Stimulating Respiration Function Patents (Class 607/42)
  • Patent number: 11964154
    Abstract: The present technology is generally directed to systems and methods for addressing a patient's sleep apnea. At least some embodiments include an electrode array and a controller. The electrode array can include one or more electrodes and can be configured to be implanted at least proximate to a target tissue of the patient in an orientation, with at least a vector component of the orientation aligned along an inferior-superior axis of the patient. The controller can be communicatively coupled to the electrode array and include one or more non-transitory, computer-readable media having instructions that, when executed by one or more processors of the controller, cause the controller to direct an electrical signal to be delivered by the electrode array to the target tissue.
    Type: Grant
    Filed: June 7, 2023
    Date of Patent: April 23, 2024
    Assignee: Invicta Medical, Inc.
    Inventors: Guillaume Raux, David Herron, Richard W. O'Connor, Richard Hamilton Lewis, Timothy A. Fayram
  • Patent number: 11957896
    Abstract: Provided is an intraesophageal electrostimulator configured so that other medical tools can also be easily inserted into an esophagus and misalignment in the esophagus can be reduced. An intraesophageal electrostimulator 100 includes a stimulator body 101, stimulating electrodes 111, 112, and power feed lines 113, 114. The stimulator body 101 is formed, in order to insert the stimulator body 101 into an esophagus S, in an elongated flat plate shape with flexibility in a longitudinal direction. The stimulator body 101 includes a first flat plate member 102, a second flat plate member 103, and an exterior body 104. On one plate surface of the first flat plate member 102, each of the stimulating electrodes 111, 112 is provided so as to protrude from the plate surface. The second flat plate member 103 overlaps with the other plate surface of the first flat plate member 102 such that the second flat plate member 103 and the first flat plate member 102 sandwich the power feed lines 113, 114.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: April 16, 2024
    Assignee: Hamamatsu University School of Medicine
    Inventor: Norihiko Shiiya
  • Patent number: 11944812
    Abstract: An extravascular neural interface includes a device containing electrodes for neurostimulation of a vessel. The devices are housed in flexible substrates forming two flaps, an inner flap having a spinal portion for routing leads/conductors into the device for connection to the electrodes and an outer flap that overlaps the inner flap. The inner flap supports and positions the electrodes to be inward facing, i.e., extravascular designs. The electrodes may be circular or elliptical and include a plurality of wings for securing the electrodes within a flap.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: April 2, 2024
    Assignee: GALVANI BIOELECTRONICS LIMITED
    Inventors: Faisal Zaidi, Sebastien Ouchouche
  • Patent number: 11938324
    Abstract: A system and method for determining parameters of stimulation electrical signals for vagus nerve stimulation is discussed. Initial parameters of the signals are selected to provide reliable response to stimulation in physiological measurements of a subject. One or more physiological and neurological indices are determined based on a vagus nerve response model. For a selected vagus nerve activation, the electrical parameters of the signals are varied while monitoring changes in physiological parameters and values of the indices. The electrical parameters are varied until desired response in the physiological measurements and the values of the indices is observed. The electrical parameters are then stored as preferred parameters and can be used to activate the selected vagus nerve of the subject.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: March 26, 2024
    Assignee: The Feinstein Institutes for Medical Research
    Inventors: Stavros Zanos, Yao-Chuan Chang
  • Patent number: 11938084
    Abstract: An automated external defibrillator (210) for use during CPR comprising: a first electrode pad (370a) configured to obtain an electrocardiogram (ECG) signal from an individual; a second electrode pad (370b) configured to obtain ECG signal from the individual, wherein the first and/or the second electrode pad comprises an electrode pad visual display (372) configured to be visible while providing CPR to the individual; a controller (310) configured to: (i) process an electrical and/or an accelerometer signal to determine a depth of one or more chest compressions during CPR; (ii) compare the determined depth of the chest compressions to a threshold depth; (ii) determine, based on the comparison, that the determined depth exceeds or falls below the threshold depth; and (iii) direct the electrode pad visual display to provide a depth indication to the user that the determined depth of the chest compressions exceeds or falls below the threshold depth.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: March 26, 2024
    Assignee: Koninklijke Philips N.V.
    Inventor: Martin J. King
  • Patent number: 11918363
    Abstract: Stimulation and recording electrode assemblies that are particularly useful for Automatic Period Stimulation (APS). Such embodiments are compatible with nerve monitoring systems to provide continuous stimulation of a nerve during surgery. Certain embodiments include an electrode assembly having cuff including a body and two ears extending from the body. Within the body, at least one electrode is supported and connected to a lead wire assembly. The ears can be brought together to enlarge a gap in the body so that the electrode assembly can be fixated around a nerve. Other embodiments include an electrode assembly including first and second needle electrodes that each have a tip. A body is provided to interconnect the needle electrodes and can be manipulated to move the tips either toward or away from one another. Disclosed embodiments provide nerve monitoring and stimulation in cases where the nerve is only partially dissected.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: March 5, 2024
    Assignee: Medtronic Xomed, Inc.
    Inventors: Matthew L. Cantwell, David C. Hacker, John R. Prisco
  • Patent number: 11903724
    Abstract: A method for detecting a respiratory event of a subject comprises: receiving a bio-impedance measurement signal (S2) dependent on respiratory action from the subject; extracting (306) at least one time-sequence of the bio-impedance measurement signal (S2); and for each extracted time-sequence: comparing (308) the bio-impedance measurement signal (S2) with each of a plurality of machine learning models in an ensemble of machine learning models to form a set of predictions of occurrence of a respiratory event, wherein each prediction is based on comparing the bio-impedance measurement signal (S2) with one machine learning model, wherein each model correlates features of time-sequences of a bio-impedance measurement signal (S2) with presence of a respiratory event and wherein each model is trained on a unique data set of training time-sequences; deciding (310) whether a respiratory event occurs in the extracted time-sequence based on the set of predictions.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: February 20, 2024
    Assignee: Onera Technologies B.V.
    Inventors: Willemijn Groenendaal, Dirk Deschrijver, Tom Van Steenkiste, Joeri Ruyssinck
  • Patent number: 11893903
    Abstract: An example of a system for assisting a rescuer in providing CPR includes a motion sensor configured to generate signals indicative of chest motion during CPR chest compressions, and a defibrillator including a display screen configured to provide CPR feedback and defibrillation information and a processor configured to receive the signals, generate a compression waveform based on the signals, detect, in the compression waveform, features characteristic of chest compressions, compare the detected features to a predetermined criterion that distinguishes between manually delivered and compressions delivered by an automated compression device, and selectively provide the CPR feedback based on whether the compressions are the manually delivered or the automated compressions, where the selective provision of the CPR feedback includes displaying CPR parameters for the manually delivered compressions, and a removing from the display screen at least one CPR parameter of the CPR parameters for the automated compression
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: February 6, 2024
    Assignee: ZOLL Medical Corporation
    Inventors: Qing Tan, Frederick J Geheb, Gary A Freeman
  • Patent number: 11883659
    Abstract: A means for treating breathing disorders by stimulating respiratory muscles or nerves to entrain respiratory systems while leaving respiratory drive intact. Embodiments of the invention employ frequency analysis to determine if appropriate stimulation energy is being applied.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: January 30, 2024
    Assignee: ZOLL RESPICARDIA, INC.
    Inventors: Mark Gelfand, Kristofer J. James, Randy W. Westlund, Antonios Panteleon, Todd P. Goblish, Mark C. Lynn
  • Patent number: 11883668
    Abstract: Implantable electrodes with power delivery wearable for treating sleep apnea, and associated systems and methods are disclosed herein. A representative system includes non-implantable signal generator worn by the patient and having an antenna that directs a mid-field RF power signal to an implanted electrode. The implanted electrode in turn directs a lower frequency signal to a neural target, for example, the patient's hypoglossal nerve. Representative signal generators can have the form of a mouthpiece, a collar or other wearable, and/or a skin-mounted patch.
    Type: Grant
    Filed: May 31, 2023
    Date of Patent: January 30, 2024
    Assignee: Invicta Medical, Inc.
    Inventors: Richard W. O'Connor, Walter Joseph Stevens, Timothy A. Fayram
  • Patent number: 11865341
    Abstract: An example method includes receiving one or more physiological signals; detecting an apnea event based on the one or more physiological signals; determining that the apnea event cannot be characterized as one of a normal, OSA (obstructive sleep apnea), CSA (central sleep apnea), or combination OSA/CSA event; and outputting an electrical stimulation as a default based on determining that the apnea event cannot be characterized as a normal event, an OSA event, a CSA event, or combination OSA/CSA events.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: January 9, 2024
    Assignee: Medtronic, Inc.
    Inventors: Randal C. Schulhauser, Avram Scheiner, Linnea R. Lentz
  • Patent number: 11864826
    Abstract: A method for treating a heart failure patient by ablating a nerve of the splanchnic sympathetic nervous system to increase venous capacitance and reduce pulmonary blood pressure. A method including: inserting a catheter into a vein adjacent the nerve, applying stimulation energy and observing hemodynamic effects, applying ablation energy and observing hemodynamic effects, applying simulation energy after the ablation and observing hemodynamic effects.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: January 9, 2024
    Assignee: Axon Therapies, Inc.
    Inventors: Howard Levin, Mark Gelfand
  • Patent number: 11857792
    Abstract: Neuromodulation of cranial nerves can be used to treat sleep or breathing disorders, among other diseases and disorders. A neuromodulation system can include a housing configured for implantation in an anterior cervical region of a patient, such as at or under a mandible of the patient, such as at least partially in one or more of a submental triangle, a submandibular triangle, and a carotid triangle. The system can include an electrode lead coupled to the housing, and the electrode lead can include an electrode configured to be disposed at or near a cranial nerve target in the patient. The system can be configured to generate electrical neuromodulation signals for delivery to the cranial nerve target using the electrode.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: January 2, 2024
    Assignee: NuXcel2, L.L.C.
    Inventors: Lynn Elliott, Stephen C. Masson, Jr.
  • Patent number: 11850424
    Abstract: A device for treating sleep disordered breathing includes a stimulation element to stimulate an airway patency related nerve.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: December 26, 2023
    Assignee: INSPIRE MEDICAL SYSTEMS, INC.
    Inventors: Darrell Wagner, Quan Ni, John Rondoni, David Dieken
  • Patent number: 11844951
    Abstract: An ear-piece assembly includes (i) an antenna portion enclosing a transmitting antenna configured to send one or more input signals containing electrical energy to a passive implantable neural stimulator device such that the passive implantable neural stimulator generates one or more stimulation pulses suitable for stimulating a neural structure in the craniofacial region solely using the electrical energy in the input signals; and (ii) an enclosure coupled to the antenna portion, wherein enclosure is sized and shaped to be mounted on a helix portion of an ear such that, when worn by a patient, weight from the enclosure is distributed over the helix portion of the ear for the enclosure to rest thereon, wherein the enclosure comprises (i) a controller module configured to provide the one or more input signals to the transmitting antenna, and (ii) a battery adapted to provide energy to the ear-piece assembly.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: December 19, 2023
    Assignee: Curonix LLC
    Inventors: Laura Tyler Perryman, Chad David Andresen, Graham Patrick Greene
  • Patent number: 11839767
    Abstract: Neuromodulation of cranial nerves can be used to treat sleep or breathing disorders, among other diseases and disorders. A neuromodulation system can include a housing configured for implantation in an anterior cervical region of a patient, such as at or under a mandible of the patient, such as at least partially in one or more of a submental triangle, a submandibular triangle, and a carotid triangle. The system can include an electrode lead coupled to the housing, and the electrode lead can include an electrode configured to be disposed at or near a cranial nerve target in the patient. The system can be configured to generate electrical neuromodulation signals for delivery to the cranial nerve target using the electrode.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: December 12, 2023
    Assignee: NuXcel2, L.L.C.
    Inventors: Lynn Elliott, Stephen C. Masson, Jr.
  • Patent number: 11806526
    Abstract: A device for treating sleep disordered breathing includes a stimulation element to stimulate an airway-patency-related nerve.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: November 7, 2023
    Assignee: INSPIRE MEDICAL SYSTEMS, INC.
    Inventors: Darrell Wagner, Quan Ni, John Rondoni, Dave Dieken
  • Patent number: 11806537
    Abstract: A system and method for treating sleep apnea includes inserting an implantable pulse generator subcutaneously within a body of a patient and connecting a lead to the pulse generator. The lead is inserted within the vasculature and advanced transvenously through the vasculature until a stimulation portion of the lead becomes positioned in close proximity to the hypoglossal nerve. A nerve-stimulation signal is applied to the hypoglossal nerve via the stimulation portion of the lead.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: November 7, 2023
    Assignee: INSPIRE MEDICAL SYSTEMS, INC.
    Inventors: Quan Ni, Mark A. Christopherson, Timothy P. Herbert, John Rondoni
  • Patent number: 11786177
    Abstract: An oral appliance for treating sleep apnea in a user includes a mouthpiece configured for being positioned in an oral cavity of the user, and at least one pulse oximeter attached to the mouthpiece. According to an aspect, the pulse oximeter is configured to monitor actual oxygen saturation levels of hemoglobin of the user when the oral appliance is positioned in the oral cavity of the user. The oral appliance may include an additional sensor attached to the mouthpiece that includes at least one of an airflow sensor, a pressure sensor, a noise detector, and an actigraphy sensor.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: October 17, 2023
    Assignee: Achaemenid, LLC
    Inventor: Reza Radmand
  • Patent number: 11779217
    Abstract: A method comprises establishing communication between a therapy device implantable in a patient and a consumer electronic device operable by the patient. The method comprises controlling, by the consumer electronic device, a predetermined set of therapy device functions in response to patient inputs to the consumer electronic device. The method also comprises transmitting therapy data from the therapy device to the consumer electronic device. The method further comprises presenting therapy data on a display of the consumer electronic device.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: October 10, 2023
    Assignee: Inspire Medical Systems, Inc.
    Inventors: John Rondoni, David Todd Dieken
  • Patent number: 11776146
    Abstract: The present technology relates to the field of medical monitoring, and, in particular, to non-contact detecting and monitoring of patient breathing. Systems, methods, and computer readable media are described for calculating a change in depth of a region of interest (ROI) on a patient. In some embodiments, the systems, methods, and/or computer readable media can identify steep changes in depths. For example, the systems, methods, and/or computer readable media can identify large, inaccurate changes in depths that can occur at edge regions of a patient. In these and other embodiments, the systems, methods, and/or computer readable media can adjust the identified steep changes in depth before determining one or more patient respiratory parameters.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: October 3, 2023
    Assignee: Covidien LP
    Inventors: Paul S. Addison, Dominique Jacquel, Philip Smit
  • Patent number: 11771901
    Abstract: An apparatus includes an implantable stimulator to treat sleep disordered breathing (SDB) and at least one electrode associated with the stimulator. The apparatus includes a therapy device arranged to be implanted within a head/neck region of a patient. The therapy device includes a microstimulator including a housing to encapsulate at least stimulation circuitry, a rechargeable power element, and a control portion including a therapy manager to control the stimulation circuitry.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: October 3, 2023
    Assignee: INSPIRE MEDICAL SYSTEMS, INC.
    Inventors: John Rondoni, David Dieken, Kevin Verzal
  • Patent number: 11759636
    Abstract: An apparatus and method for treating obstructive sleep apnea includes a pulse oximeter, a source of transcutaneous electrical stimulation having a pair of electrodes for delivering TES to a person, and a controller. The electrodes are adapted to be applied to the person's skin adjacent the person's upper airway to stimulate one or more nerves or muscles in the upper airway when TES is applied to the electrodes. The controller is adapted to receive blood oxygen data from the pulse oximeter and is programmed to apply TES when the blood oxygen indicates that the person's blood oxygen is below a predetermined threshold, so as to increase a resting tone of the person's tongue.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: September 19, 2023
    Inventor: David Goldfarb
  • Patent number: 11752327
    Abstract: The present disclosure is in the field of sleep and respiratory care. In particular, the present disclosure provides means and methods for decreasing the respiratory effort of a sleeping subject. The present disclosure also provides means and methods for treating the snoring of a sleeping subject.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: September 12, 2023
    Assignee: Sunrise SA
    Inventor: Pierre Martinot
  • Patent number: 11752342
    Abstract: Systems and methods for a neuromodulation system are provided. In one example, the neuromodulation system includes a stimulation element, a stimulation controller, and a stimulation feedback acquisition system that includes a reference trigger input module configured such that the temporal relationship between a provided stimulation via the stimulation element and the stimulation controller, and a stimulation response received by the stimulation feedback acquisition system can be characterized.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: September 12, 2023
    Assignee: Onward Medical N.V.
    Inventors: Jurriaan Bakker, Hans Pflug, Robin Brouns, Vincent Delattre
  • Patent number: 11744968
    Abstract: A positive airway pressure apparatus is automatically adjusting. Pressure increases in response to apnea events when the apparatus is in one or more responsive states. Pressure does not increase in response to apnea events when the apparatus is in a non-responsive state. The apparatus switches between responsive and nonresponsive states depending upon any of a number of different criteria that help differentiate between open airway apnea events and closed airway apnea events.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: September 5, 2023
    Assignee: Fisher & Paykel Healthcare Limited
    Inventors: David Robin Whiting, Andrew Gordon Gerred, Fiona Elizabeth Cresswell
  • Patent number: 11707618
    Abstract: A trans mucosal neuromuscular electrical stimulation device including a mouthpiece, electrodes associated with the mouthpiece. The device and/or mouthpiece incorporates electrical circuitry operatively connecting to the electrodes to a power source and is configured to provide, in use, electrical stimulation to one or more palate and/or tongue muscles via the electrodes through the oral mucosa. The treatment regime, including the location of stimulation and the parameters used, is designed to increase resting muscle tone and/or muscle tone during sleep.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: July 25, 2023
    Assignee: Signifier Medical Technologies Limited
    Inventor: Anshul Sama
  • Patent number: 11684271
    Abstract: A wearable device for sensing vital signs includes a housing defining an interior cavity. An optical unit is positioned inside the interior cavity. The optical unit includes one or more light emitters that emit optical signals, at least one polarizer orientated to block optical signals having a predetermined polarity direction, and one or more light sensors that receive optical signals that pass through the at least one polarizer. An acoustic unit is positioned inside the interior cavity, and has a microphone to receive acoustic signals that enter into the interior cavity. The acoustic signals are used to non-invasively estimate blood pressure.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: June 27, 2023
    Assignee: Welch Allyn, Inc.
    Inventors: Lei Guo, Thaddeus J. Wawro
  • Patent number: 11678838
    Abstract: Approaches to determining a sleep fitness score for a user are provided, such as may be based upon monitored breathing disturbances of a user. The system receives user state data generated over a time period by a combination of sensors provided via a wearable tracker associated with the user. A system can use this information to calculate a sleep fitness score, breathing disturbance score, or other such value. The system can classify every minute within the time period as either normal or atypical, for example, and may provide such information for presentation to the user.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: June 20, 2023
    Assignee: FITBIT, INC.
    Inventors: Suraj Gowda, Conor Joseph Heneghan, Shelten Gee Jao Yuen, Anjian Wu, Daniel Joel Freschl, Peter W. Richards, Chris H. Sarantos, Jonathan Wonwook Kim
  • Patent number: 11666270
    Abstract: A sleep apnea and obesity comorbidity treatment system includes a transceiver and a control module. The control module is configured to: receive sensor data, where the sensor data is indicative of a glucose level of a patient and a ketones level of the patient, transmit the sensor data to a remote feedback device, receive feedback information from the remote feedback device based on the sensor data, and where the feedback information provides indications to the patient to maintain or alter a behavior of the patient based on the glucose level and the ketones level, and based on the feedback information, performing an operation to maintain or alter at least one of a diet or physical activity of the patient.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: June 6, 2023
    Assignee: Medtronic Xomed, Inc.
    Inventors: Osvaldo Andres Barrera, Avram Scheiner, Randal C. Schulhauser, Joe Sartor, Patrick W. Kinzie, Jason C. Lee
  • Patent number: 11666478
    Abstract: Maxillary devices and Mandibular devices each have a first housing connectable to a tooth of a user or connectable or integral with a teeth covering, wherein the housing encloses an on-board circuit board and a power source. The first housing of the maxillary devices has a tooth connecting portion, a palate housing portion and/or a buccal housing portion. The first housing of the mandibular devices has a tooth connecting portion and a sublingual portion. Each of the palate housing portion and the buccal housing portion enclose a stimulator having an electrode electrically connected to the on-board circuit board and the power source, and can enclose a sensor and/or a medicament dispenser. The sublingual portion encloses a sensor and a medicament dispenser each of which are in electrical communication with the microprocessor of the on-board circuit board.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: June 6, 2023
    Assignee: SLEEP SOLUTIONS OF TEXAS, LLC
    Inventor: Raghavendra Vitthalrao Ghuge
  • Patent number: 11666477
    Abstract: Lingual repositioning devices have a mandibular piece having a teeth covering and a first housing proximate either a left molar portion or a right molar portion of the teeth covering. The first housing includes a stimulator protrusion extending therefrom at a position to extend toward a tongue of a user and to contact a lingual muscle of the tongue or includes a sensor portion extending therefrom at a position to extend toward a tongue of a user and to be positioned under the tongue. The stimulator protrusion encloses a stimulator and the first housing encloses a power source electrically connected to a circuit board and electrically connected to an electrode of a stimulator. A second housing at the other of the left or right molar portions has a stimulator protrusion or a sensor portion. The first and second housings may be removably attachable to the teeth covering.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: June 6, 2023
    Assignee: SLEEP SOLUTIONS OF TEXAS, LLC
    Inventor: Raghavendra Vitthalrao Ghuge
  • Patent number: 11666271
    Abstract: A method of detecting sleep apnea includes generating a cardiac signal indicating activity of a heart of a patient. The method further includes determining a short-term average heart rate and a long-term average heart rate. The method further includes determining a start and end of a heart rate cycle based on the short-term average heart rate and the long-term average heart rate. The method further includes determining physiological parameter values occurring during the heart rate cycle. The method further includes determining whether patient has or has not experienced a sleep apnea event based on whether one or more conditions are satisfied by one or more parameter values for one or more heart rate cycles and responsively generating an indication that patient has or has not experienced a sleep apnea event.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: June 6, 2023
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Eduardo N. Warman, Gautham Rajagopal
  • Patent number: 11666757
    Abstract: Hemodynamic performance of a heart may be improved by determining, from a location associated with a diaphragm, an occurrence of a valid cardiac event; and then delivering asymptomatic electrical stimulation therapy directly to the diaphragm at termination of a diaphragmatic stimulation delay period that is timed relative to the occurrence of the valid cardiac event. The diaphragmatic stimulation delay period may be automatically established by sensing a plurality of cardiac events directly from a diaphragm; and for each of the sensed cardia events, determining whether the sensed cardiac event represents a valid cardiac event or a non-valid cardiac event. The diaphragmatic stimulation delay period is then calculated based on a plurality of sensed cardia events that are determined to be valid.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: June 6, 2023
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell
  • Patent number: 11654283
    Abstract: An implantable neurostimulator system including an electrical lead having formed thereon a pair of bipolar electrodes, the electrical lead is configured for placement of the pair of bipolar electrodes proximate protrusor muscles of a patient. The system also includes a pulse generator electrically connected to the electrical lead and configured to deliver electrical energy to the pair of bipolar electrodes, the pulse generator having mounted therein a sensor configured to detect one or more physiological parameters, a memory, a control circuit, and a telemetry circuit.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: May 23, 2023
    Assignee: MEDTRONIC XOMED, INC.
    Inventors: Wondimeneh Tesfayesus, Randal Schulhauser, Avram Scheiner
  • Patent number: 11642175
    Abstract: In an example, a system is disclosed for registering an anatomical model to an anatomical structure of a patient. The system includes an anatomical measurement wire (“AMW”) configured to be navigated within the anatomical structure, the AMW comprising at least one sensor. A tracking system is configured to provide tracking data representing multiple positions of the sensor in a spatial coordinate system. A computing device is configured to generate a tracking point cloud based on the tracking data. The computing device is configured to register the predetermined anatomical model with the anatomical structure of the patient by matching the tracking point cloud with the model point cloud with respect to the predetermined anatomical model based on a quality metric.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 9, 2023
    Assignee: CENTERLINE BIOMEDICAL, INC.
    Inventors: Karl J. West, Vikash R. Goel
  • Patent number: 11633599
    Abstract: A system for electrical ventilation stimulation of a patient including an implantable nerve stimulator including a stimulation circuit and a pulse generator that produces biphasic charge-balanced pulses to stimulate a phrenic nerve, an external digital programming device having near field communication transmission and a digital interface, and wherein the external digital programming device is used to control settings of the implantable nerve stimulator.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: April 25, 2023
    Assignees: NORTHWESTERN UNIVERSITY, ANN AND ROBERT H. LURIE CHILDREN'S HOSPITAL OF CHICAGO
    Inventors: Alexey Revinski, Kirby D. Gong, Emma S. Cripe, Michelle Wang, Matthew R. Glucksberg, Debra E. Weese-Mayer, Anthony Chin
  • Patent number: 11623086
    Abstract: Disclosed is a system for stimulation of a subject. The stimulation may be to provide therapy to treat the subject. Stimulation may be of selected muscle groups and/or portions.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: April 11, 2023
    Assignee: MEDTRONIC XOMED, INC.
    Inventors: Avram Scheiner, James Britton Hissong, Rebecca J. Haag, Randal C. Schulhauser
  • Patent number: 11612708
    Abstract: Devices, systems and methods are provided for controlling the operation of a breathing assistance device for a user. The controller may include an input for receiving sensor data to measure at least one airflow parameter of the user's airflow; a memory unit that stores at least one machine learning model and at least one classifier or predictor; and a processor that is configured to perform measurements and to generate a control signal for adjusting the operation of the breathing assistance device for a current monitoring time period by: obtaining measured air pressure and/or airflow data and measured FOT data during a current monitoring time period; performing feature extraction on the measured data to obtain feature values that are used by the machine learning model employed by the at least one classifier or predictor to determine a property of the user; and adjusting the control signal based on the determined property.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: March 28, 2023
    Assignee: NovaResp Technologies Inc.
    Inventors: Hamed Hanafialamdari, Scott Lowe, Stephen Driscoll, Luke Hacquebard, David Cecil Roach, Klaus Michael Schmidt
  • Patent number: 11607548
    Abstract: An apparatus, system and technique selectively eliminates the noxious signal components in a neuronal signal by creating an interfering electrical signal that is tuned to a given frequency corresponding to the oscillatory pattern of the noxious signal, resulting in a modified neuronal signal that substantially reproduces a normal, no-pain neuronal signal. The disclosed system and technique of pain relief is based on the hypothesis that the temporal profile of pain signals encodes particular components that oscillate at unique and quantifiable frequencies, which are responsible for pain processing in the brain.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: March 21, 2023
    Assignee: Lumbrera LLC
    Inventors: Ricardo Vallejo, David Leonardo Cedeno, William J. Smith
  • Patent number: 11565112
    Abstract: The present disclose generally relates to systems and methods for active titration of one or more cranial or peripheral nerve stimulators to treat obstructive sleep apnea. The active titration can be accomplished in an automated fashion by a closed-loop process. The closed-loop process can be executed by a computing device that includes a non-transitory memory storing instructions and a processor to execute the instructions to perform operations. The operations can include defining initial parameters for the one or more cranial or peripheral nerve stimulators for a patient; receiving sensor data from sensors associated with the patient based on a stimulation with the one or more cranial or peripheral stimulators programmed according to the initial parameters; and adjusting the initial parameters based on the sensor data.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: January 31, 2023
    Assignee: VANDERBILT UNIVERSITY
    Inventor: David T. Kent
  • Patent number: 11554261
    Abstract: The present disclosure relates to a system for generating a predefined electrical signal in an MR scanner for use in electrical stimulation of a subject during MRI or functional MRI of said subject, wherein said MR scanner is located inside a shielded MRI room. The system comprises a control unit to be located outside the MRI room for generating an electrical signal and an electrical to optical converter to be located outside the MRI room for converting said electrical signal to a corresponding optical signal. An optical transmitting element, such as an optical fiber, is used for transmitting the optical signal into the MRI room, and an optical to electrical converter is used for converting the optical signal to said predefined electrical signal for electrical stimulation of the subject during magnetic resonance imaging. The optical to electrical converter is configured for being located inside the MRI room and for operation during magnetic resonance imaging.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: January 17, 2023
    Assignees: Roskilde/Køge Hospital, Rigshospitalet, University Of Copenhagen
    Inventors: Anders Ohlhues Baandrup, Louise Møller Jørgensen, Carsten Thomsen
  • Patent number: 11547307
    Abstract: A method for detecting or monitoring respiratory or cardiac health of a patient includes measuring any intravascular or intracardiac pressure (IVP) of a patient over a period of time, said IVP including a measured respiratory wave, defining respiratory effort of the patient as a peak-to-peak amplitude of said respiratory wave, and using the respiratory effort to detect or monitor respiratory and cardiac health of the patient by comparing the respiratory effort with a known value of respiratory effort or by monitoring changes in the respiratory effort of the patient over another period of time.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: January 10, 2023
    Assignee: TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD.
    Inventors: Amir Landesberg, Anna Faingersh-Klebanov
  • Patent number: 11529514
    Abstract: Devices, systems and methods of neurostimulation for treating obstructive sleep apnea. The system is adapted to send an electrical signal from an implanted neurostimulator through a stimulation lead to a patient's nerve at an appropriate phase of the respiratory cycle based on input from a respiration sensing lead. External components are adapted for wireless communication with the neurostimulator. The neurostimulator is adapted to deliver therapeutic stimulation based on inputs.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: December 20, 2022
    Assignee: LivaNova USA, Inc.
    Inventors: Stephen L. Bolea, Thomas B. Hoegh, Brian D. Kuhnley, Dale G. Suilmann, Bruce J. Persson, John P. Beck, Sidney F. Hauschild, Wondimeneh Tesfayesus, Jason J. Skubitz, Mark R. Bosshard, Daniel A. Parrish, Robert E. Atkinson
  • Patent number: 11497915
    Abstract: Devices and methods are provided to treat acute and chronic heart failure by using one or more implantable or non-implantable sensors along with phrenic nerve stimulation to reduce intrathoracic pressure and thereby reduce pulmonary artery, atrial, and ventricular pressures leading to reduced complications and hospitalization.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: November 15, 2022
    Assignee: RMX, LLC
    Inventor: Amir J. Tehrani
  • Patent number: 11491324
    Abstract: Intraoral electrical stimulation devices are disclosed. A representative device, which can be used to treat sleep apnea, includes an intraoral attachment body, a guide element carried by the attachment body and having a constrained guide path, and an electrode movably supported relative to the guide element and movable along the constrained guide path to a plurality of positions. A positioning member is coupleable to the electrode to move the electrode along the constrained guide path, and a signal generator is coupleable to the electrode to direct a stimulation signal to the electrode.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: November 8, 2022
    Assignee: Invicta Medical, Inc.
    Inventors: David Herron, Ling-Kang Tong, Hoa D. Nguyen, Chang Yeul Lee
  • Patent number: 11491333
    Abstract: One aspect of the present disclosure relates to a system for treating obstructive sleep apnea in a subject. The system can include a power source and a neuromuscular stimulator in electrical communications with the power source. The neuromuscular stimulator can include a controller and at least one electrode. The controller can be configured to receive certain power and stimulation parameters associated with a therapy signal from the power source. The at least one electrode can be configured to deliver the therapy signal to a target tissue associated with control of a posterior base of the tongue of the subject.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: November 8, 2022
    Assignee: The Cleveland Clinic Foundation
    Inventor: Francis A. Papay
  • Patent number: 11478635
    Abstract: The invention has a contact assembly including a spatial longitudinal extension which is orientated parallel to the winding axis. The contact assembly is fixedly joined to the carrier substrate along a joining region which has a joining region length orientated in parallel to the winding axis. The orthogonal projection relative to the winding axis overlaps with a first region of the carrier substrate which is wound into a tube.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: October 25, 2022
    Assignee: NEUROLOOP GMBH
    Inventors: Tim Boretius, Dennis Plachta, Fabian Kimmig
  • Patent number: 11478630
    Abstract: Devices, systems and methods are described for providing muscle contraction stimulation therapy to treat myriad diseases, including heart failure, Type 2 diabetes, and peripheral vascular disease using a skin patch or implantable stimulator that includes a multiplicity of electrodes, a processor, a stimulation circuit, one or more sensors and programming for a patient interface unit, wherein the processor is programmed to control selection of a subset of the multiplicity of electrodes and of operation of the stimulation circuit responsive to an indication of an adverse physiologic response. The indication of patient discomfort may be determined by monitoring a physiologic parameter of the subject using the one or more sensors, by direct input from the subject via the patient interface unit programming, or a combination thereof.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: October 25, 2022
    Inventors: Dan Sachs, Orhan Soykan
  • Patent number: 11471683
    Abstract: Methods and systems for treating sleep apnea using electrical stimulation to a patient's upper and/or lower respiratory nerve or muscle are described. A stimulation regimen can be used to achieve upper airway patency and/or rhythmic air flow in a coordinated fashion during sleep. In some cases, diaphragm activity is monitored to determine whether sufficient upper airway patency and/or rhythmic air flow is achieved and maintained. The stimulation regimen may be adjusted based on the diaphragm activity. In some cases, the system includes modularized components so that the components can be customized to an individual's needs.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: October 18, 2022
    Assignee: Synapse Biomedical, Inc.
    Inventor: Anthony R. Ignagni