Feature Of Stimulator Housing Or Encapsulation Patents (Class 607/36)
  • Patent number: 11969302
    Abstract: An electrode connector device for an implant. A radiographic marker is integrated in a metal conducting element. There is also described an implant with an electrode connector.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: April 30, 2024
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Martin Henschel, Marina Ruschel
  • Patent number: 11951305
    Abstract: A kit-of-parts for visualizing by a magnetic resonance imaging (MRI) technique including a functional magnetic resonance imaging (fMRI) technique, regions of a central nervous system of a patient having an implanted active implantable medical device (AIMD) is provided. The kit-of-parts is provided and includes: the AIMD, which can be used exposed to the electromagnetic conditions for MR-images acquisition, an external processing unit for controlling the AIMD, an optical communication lead for establishing a two-way optical communication between the AIMD and an external communication unit which is controlled by the external processing unit. A patient having an implanted AIMD can be treated in a conventional MR-device for imaging, e.g., a brain region. The other elements of the kit-of-parts allow controlling the functions of the AIMD and following any effects of a stimulation on the brain region thus imaged.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: April 9, 2024
    Assignee: Synergia Medical
    Inventors: Pascal Doguet, Aurore Nieuwenhuys, Yohan Botquin, Jérôme Garnier
  • Patent number: 11938330
    Abstract: A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: March 26, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Kenneth J. Carroll, Alan Ostroff, Peter M. Jacobson
  • Patent number: 11933942
    Abstract: Described herein is a method of depositing a conformal, optically transparent coating onto a surface of one or more internal components that are enclosed within an assembled device using a non-line-of-sight deposition process without altering a structure of the assembled device or impacting functionality of the assembled device. Also described is an assembled device including one or more internal components enclosed within the assembled device and a coating deposited onto a surface of the internal components enclosed within the assembled device, where the coating is a conformal, optically transparent coating that is resistant to corrosion by at least one of fluorine-, chlorine-, sulfur-, hydrogen-, bromine-, or nitrogen-based acids and that does not negatively impact functionality of the internal components.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: March 19, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Berger, Cheng-Hsuan Chou, David Knapp
  • Patent number: 11911606
    Abstract: Technologies and implementations for a defibrillator electrode having communicative capabilities are generally disclosed.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: February 27, 2024
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Jennifer Jensen, Jennifer Hoss, Mitchell Smith, Kenneth J. Peterson, Maren Nelson, Andres Belalcazar, Daniel W. Piraino, John Knapinski, Matthew Bielstein, Ethan Albright, Jeffery Edwards, Paul Tamura
  • Patent number: 11890466
    Abstract: A percutaneous lead is provided which includes a generally tubular, multi-duct, flexible lead body. The lead body supports a distal set of electrodes and a proximal set of contacts which are connected by conductors in the ducts. The lead body further houses an optical fiber with a side firing section. The side firing section is held adjacent an optical transmission window, integrally formed with the flexible lead body. A cylindrical ferrule is provided to position the fiber in the header of an IPG.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: February 6, 2024
    Assignee: Wavegate Corporation
    Inventor: Erich W. Wolf, II
  • Patent number: 11862395
    Abstract: An energy bank includes a plurality of integrated energy storage devices including a plurality of supercapacitors, a plurality of batteries and a plurality of metal shells. Each of the integrated energy storage devices includes a supercapacitor, a battery surrounding the supercapacitor and a metal shell surrounding the battery. The battery forms a shell around an exterior surface of the supercapacitor. The battery includes a first anode, a first cathode, and an electrolyte disposed between the first anode and the first cathode. The supercapacitor includes a second anode, a second cathode, and a separator disposed between the second anode and the second cathode.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: January 2, 2024
    Assignee: NISSAN NORTH AMERICA, INC.
    Inventors: Cenk Gumeci, Sandeep Patil
  • Patent number: 11833349
    Abstract: A leadless pacing device may include a housing having a proximal end and a distal end, and one or more electrodes supported by the housing. The housing may include a body portion and a header. A distal extension may extend distally from the header of the housing, the distal extension including one or more electrodes. The header may include a guide wire port and a guide wire lumen may extend from the guide wire port through the header of the housing and through the distal extension. A fixation member may extend from the header of the housing. The header may be formed from an over mold process.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: December 5, 2023
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brendan Early Koop, Arthur J. Foster, Benjamin J. Haasl, Dana Sachs, Lili Liu, Justin Robert Alt
  • Patent number: 11817260
    Abstract: An integrated energy storage device is provided that includes a supercapacitor and a battery surrounding the supercapacitor. The battery forms a shell around an exterior surface of the supercapacitor. The battery includes a first anode, a first cathode, and an electrolyte disposed between the first anode and the first cathode. The supercapacitor includes a second anode, a second cathode, and a separator disposed between the second anode and the second cathode.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: November 14, 2023
    Assignee: Nissan North America, Inc.
    Inventors: Cenk Gumeci, Sandeep Patil
  • Patent number: 11808358
    Abstract: A sealing ring for a header of an implantable device has an outer ring and an inner ring. The outer ring is formed with, or of, a high-performance thermoplastic material. The inner ring is formed with, or of, liquid silicone or polyurethane. The inner and outer rings are arranged with a form-fit relative to each other. There is also described a method for manufacturing such a sealing ring and also a contact socket and an implantable device with such a sealing ring.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: November 7, 2023
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Kathy Hartmann-Bax, Stefan Lehmann
  • Patent number: 11806519
    Abstract: Connector enclosure assemblies for medical devices provide an angled lead passageway. The lead passageway which is defined by electrical connectors and intervening seals within the connector enclosure assembly establishes the angle relative to a base plane of the connector enclosure assembly. Various other aspects may be included in conjunction with the angled lead passageway, including an angled housing of the connector enclosure assembly, feedthrough pins that extend to the electrical connectors where the feedthrough pins may include angled sections, and a set screw passageway set at an angle relative to the lead passageway to provide fixation of a lead within the lead passageway.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: November 7, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Steven T. Deininger, Michael J. Baade, Charles E. Peters
  • Patent number: 11752345
    Abstract: A serviceable wearable cardiac treatment device for continuous extended use by an ambulatory patient includes a garment, a device controller, and an ingress-protective housing. The garment is configured to dispose therein a plurality of ECG sensing and therapy electrodes to monitor for and treat a cardiac arrhythmia in the patient. The device controller is configured to be in separable electrical communication with the plurality of ECG sensing and therapy electrodes and includes an impact-resistant energy core, and first and second circuit boards affixed to opposing sides of the impact-resistant energy core. The impact-resistant energy core includes a frame and at least one capacitor permanently bonded to the frame to form a unitary mass. The ingress-protective housing is configured to enable removal of the impact-resistant energy core and the first and second circuit boards during servicing.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: September 12, 2023
    Assignee: ZOLL Medical Corporation
    Inventors: Phillip Amsler, Nathan J Berry Ann
  • Patent number: 11749882
    Abstract: The disclosure describes examples of antennas used for communication with an implantable medical device (IMD). As one example, the IMD includes a housing configured to house communication circuitry within an internal side of the housing, and a planar antenna, having a curved structure, that is stacked on an external side of the housing and coupled to the communication circuitry. As another example, the IMD includes a housing configured to house communication circuitry within an internal side of the housing and an antenna having a curved structure formed on an external side of the housing and coupled to the communication circuitry. A resonant frequency of the antenna is based on a dielectric constant of tissue surrounding the antenna when the IMD is implanted, and a current distribution of the antenna is in-phase in opposite sides of the antenna.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: September 5, 2023
    Assignee: Medtronic, Inc.
    Inventor: Yanzhu Zhao
  • Patent number: 11717677
    Abstract: An implantable leadless cardiac pacing device and associated retrieval features. The implantable device includes a docking member extending from the proximal end of the housing of the implantable device including a covering surrounding at least a portion of the docking member configured to facilitate retrieval of the implantable leadless cardiac pacing device.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: August 8, 2023
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brian L. Schmidt, Benjamin J. Haasl, John M. Edgell, Dana Sachs
  • Patent number: 11690168
    Abstract: A display device including: a display panel; a first substrate attached to a side of the display panel; and a second substrate attached to a side of the first substrate, wherein the display panel includes a first panel test pad and a second panel test pad, the first substrate includes a 1-1 circuit test lead overlapping and connected to the first panel test pad, a 1-2 circuit test lead overlapping and connected to the second panel test pad, a 2-1 circuit test lead overlapping and connected to the second substrate, a 1-1 test lead line connected to the 1-1 circuit test lead, a 1-2 test lead line connected to the 1-2 circuit test lead, and a first test lead line connected to the 2-1 circuit test lead, and the 1-1 test lead line and the 1-2 test lead line are connected to the first test lead line.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: June 27, 2023
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Yong Jin Shin, Kyun Ho Kim, Uk Jae Jang, Bong Im Park
  • Patent number: 11678152
    Abstract: A portable data processing device for forming a wireless network includes a chamber configured within a housing; a microprocessor; a power supply; a sensor communicatively coupled to the microprocessor; and data storage media; and a wireless communication module. The microprocessor is configured to broadcast, by the wireless communication module, a device identification signal; listen for an external device identification signal; transmit device capability data; receive external device capability data. The microprocessor is further configured to receive an internal measurement from the sensor; transmit the internal measurement; receive an external measurement from the external device; analyze the internal measurement and the external measurement to determine an analysis result; and transmit the analysis result.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: June 13, 2023
    Assignee: Pleiotek
    Inventors: Joshua Michael Temkin, Melissa Greenfield Temkin
  • Patent number: 11670843
    Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 6, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Patent number: 11660456
    Abstract: Systems and methods for implantable medical devices and headers are described. In an example, an implantable medical device includes a device container including an electronic module within the device container. A modular header core includes a first core module including a first bore hole portion of a first bore hole, the first bore hole portion configured to couple a first electrical component with the electronic module. A second core module includes a second bore hole portion of a second bore hole different than the first bore hole, the second bore hole portion configured to couple a second electrical component with the electronic module. The first core module is detachably engaged with the second core module. A header shell is disposed around the modular header core and attached to the device container.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: May 30, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, John O'Rourke
  • Patent number: 11623100
    Abstract: A method for subcutaneously treating pain in a patient includes first providing a neurostimulator with an IPG body and at least a primary, a secondary, and a tertiary integral lead with electrodes disposed thereon. A primary incision is opened to expose the subcutaneous region below the dermis in a selected portion of the body. A pocket is then opened for the IPG through the primary incision and the integral leads are inserted through the primary incision and routed subcutaneously to desired nerve regions along desired paths. The IPG is disposed in the pocket through the primary incision. The primary incision is then closed and the IPG and the electrodes activated to provide localized stimulation to the desired nerve regions and at least three of the nerves associated therewith to achieve a desired pain reduction response from the patient.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: April 11, 2023
    Assignee: Shiratronics, Inc.
    Inventors: Kenneth Lyle Reed, Robert Raymond Bulger, Paul Griffith, Bob Ozawa, Navin Bunyan
  • Patent number: 11617891
    Abstract: An implantable medical device having a package, including: a device body, and a package configured for packaging the device body. The package includes at least one organic film layer and at least one inorganic film layer that are stacked on one another. An innermost layer of the package is an organic film layer or an inorganic film layer, and an outermost layer of the package is an organic film layer or an inorganic film layer. Each organic film layer is a parylene film or polyimide resin film with biocompatibility, and each inorganic film layer is an inorganic film with biocompatibility. A method for packaging an implantable medical device is also provided.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: April 4, 2023
    Assignee: Shenzhen CAS-Envision Medical Technology Co., Ltd
    Inventors: Tianzhun Wu, Saisai Zhao, Ye Feng, Chunlei Yang
  • Patent number: 11571582
    Abstract: A system may include a leadless cardiac pacing device including a body, a proximal hub, and a helical fixation member opposite the proximal hub; and a first elongate shaft having a lumen extending from a distal end of the elongate shaft proximally into the elongate shaft and a transverse member extending transversely across the lumen. The proximal hub may include a transverse channel extending into the proximal hub, the transverse channel being configured to engage the transverse member.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: February 7, 2023
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Arthur J. Foster, Dana Sachs, Brendan Early Koop, Justin Robert Alt, David Robert Wulfman, Benjamin J. Haasl
  • Patent number: 11534606
    Abstract: Disclosed herein is an implantable electronic device for use with an implantable medical lead. The implantable electronic device includes a housing and a header connector assembly coupled to the housing and adapted to receive the proximal lead end of the implantable medical lead. The header connector assembly includes a connector assembly including a connector, a feedthrough extending through the housing, and a conductor coupling the feedthrough to the connector. The conductor includes a first conductor segment and a second conductor segment offset from the first conductor segment and each of the first conductor segment and the second conductor segment are resistance welded to the connector.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: December 27, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Shichan Chiang, Evan Sheldon, Armando M. Cappa
  • Patent number: 11529524
    Abstract: A device, including an implantable electronic circuit integrated at least one of in or on a substrate, wherein the device includes a hermetic enclosure having a space therein, wherein the substrate forms at least a portion of the hermetic enclosure.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: December 20, 2022
    Inventors: Torsten Lehmann, Gregg Jørgen Suaning, Tony Mikael Nygard, Thomas Guenther, William Lim, Kushal Das
  • Patent number: 11471097
    Abstract: A hardware sensor system comprising a piezo sensor outputting charge data corresponding to a motion, an insulated cable from the piezo sensor to a receiver, to transmit the charge data, an insulated charge to voltage converter on the receiver, the insulated charge to voltage converter converting the charge data to voltage data, an analog-to-digital converter to convert the voltage data to digital data, and an uploader to upload the data to a server for processing.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: October 18, 2022
    Assignee: DP Technologies, Inc.
    Inventors: Philippe Richard Kahn, Arthur Kinsolving, Mark Andrew Christensen, Mihai Ionescu, Sean Brooks Harre, David Vogel
  • Patent number: 11452880
    Abstract: A system to deliver therapeutic energy to a patient, the system including a storage capacitor configured to store and release the therapeutic energy, a boost converter circuit coupled to the storage capacitor, and a current flow control circuit coupled to the boost converter circuit and including a plurality of control circuits configured to control a current output from the current flow control circuit in a therapeutic biphasic voltage waveform upon release of the therapeutic energy from the storage capacitor, wherein the therapeutic biphasic voltage waveform includes a ramped increase in voltage from approximately zero volts to a desired therapeutic voltage level over a time interval greater than 1 millisecond and less than a time associated with a phase switch.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: September 27, 2022
    Assignee: ZOLL Medical Corporation
    Inventor: James G Radzelovage
  • Patent number: 11413466
    Abstract: In some examples, a battery assembly for an implantable medical device. The battery assembly may include an electrode stack comprising a plurality of electrode plates, wherein the plurality of electrode plates comprises a first electrode plate including a first tab extending from the first electrode plate and a second electrode plate including a second tab extending from the second electrode plate; a spacer between the first tab and the second tab; and a rivet extending through the first tab, second tab, and spacer, wherein the rivet is configured to mechanically attach the first tab, second tab, and spacer to each other.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: August 16, 2022
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey J. Louwagie, Paul B. Aamodt, Vincent Brama, Nicholas H. Finstrom, Michael B. Hintz, Vadim A. Yakovlev, Kevin D. O'Connell, Richard W. Swenson, Brian P. Schmidt, Joseph J. Viavattine, Puqiang Zhang, Hailiang Zhao, Chao Hu
  • Patent number: 11415893
    Abstract: An optical assembly and a method of making an optical assembly in which additive manufacturing techniques are used to form a support structure either directly on an optical element or on a carrier that is subsequently bonded to an optical element.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: August 16, 2022
    Assignee: ASML Holding N. V.
    Inventors: Stephen Roux, Christopher William Reed
  • Patent number: 11395924
    Abstract: An implantable device has a hermetically sealed enclosure, an electronic device within the hermetically sealed enclosure, and a plurality of feedthrough conductors in mechanical contact with the hermetically sealed enclosure and exposed outside of the hermetically sealed enclosure. The implantable device also has a flexible substrate with a plurality of therapy contacts, and a plurality of continuously conductive elements extending along the flexible substrate from the array of therapy contacts and terminating at a plurality of connection pads. Each of the continuously conductive element is integral with at least one therapy contact and at least one connection pad to electrically communicate the noted therapy contact(s) and the noted connection pad(s). The thickness of each continuously conductive element may be between about 5 and 190 microns. The implantable device also has a plurality of mechanical welded couplings that each couple at least one of the connection pads.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: July 26, 2022
    Assignee: Micro-Leads, Inc.
    Inventors: Bryan McLaughlin, Girish Chitnis, John Ogren
  • Patent number: 11376424
    Abstract: An open coiled pacemaker lead is provided that has improved structural stability and functional life in vivo. The open coiled lead includes an electrically conductive material that is coated or covered by a thin layer of electrically insulative material. The coated coiled lead has adequate spacing between adjacent coils, and has a lumen of sufficient diameter, to allow for infiltration of biological connective tissue onto the surface of the coated coil when maintained in vivo for a sufficient amount of time. Infiltration of the connective tissue essentially uniformly along the entire coiled lead strengthens and lengthens the functional life of the coated coil lead.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: July 5, 2022
    Assignees: CHILDREN'S HOSPITAL LOS ANGELES, UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Yaniv Bar-Cohen, Gerald Loeb, Li Zhou, Xiao Yun
  • Patent number: 11369414
    Abstract: A catheter system for retrieving a leadless cardiac pacemaker from a patient is provided. The cardiac pacemaker can include a docking or retrieval feature configured to be grasped by the catheter system. In some embodiments, the retrieval catheter can include a snare configured to engage the retrieval feature of the pacemaker. The retrieval catheter can include a torque shaft selectively connectable to a docking cap and be configured to apply rotational torque to a pacemaker to be retrieved. Methods of delivering the leadless cardiac pacemaker with the delivery system are also provided.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: June 28, 2022
    Assignee: PACESETTER, INC.
    Inventors: Alexander Khairkhahan, Alan Klenk, Thomas Blake Eby
  • Patent number: 11351384
    Abstract: An implantable medical device includes a header body and a septum assembly. The header body includes a first welding surface and a septum bore extending inwardly from an outer surface to an inner cavity. The septum assembly is at least partially disposed within the septum bore of the header assembly and includes a septum configured to allow insertion of a tool through the septum into the inner cavity and to otherwise provide a seal. The septum assembly further includes a retainer within which at least a portion of the septum is retained. The retainer includes a welding feature coupled to the retainer body, the welding feature providing a second welding surface. The retainer is coupled to the header body by welding the first welding surface to the second welding surface.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: June 7, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Asghar Dadashian, Christopher R. Jenney
  • Patent number: 11344735
    Abstract: Medical devices include a separate enclosure that houses a battery and electrically isolates the battery from external conditions such as any metal enclosures and ultimately isolates the battery from body fluids. Thus, the separate enclosure attaches to a housing of a medical device and provides for modularity of the battery which allows, for instance, different size batteries to be used with the same medical device design. The separate enclosure further prevents stimulation current from leaking back to the battery housing by providing the electrical isolation.
    Type: Grant
    Filed: June 22, 2019
    Date of Patent: May 31, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Erik J. Hovland, Rajesh V. Iyer, Steven J. May, Gordon O. Munns, Wesley A. Santa
  • Patent number: 11331503
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a shield member defining a first portion of an interior cavity of the implantable medical device and a skirted feedthrough assembly. The feedthrough assembly includes a shield extender having a top face and a sidewall that extends from the top face so that the top face and the sidewall are a single continuous component. At least one feedthrough aperture extends through the top face.
    Type: Grant
    Filed: May 25, 2020
    Date of Patent: May 17, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: John E. Kast, Linda M. Johnson-Morke, Chris J. Paidosh, Randy S. Roles
  • Patent number: 11247060
    Abstract: Implantable medical devices including interconnections having strain-relief structure. The interconnections can take the form of flexible circuits. Strain relief gaps and shapes are integrated in the interconnections to relieve forces in each of three dimensions. In some examples, the region of an interconnection which couples with a component of the implantable medical device is separated by a strain relief gap from a connection to a second component and/or a location where the flex bends around a corner.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: February 15, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jean M. Bobgan, Moira B. Sweeney, James E. Blood, Robert A. Jones, John E. Hansen, Keith R. Maile
  • Patent number: 11229794
    Abstract: A system is described for obtaining the electrical interconnection between an intrinsically extensible conductor (120) and a not intrinsically extensible one (110), or between two intrinsically extensible conductors. The system is particularly applied in the production of devices implantable in the human or animal body, highly conformable and deformable, for neurostimulation and/or neurorecording.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: January 25, 2022
    Assignee: WISE S.R.L.
    Inventors: Mattia Marelli, Alessandro Antonini, Cristian Ghisleri, Laura Spreafico, Sandro Ferrari
  • Patent number: 11229800
    Abstract: The energy harvesting module is provided with a pendular unit comprising an inertial mass coupled to an elastic piezoelectric beam providing a power voltage. An acceleration sensor provides a signal representative of the instantaneous acceleration of the beam in a direction perpendicular to a surface of the beam, and an angular speed sensor provides a signal representative of the instantaneous angular speed of rotation of the beam about an axis perpendicular to a plane of bending of the beam. Based on the voltage, acceleration and angular speed values, a beam integrity monitoring circuit estimates parameters of a mechanical-electrical transfer function and derives therefrom metrics representative of physical and electrical parameters of the pendular unit and of the material of the beam. This makes it possible to evaluate the proper operation of the energy harvester and to detect a potential performance decrease liable to lead to a failure in the more or less short term.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: January 25, 2022
    Assignee: CAIRDAC
    Inventors: Alaa Makdissi, An Nguyen-Dinh
  • Patent number: 11206751
    Abstract: A magnetic field shielding structure includes a magnetic field generating source configured to generate a magnetic field. The magnetic field shielding structure further includes a shielding member that includes a pair of layers. The pair of layers includes a layer having high magnetic permeability, and a layer having low magnetic permeability laminated with the layer having high magnetic permeability. The layer having high magnetic permeability is closer to the magnetic field generating source than the layer having low magnetic permeability.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: December 21, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masayuki Yoshikawa, Kenichi Ichinose, Kazuhisa Ori, Hiroyuki Nishimura, Hidetoshi Katoh
  • Patent number: 11196145
    Abstract: Embodiments include an antenna assembly comprising a non-conductive housing having an open end; an antenna element positioned inside the non-conductive housing; an electrical cable having a first end electrically coupled to the antenna element and a second end extending out from the open end; one or more dielectric materials positioned inside the non-conductive housing; and a conductive gasket coupled to a portion of the electrical cable positioned adjacent to the open end and outside the non-conductive housing. One embodiment includes a portable wireless bodypack device comprising a frame having a first external sidewall opposite a second external sidewall; a first antenna housing forming a portion of the first sidewall and including a first diversity antenna; and a second antenna housing forming a portion of the second sidewall and including a second diversity antenna.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: December 7, 2021
    Assignee: Shure Acquisition Holdings, Inc.
    Inventors: Christopher Zachara, Christopher Richard Knipstein, Thomas John Downs
  • Patent number: 11174942
    Abstract: A sealing ring for a header of an implantable device has an outer ring and an inner ring. The outer ring is formed with, or of, a high-performance thermoplastic material. The inner ring is formed with, or of, liquid silicone or polyurethane. The inner and outer rings are arranged with a form-fit relative to each other. There is also described a method for manufacturing such a sealing ring and also a contact socket and an implantable device with such a sealing ring.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: November 16, 2021
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Kathy Hartmann-Bax, Stefan Lehmann
  • Patent number: 11165103
    Abstract: The invention relates to a method for regenerating the capacity of an electrochemical lithium battery, including the following steps: a) evaluating the quantity of lithium ions; b) when the evaluated lithium ion quantity is less than or equal to a threshold value, applying an electric current between the cathode or the anode and the container such as to cause the delithiation of the casing, the casing is also arranged to house an element providing both electric insulation and ionic conduction between the anode and cathode electrodes of the electrochemical cell and the casing, said casing including at least one lithium ion storage zone.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: November 2, 2021
    Assignee: COMMISSARIAT À L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: David Brun-Buisson, Sylvie Genies
  • Patent number: 11160483
    Abstract: An electrode system includes an electrode, a connector, and a cable with an in-line radio-frequency filter module comprising resistors and inductors without any deliberately added capacitance. The resistors are arranged in an alternating series of resistors and inductors, preferably with resistors at both outer ends, and connected electrically in series. The in-line module is located at a specific location along the wire, chosen through computer modeling and real-world testing for minimum transfer of received RF energy to a patient's skin, such as between 100 cm and 150 cm from the electrode end of a 240 centimeter cable. The total resistance of the resistors plus cable, connectors and solder is 1000 ohms or less; while the total inductance is roughly 1560 nanohenries. The inductors do not include ferrite or other magnetic material and are, together with the resistors, stock components thereby simplifying manufacture and reducing cost.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: November 2, 2021
    Assignee: RHYTHMLINK INTERNATIONAL, LLC
    Inventors: James W. Kronberg, Harrison Floyd, Daniel E. McCoy, Gabriel Orsinger
  • Patent number: 11141595
    Abstract: An implantable medical device (IMD) may include a housing having a proximal end and a distal end and a set of one or more electrodes connected to but spaced apart from the housing. The IMD may further include a controller disposed within the housing, wherein the controller is configured to sense cardiac electrical signals, and deliver electrical stimulation pulses via the first set of one or more electrodes. In some embodiments, a first portion of the housing is configured to be disposed at least partly within a coronary sinus of a patient's heart and a second portion of the housing is configured to be disposed at least partly within a right atrium of the patient's heart.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: October 12, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventor: Brendan E. Koop
  • Patent number: 11141597
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: October 12, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Patent number: 11129995
    Abstract: A metal outer casing part of an implantable medical electronic device contains at least one inner cavity and/or non-conductive inclusion or portion with multiple small cavities and/or non-conductive inclusions which is closed off in a hermetically sealed manner at least towards the housing outer side by a closed metal layer.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: September 28, 2021
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Daniel Kronmueller, Thomas Sontheimer
  • Patent number: 11129279
    Abstract: An optical subassembly includes: a support block made of ceramic in front of the first surface, the support block having a substrate mounting surface, the support block having a first side opposite to a surface in front of the first surface; an element-mounted substrate on the substrate mounting surface, the element-mounted substrate having a first conductor pattern; a pedestal made of metal and configured to be the same potential as the eyelet, the pedestal situated in front of the first surface; and a lead pin in the through-hole and for transmitting the electric signal. The support block has a metallization pattern that is electrically connected to the pedestal and is continuous from at least a part of the substrate mounting surface to at least a part of the first side.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: September 21, 2021
    Assignee: CIG PHOTONICS JAPAN LIMITED
    Inventors: Daisuke Noguchi, Hiroshi Yamamoto
  • Patent number: 11103716
    Abstract: A control module for an electrical stimulation system includes an electronic subassembly disposed within an electronics housing. A power assembly extends outwardly from the electronics housing and collectively with the electronics housing forms a sealed cavity. The power assembly includes a power source; a conduit assembly extending from the power source to the electronics housing; and one or more power conductors extending along the conduit assembly and electrically coupling the power source to the electronic subassembly. The control module further includes one or more connector assemblies. Each of the one or more connector assemblies includes a connector lumen configured to receive a lead; connector contacts arranged along the connector lumen and in electrical communication with the electronic subassembly; and connector conductors electrically coupled to the connector contacts.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 31, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jeffery Van Funderburk, Zdzislaw Bernard Malinowski
  • Patent number: 11103711
    Abstract: Implantable medical devices (IMD) such as those used in Deep Brain Stimulation application are commonly replaced when the device's useful life expires. At the time of replacement, the electrodes that were connected to the initial IMD are typically reused with the replacement IMD. It is desirable for the replacement IMD to utilize the stimulation parameters that were being utilized to provide stimulation in the initial IMD, but it is important that the electrodes be connected to the replacement IMD in a similar manner as they were connected to the initial IMD if stimulation parameters are reused. A connected electrode profile that includes measurements of electrical parameters associated with the electrodes can be generated in the initial IMD and the replacement IMD, and the profiles can be compared to determine whether the electrodes are connected in a similar manner in the replacement IMD as they were in the initial IMD.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: August 31, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Chirag Shah, G. Karl Steinke
  • Patent number: 11090499
    Abstract: An implantable medical device includes an enclosure sleeve that includes grade 5 titanium. Within the enclosure sleeve is a circuit board that includes at least a portion of circuitry that provides a pulse generator and a battery that is electrically coupled to the at least the portion of circuitry. A bottom cap is attached to the enclosure sleeve. A connector block module assembly is coupled to the enclosure sleeve. A plurality of lead connections are within the connector block module assembly with the at least the portion of circuity. Feedthrough pins carry stimulation signals of the pulse generator to the lead connections of the connector block module assembly. A ground conductor extends within the enclosure sleeve and is electrically coupled to the circuit board, and a ground pin is electrically coupled to the ground conductor.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: August 17, 2021
    Assignee: Medtronic, Inc.
    Inventors: Steven T. Deininger, Michael J. Baade, Charles E. Peters
  • Patent number: 11077299
    Abstract: Implantation of a cardiac stimulus system using the ITV. Superior, intercostal, and inferior access methods are discussed and disclosed. Superior access may be performed using the brachiocephalic vein to access the ITV, with access to the brachiocephalic vein achieved using subclavian vein, using standard visualization techniques. A positioning mechanism may be advanced to the ITV, a location of the positioning mechanism may then be obtained, and an external access may then be established. Inferior external access may be accomplished inferior to the lower rib margin via the superior epigastric or musculophrenic vein. Intercostal external access may be accomplished via an intercostal vein between two ribs. A lead may then be attached to the positioning mechanism and drawn into the ITV.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: August 3, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Christopher Alan Fuhs, Andrew L. De Kock, G. Shantanu Reddy, Peter Hall, James K. Cawthra, Jr., Daniel J. Foster
  • Patent number: 11071857
    Abstract: Wireless treatment of arrhythmias. At least some of the example embodiments are methods including: charging a capacitor of a first microchip device abutting heart tissue, the charging by harvesting ambient energy; charging a capacitor of a second microchip device abutting the heart tissue, the charging of the capacitor of the second microchip device by harvesting ambient energy; sending a command wirelessly from a communication device outside the rib cage to the microchip devices; applying electrical energy to the heart tissue by the first microchip device responsive to the command, the electrical energy applied from the capacitor of the first microchip device; and applying electrical energy to the heart tissue by the second microchip device responsive to the command to the second microchip device, the electrical energy applied from the capacitor of the second microchip device.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: July 27, 2021
    Assignees: William Marsh Rice University, Baylor College of Medicine, Texas Heart Institute
    Inventors: Yuxiang Sun, Aydin Babakhani, Mehdi Razavi, David Burkland, Brian Greet, Mathews John, Hongming Lyu