • Patent number: 8385999
    Abstract: Methods of processing venous oxygen saturation and hematrocrit information in an implantable sensor are provided. In an embodiment a method for collecting data from an implantable multi-wavelength SvO2 sensor having multiple light sources is provided. The method includes receiving a frame signal that indicates a beginning of the light sources being turned on and receiving a light source signal that indicates a light source is on. The output of a photodetector is sampled to measure the intensity of the transmitted light. The process is repeated for each light source to gather intensity measurements that then can be used to generate venous oxygen saturation and hematocrit measurements.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: February 26, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Yelena Nabutovsky, Gene A. Bornzin, Taraneh Ghaffari Farazi, John W. Poore
  • Patent number: 8364260
    Abstract: An external defibrillator having a battery; a capacitor electrically communicable with the battery; at least two electrodes electrically communicable with the capacitor and with the skin of a patient; a controller configured to charge the capacitor from the battery and to discharge the capacitor through the electrodes; and a support supporting the battery, capacitor, electrodes and controller in a deployment configuration, the defibrillator having a maximum weight per unit area in the deployment configuration of 0.1 lb/in2 and/or a maximum thickness of 1 inch. The support may be a waterproof housing.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: January 29, 2013
    Assignee: Kuman and Rao Family Trust
    Inventor: Uday N. Kumar
  • Patent number: 8352031
    Abstract: A method of treating a cardiac arrhythmia, comprising: determining a desired arrhythmia control; selecting an electric field having an expected effect of modifying protein activity of at least one protein as a response of a cardiac tissue to the field, said expected effect correlated with said desired arrhythmia control; and applying said field to said cardiac tissue.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: January 8, 2013
    Assignee: Impulse Dynamics NV
    Inventors: Benny Rousso, Hani N. Sabbah
  • Patent number: 8346363
    Abstract: A pancreatic controller, comprising: a glucose sensor, for sensing a level of glucose or insulin in a body serum; at least one electrode, for electrifying an insulin producing cell or group of cells; a power source for electrifying said electrode with a pulse that does not initiate an action potential in said cell and has an effect of increasing insulin secretion; and a controller which receives the sensed level and controls said power source to electrify said electrode to have a desired effect on said level.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: January 1, 2013
    Assignee: MetaCure Limited
    Inventors: Nissim Darvish, Tami Harel, Bella Felsen
  • Patent number: 8326422
    Abstract: Methods for monitoring a patient's level of B-type natriuretic peptide (BNP), and implantable cardiac systems capable of performing such methods, are provided. A ventricle is paced for a period of time to provoke a ventricular evoked response, and a ventricular intracardiac electrogram (IEGM) indicative of the ventricular evoked response is obtained. Based on the ventricular IEGM, there is a determination of at least one ventricular evoked response metric (e.g., ventricular evoked response peak-to-peak amplitude, ventricular evoked response area and/or ventricular evoked response maximum slope), and the patient's level of BNP is monitored based on determined ventricular evoked response metric(s). Based on the monitored level's of BNP, the patients heart failure (HF) condition and/or risks and/or occurrences of certain events (e.g., an acute HF exacerbation and/or an acute myocardial infarction) can be monitored.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: December 4, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Allen Keel, Steve Koh, Taraneh Ghaffari Farazi
  • Patent number: 8290585
    Abstract: Augmentation of electrical conduction and contractility by biphasic cardiac pacing. A first stimulation phase is administered to the cardiac blood pool. This first stimulation phase has a predefined polarity, amplitude and duration. A second stimulation phase is then administered to the cardiac blood pool. This second phase also has a predefined polarity, amplitude and duration. The two phases are applied sequentially. Contrary to current thought, anodal stimulation is first applied and followed by cathodal stimulation. In this fashion, pulse conduction through the cardiac muscle is improved together with the increase in contractility.
    Type: Grant
    Filed: January 21, 2002
    Date of Patent: October 16, 2012
    Assignee: MR3 Medical, LLC
    Inventor: Morton M. Mower
  • Patent number: 8260016
    Abstract: Provided is an image processing system, including a depth calculating section that calculates a depth of an object from a surface of a body, the object existing inside the body; a light receiving section that receives light from the object; and a substance amount calculating section that calculates an amount of a substance, which generates the light received by the light receiving section, inside the object based on the depth of the object calculated by the depth calculating section and an amount of light received by the light receiving section.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: September 4, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Kiyohiro Maeda, Hiroshi Yamaguchi
  • Publication number: 20120221072
    Abstract: Treatment of heart failure in a patient by electrically modulating both the sympathetic and parasympathetic autonomic cardiac nerve fibers that innervate the patient's heart at an extravascular site in the pericardial space of the heart. The extravascular site is any suitable single location inside the chest cavity that carries both sympathetic and parasympathetic cardiac nerves such as the cardiac plexus or the pericardial transverse sinus or any two separate extravascular sites with one site carrying predominantly sympathetic cardiac nerves and the other site carrying predominantly parasympathetic cardiac nerves for electrically modulating the balance of autonomic cardiac nerve control.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 30, 2012
    Applicant: THE CLEVELAND CLINIC FOUNDATION
    Inventors: Kiyotaka FUKAMACHI, Alex MASSIELLO, Mariko KOBAYASHI, Ray DESSOFFY, Eugene JUNG, Shubhayu BASU
  • Publication number: 20120209344
    Abstract: An energy-releasing carbon nanotube transponder comprising a nanocapacitor connected to at least one carbon nanotube and method of using same are described. An adjustable amount of electric energy is stored within the nanocapacitor so that the energy-releasing carbon nanotube transponder delivers either a biologically destructive or a biologically non-destructive electrical charge to target cells in response to biological, chemical or electrical stimuli. An optional biocompatible coating onto the outer surface of the carbon nanotube transponder improves cellular targeting, cellular binding or body tolerance towards the carbon nanotube transponder. Optionally, a molecular label attached to at least one carbon nanotube allows for in vivo tracking of the carbon nanotube transponder.
    Type: Application
    Filed: March 15, 2012
    Publication date: August 16, 2012
    Inventor: Marvin A. Rossi
  • Publication number: 20120197231
    Abstract: In an embodiment, the invention includes an implantable medical device with a pulse generator and a chemical sensor in communication with the pulse generator, the chemical sensor configured to detect an ion concentration in a bodily fluid. In an embodiment, the invention includes a method for providing cardiac arrhythmia therapy to a patient including sensing a physiological concentration of an analyte, communicating data regarding the physiological concentration of the analyte to an implanted pulse generator, and delivering therapy to the patient based in part on the physiological concentration of the ion. In an embodiment, the invention includes a method for monitoring diuretic therapy. In an embodiment, the invention includes a method for controlling delivery of an active agent into a human body. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 2, 2012
    Applicant: CARDIAC PACEMAKERS, INC
    Inventors: Michael John Kane, Jeffrey Allen Von Arx, James Gregory Bentsen
  • Publication number: 20120165890
    Abstract: Techniques are provided for use with implantable medical devices such as pacemakers for optimizing interventricular (VV) pacing delays for use with cardiac resynchronization therapy (CRT). In one example, ventricular electrical depolarization events are detected within a patient in which the device is implanted. The onset of isovolumic ventricular mechanical contraction is also detected based on cardiomechanical signals detected by the device, such as cardiogenic impedance (Z) signals, S1 heart sounds or left atrial pressure (LAP) signals. Then, an electromechanical time delay (T_QtoVC) between ventricular electrical depolarization and the onset of isovolumic ventricular mechanical contraction is determined. VV pacing delays are set to minimize the time delay to the onset of isovolumic ventricular mechanical contraction. Various techniques for identifying the onset of isovolumic ventricular contraction based on Z, S1 or LAP or other cardiomechanical signals are described.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: PACESETTER, INC.
    Inventor: Xiaoyi Min
  • Patent number: 8135466
    Abstract: A medical implant system is described for inhibiting infection associated with a joint prosthesis implant. An inventive system includes an implant body made of a biocompatible material which has a metal component disposed on an external surface of the implant body. A current is allowed to flow to the metal component, stimulating release of metal ions toxic to microbes, such as bacteria, protozoa, fungi, and viruses. One detailed system is completely surgically implantable in the patient such that no part of the system is external to the patient while the system is in use. In addition, externally controlled devices are provided which allow for modulation of implanted components.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: March 13, 2012
    Assignee: ArgentumCidalElectrics, Inc.
    Inventors: Thomas A. Fuller, Richard A. Wysk, Wayne J. Sebastianelli
  • Patent number: 8131364
    Abstract: An apparatus includes an implantable device, such as a chronically implantable device that has a device body. One or more chemical sensors are coupled with the device body. A drug eluting substance is disposed at a location including at least one of on, directly adjacent, or near the one or more chemical sensors, where the drug eluting substance prevents fibrotic growth on the one or more chemical sensors.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: March 6, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qingsheng Zhu, Ronald W. Heil, Jr., Mudit Jain
  • Patent number: 8131363
    Abstract: A device and method for delivering electrical stimulation to the heart in order to improve cardiac function in heart failure patients. The stimulation is delivered as high-output pacing in which the stimulation is excitatory and also of sufficient energy to augment myocardial contractility. In order to provide a consistent hemodynamic response, the high-output pacing is optimized by delivering it using different parameter sets, evaluating the hemodynamic response thereto as reflected by one or more measured physiological variables, and selecting the parameter set with the best hemodynamic response.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 6, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Allan C. Shuros, Christopher Hartemink
  • Patent number: 8126554
    Abstract: In an embodiment, the invention includes an implantable medical device with a pulse generator and a chemical sensor in communication with the pulse generator, the chemical sensor configured to detect an ion concentration in a bodily fluid. In an embodiment, the invention includes a method for providing cardiac arrhythmia therapy to a patient including sensing a physiological concentration of an analyte, communicating data regarding the physiological concentration of the analyte to an implanted pulse generator, and delivering therapy to the patient based in part on the physiological concentration of the ion. In an embodiment, the invention includes a method for monitoring diuretic therapy. In an embodiment, the invention includes a method for controlling delivery of an active agent into a human body. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: February 28, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael John Kane, Jeffrey Allen Von Arx, James Gregory Bentsen
  • Patent number: 8121687
    Abstract: Methods for evaluating motion of a cardiac tissue location, e.g., heart wall, are provided. In the subject methods, timing of a signal obtain from a strain gauge stably associated with the tissue location of interest is employed to evaluate movement of the cardiac tissue location. Also provided are systems, devices and related compositions for practicing the subject methods. The subject methods and devices find use in a variety of different applications, including cardiac resynchronization therapy.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: February 21, 2012
    Assignee: Proteus Biomedical, Inc.
    Inventors: Marc Jensen, Todd Thompson, Olivier Colliou, George M. Savage, Mark J. Zdeblick, Jeremy Frank, Lawrence W. Arne, Robert White
  • Patent number: 8095205
    Abstract: A method and apparatus for verifying a determined cardiac event in a medical device based on detected variation in hemodynamic status that includes a plurality of sensors sensing cardiac signals, and a physiologic sensor sensing physiologic signals to generate a plurality of variation index samples corresponding to the sensed signals. A microprocessor detects a cardiac event in response to the sensed cardiac signals, computes a variation index trend associated with a predetermined number of variation index samples of the plurality of variation index samples, determines whether the sensed cardiac signals are associated with noise in response to the computed variation index, and confirms the determined cardiac event in response to the sensed cardiac signals not being associated with noise.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: January 10, 2012
    Assignee: Medtronic, Inc.
    Inventor: Sourav Bhunia
  • Patent number: 8086302
    Abstract: An optical perfusion sensor may monitor blood oxygen saturation of blood-perfused tissue, which may be referred to as tissue perfusion, until a tissue perfusion value is within a threshold range of a reference value, and, in some examples, for at least a minimum period of time. The tissue perfusion value may indicate an absolute blood oxygen saturation level or a relative change in blood oxygen saturation level. The reference value may be, for example, determined by an optical oxygenation (O2) variation index that indicates a change in blood oxygen saturation of tissue. In some examples, an operation of a cardiac signal sensing module may be controlled based upon detecting a threshold change in tissue perfusion. For example, the cardiac signal sensing module may be activated upon detecting a threshold change in tissue perfusion.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: December 27, 2011
    Assignee: Medtronic, Inc.
    Inventor: Stefan G. Kracker
  • Patent number: 8086309
    Abstract: Embodiments of the invention are related to monitoring devices and methods with osmometric sensors, amongst other things. In an embodiment, an implantable heart failure monitoring system includes an implantable osmometric sensor configured to generate a signal corresponding to osmotic strength of a bodily fluid. The osmometric sensor includes a rigid wall member defining an enclosed volume resisting deformation, the rigid wall member comprising a semi-permeable membrane. The sensor also includes a signaling element comprising a first side, a second side, and a plurality of dimples configured to resist deformation until a threshold differential exists between the first and second sides. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: December 27, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Eric A. Mokelke, Michael John Kane, Jihong Qu
  • Publication number: 20110160790
    Abstract: In some embodiments, an implantable medical device (IMD) system may include one or more of the following elements: (a) an oxygen sensor for measuring oxygen extraction from blood flowing through a coronary sinus of a patient's heart, (b) an oxygen signal generated by the oxygen sensor, (c) an IMD coupled to the oxygen sensor, wherein the IMD is configured to output pacing pulses as a function of the oxygen signal, and (d) an atrial and a ventricular pacing lead coupled to the IMD to deliver the pacing pulses to the patient's heart, wherein the IMD generates the pacing pulses as a function of the oxygen signal, wherein the pacing pulses are adjusted by the IMD as a function of the oxygen signal, wherein the IMD is configured to adjust the pacing pulses to increase oxygen in the blood flow through the coronary sinus.
    Type: Application
    Filed: March 8, 2011
    Publication date: June 30, 2011
    Applicant: Medtronic, Inc.
    Inventors: Berthold Stegemann, Rogier Receveur
  • Patent number: 7970470
    Abstract: Methods and systems for diagnosing disorders, including, for example, disordered breathing, involve sensing one or more of a blood chemistry parameter and/or an expired gas parameter, such as expired respiratory gas concentration, blood gas concentration, and blood pH. Diagnosis of the disorder may be performed by a medical device, such as a respiratory therapy device or a cardiac therapy device, based on implantably detected blood gas/pH concentration/level or externally detected expired respiratory gas concentration. Cardiac and respiratory therapies for addressing the disorder may be adjusted based on the detected parameters.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: June 28, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jesse W. Hartley, Jeffrey E. Stahmann, Kent Lee, Quan Ni
  • Patent number: 7962202
    Abstract: A method and apparatus for verifying a determined cardiac event in a medical device based on detected variation in hemodynamic status that includes a physiologic sensor sensing physiologic signals to generate a plurality of variation index samples corresponding to the sensed signals, and a microprocessor computing a variation index trend associated with a predetermined number of variation index samples of the plurality of variation index samples, determining whether deviations of the predetermined number of variation index samples over predetermined sampling windows are less than a deviation threshold, and determining, in response to the deviations being less than the deviation threshold, a corrected variation index trend in response to the changes in the variation index trend during the predetermined sampling windows.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 14, 2011
    Assignee: Medtronic, Inc.
    Inventor: Sourav Bhunia
  • Patent number: 7925347
    Abstract: An implantable medical device calculates cardiac output on a repeated basis based on acquired cardiac information that relates to one or more parameters of the Fick equation, including venous oxygen saturation, arterial oxygen saturation, estimated oxygen consumption and hemoglobin information. In some aspects, the estimated oxygen consumption may be based on the activity of a patient. For example, respiratory-related information and/or temperature related information may be used to determine the activity level of the patient. In addition, trends relating to heart function may be identified based on cardiac output calculations that are generated over time.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: April 12, 2011
    Assignee: Pacesetter, Inc.
    Inventor: Gene A. Bornzin
  • Publication number: 20110066206
    Abstract: A method and device for delivering therapy that includes an electrode to sense cardiac signals and to deliver a therapy, a monitoring module detecting a cardiac event in response to the sensed cardiac signals using first detection criteria, a sensor emitting light and detecting emitted light scattered by a tissue volume adjacent the sensor to generate a corresponding detected light intensity output signal, a control module coupled to the sensor to control light emission of the sensor in response to delivering the therapy, and a controller coupled to the monitoring module, the therapy delivery module and the sensor, the controller configured to determine tissue oxygenation measurements in response to the output signal, determine a tissue oxygenation trend in response to the tissue oxygenation measurements, determine a recovery index in response to the determined tissue oxygenation trend, and control one or both of detecting a cardiac event by the monitoring module and delivery of therapy by the therapy deliver
    Type: Application
    Filed: July 29, 2010
    Publication date: March 17, 2011
    Inventors: Jonathan L. Kuhn, Can Cinbis, David A. Anderson, William J. Havel
  • Patent number: 7908003
    Abstract: A system and method for treating ischemic heart disease by increasing heart efficiency. By application of an anodal pulse at or above threshold, the efficiency of the heart is improved by increasing the resting membrane potential of the myocardial cells, increasing the size of the anodal virtual stimulatory electrode, or reducing the ventricular stretching during filling of the ventricle.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: March 15, 2011
    Assignee: MR3 Medical LLC
    Inventor: Morton M. Mower
  • Patent number: 7890171
    Abstract: An apparatus includes an implantable device, such as a chronically implantable device that has a device body. One or more chemical sensors are coupled with the device body. A drug eluting substance is disposed at a location including at least one of on, directly adjacent, or near the one or more chemical sensors, where the drug eluting substance prevents fibrotic growth on the one or more chemical sensors.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: February 15, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qingsheng Zhu, Ronald W. Heil, Jr., Mudit Jain
  • Publication number: 20100305648
    Abstract: A cardiac pacing system controls the progression of a cardiac disorder such as heart failure by delivering cardiac stress augmentation pacing to create or augment regional stress in the heart according to a delivery schedule programmed for a patient. Various events associated with the patient's conditions, activities, and other treatments may render the cardiac stress augmentation pacing risky or ineffective. The system detects such events before and during each cardiac stress augmentation pacing session and modifies the delivery schedule in response to the detection of each event to ensure patient safety and therapy efficiency.
    Type: Application
    Filed: April 29, 2010
    Publication date: December 2, 2010
    Inventors: Shantha Arcot-Krishnamurthy, Allan C. Shuros, Craig Stolen, Robert Shipley
  • Publication number: 20100292550
    Abstract: An analyte measuring system has an implantable medical device having a signal source arranged for generating a current signal and electrodes for applying the current signal to a surrounding tissue in a subject body. The device measures a resulting voltage signal with the electrodes and calculates an impedance signal therefrom. The system comprises a signal processor arranged for generating an estimate of a concentration of an analyte in the tissue based on a spectrum analysis of the determined impedance signal.
    Type: Application
    Filed: December 21, 2007
    Publication date: November 18, 2010
    Inventors: Hans Abrahamson, Anders Björling, Tomas Snitting, Nils Holmström