Hypertension Treating Patents (Class 607/44)
  • Publication number: 20150142011
    Abstract: Devices and methods of use for introduction and implantation of an electrode as part of a minimally invasive technique. An implantable baroreflex activation system includes a control system having an implantable housing, an electrical lead, attachable to the control system, and an electrode structure. The electrode structure is near one end of the electrical lead, and includes a monopolar electrode, a backing material having an effective surface area larger than the electrode, and a releasable pivotable interface to mate with an implant tool. The electrode is configured for implantation on an outer surface of a blood vessel and the control system is programmed to deliver a baroreflex therapy via the monopolar electrode to a baroreceptor within a wall of the blood vessel.
    Type: Application
    Filed: June 30, 2014
    Publication date: May 21, 2015
    Inventors: Adam Cates, Eric Lovett, Loren Murney, Kip Ludwig, Paul Pignato, Brian Soltis
  • Patent number: 9022948
    Abstract: System and method for locating and identifying nerves innervating the wall of arteries such as the renal artery are disclosed. The present invention identifies areas on vessel walls that are innervated with nerves; provides indication on whether a dose of energy is delivered accurately to a targeted nerve; and provides immediate post-procedural assessment of the effect of the energy delivered to the nerve. The method includes at least the steps to evaluate a change in physiological parameters after a dose of energy is delivered to an arterial wall; and to determine the type of nerve that the energy was directed to (none, sympathetic or parasympathetic) based on the results of the evaluation. The system includes at least a device for delivering a dose of energy to the wall of an artery; sensors for detecting physiological signals from a subject; and indicators to display the results obtained using the said method.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: May 5, 2015
    Assignee: Symap Holding Limited
    Inventor: Jie Wang
  • Patent number: 9026215
    Abstract: An implantable baroreflex activation device administers a special electrotherapy program that causes the device to apply electrotherapy to limit a rate of change of blood pressure increase associated with a blood pressure surge event such as a morning blood pressure surge (MBPS).
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: May 5, 2015
    Assignee: CVRx, Inc.
    Inventor: Martin A. Rossing
  • Patent number: 9020595
    Abstract: An embodiment of a baroreflex stimulator comprises a pulse generator to provide a baroreflex stimulation signal through an electrode, and a modulator to modulate the baroreflex stimulation signal based on a circadian rhythm template.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: April 28, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Imad Libbus
  • Publication number: 20150112359
    Abstract: In order to treat hypertension, an implantable receiving device is connected to implantable leads which are adapted to deliver electrical energy to the carotid body or bodies of the patient. The receiving device is arranged to receive electoral energy from an external generator. The device thus enables the delivery of electrical currents which modify the function of neural tissue, particularly where repeated treatments are needed or where positioning of a percutaneous needle is difficult.
    Type: Application
    Filed: May 24, 2013
    Publication date: April 23, 2015
    Inventor: Ivor Gillbe
  • Publication number: 20150112402
    Abstract: An implant unit according to some embodiments may include a flexible carrier, at least one pair of modulation electrodes on the flexible carrier, and at least one implantable circuit in electrical communication with the at least one pair of modulation electrodes. The at least one pair of modulation electrodes and the at least one circuit may be configured for implantation through derma on an underside of a subject's chin and for location proximate to terminal fibers of the medial branch of the subject's hypoglossal nerve, such that an electric field extending from the at least one pair of modulation electrodes can modulate one or more of the terminal fibers of the medial branch of the hypoglossal nerve.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 23, 2015
    Inventor: Adi Mashiach
  • Patent number: 9014809
    Abstract: An exemplary embodiment includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: April 21, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Brian J. Wenzel, Taraneh Ghaffari Farazi
  • Patent number: 9014821
    Abstract: This invention provides a method of using a catheter for mapping parasympathetic or sympathetic renal nerve for treatment of disease caused by systemic renal nerve hyperactivity, wherein the catheter comprises a shaft having a proximal end configured to be connected to an energy source, and a distal end (catheter tip) which is in the form of a single helix, double helix or multiple prongs having one or more electrodes.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: April 21, 2015
    Assignee: Symap Holding Limited
    Inventor: Jie Wang
  • Patent number: 9002446
    Abstract: An exemplary embodiment includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: April 7, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Brian J. Wenzel, Taraneh Ghaffari Farazi
  • Patent number: 9002457
    Abstract: An implantable medical device is powered by a battery to deliver one or more therapies including at least one non-life-sustaining therapy such as neural stimulation for enhancing quality of life of a patient. When the battery approaches its end of life, the implantable medical device reduces power consumption of the neural stimulation (e.g., intensity of the neural stimulation) for extending the remaining battery life while maintaining a certain amount of therapeutic benefits for the patient. In one embodiment, the intensity of the neural stimulation is reduced in a tiered manner. In one embodiment in which the implantable medical device also delivers at least one life-sustaining cardiac stimulation therapy, the neural stimulation is disabled or adjusted to reduce its power consumption (e.g., intensity) while the intensity of the cardiac stimulation therapy is maintained when the battery is near its end of life.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: April 7, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jason J. Hamann, Scott Vanderlinde, David J. Ternes
  • Patent number: 8996105
    Abstract: An active implantable medical device for vagal stimulation with optimization of ventricular filling is disclosed. The device delivers stimulation pulses to the vagal nerve of the patient with an adjustable energy level. The device includes a hemodynamic sensor for measuring hemodynamic parameters of the patient's cardiac cycles and delivering a timing parameter representative of the ventricular filling time. The energy level of the vagal stimulation pulses is adjusted dynamically and repeatedly over several cardiac cycles. The energy level is varied during successive cardiac correlative changes in the filling time (FT1, FT2) are assessed (46), and the energy level is set to a level that maximizes the ventricular filling time.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: March 31, 2015
    Assignee: Sorin CRM SAS
    Inventor: Marcel Limousin
  • Publication number: 20150080481
    Abstract: Methods and apparatus are provided for treating contrast nephropathy, e.g., via a pulsed electric field, via a stimulation electric field, via localized drug delivery, via high frequency ultrasound, via thermal techniques, etc. Such neuromodulation may effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, neuromodulation is applied to neural fibers that contribute to renal function. In some embodiments, such neuromodulation is performed in a bilateral fashion. Bilateral renal neuromodulation may provide enhanced therapeutic effect in some patients as compared to renal neuromodulation performed unilaterally, i.e., as compared to renal neuromodulation performed on neural tissue innervating a single kidney.
    Type: Application
    Filed: April 16, 2014
    Publication date: March 19, 2015
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Douglas Sutton, Howard R. Levin, Mark Gelfand
  • Patent number: 8972015
    Abstract: An intravascular electrode system includes an expandable anchor and a flexible substrate which carries at least one electrode. The anchor is positioned in a blood vessel and expanded to an expanded position to bias the electrode in contact with the vessel wall. The flexible substrate may be longitudinally withdrawn from its position between the anchor and the vessel wall without removing the anchor from the blood vessel. A second flexible substrate may be longitudinally inserted into position between the anchor and vessel wall as replacement for the first substrate.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: March 3, 2015
    Assignee: Interventional Autonomics Corporation
    Inventors: Richard S. Stack, Michael S. Williams, Daniel W. Fifer, Richard A. Glenn, Geoffrey A Orth, Lynn Elliott, Colleen Stack
  • Publication number: 20150057313
    Abstract: This document provides methods and materials for modulating afferent nerve signals to treat medical conditions such as CHF, CHF respiration, dyspnea, peripheral vascular disease (e.g., peripheral arterial disease or venous insufficiency), hypertension (e.g., age-associated hypertension, resistant hypertension, or chronic refractory hypertension), COPD, sleep apnea, and chronic forms of lung disease where muscle dysfunction is a part of the disease pathophysiology. For example, methods and materials involved in using electrical and/or chemical techniques to block or reduce afferent nerve signals (e.g., nerve signals of group III and/or IV afferents coming from skeletal muscle and/or the kidneys) are provided.
    Type: Application
    Filed: March 8, 2013
    Publication date: February 26, 2015
    Inventors: Michael J. Joyner, Bruce D. Johnson, Thomas P. Olson
  • Patent number: 8965511
    Abstract: An implantable electroacupuncture device (IEAD) treats hypertension through application of stimulation pulses applied at at least one of acupoints PC5, PC6, LI4, ST36, ST37, LI11, LR3, and GB34. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: February 24, 2015
    Assignee: Valencia Technologies Corporation
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara
  • Patent number: 8965512
    Abstract: System and methods for adhering a patch of stimulation electrode(s) to blood vessels to stimulate a target site on the blood vessel are described. In various embodiments, the system includes an adhesion patch and at least one electrode. The adhesion patch includes a passive adhesion mechanism that may produce an adhesive force sufficiently strong to adhere the adhesion patch to the exterior of the blood vessel and to operationally position the at least one electrode for use in electrically stimulating a target site of the blood vessel. The adhesion patch may also include a release mechanism that is configured for a user to disengage the patch from the exterior of the blood vessel without significant trauma to the blood vessel. After being released, the adhesion patch may be re-adhered to a different target site of the blood vessel and stimulate the different target site.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: February 24, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Ismail Guler, Richard Charles Gunderson, Joel P. Grover, Eric A. Mokelke, Adam David Grovender
  • Patent number: 8948874
    Abstract: Devices and methods of use are described for identification, treatment, and/or management of heart failure and/or associated conditions. An exemplary device may include a first fluid status monitoring circuit configured to monitor a first fluid status indicator of a pulmonary fluid status associated with pulmonary edema, a second fluid status monitoring circuit configured to monitor a separate and different second fluid status indicator of a non-pulmonary fluid status, and a controller coupled to the first and second fluid status monitoring circuits, and a therapy circuit coupled to the controller. The controller is configured to use information about the first and second fluid status indicators to determine a therapy control signal to control a therapy, and the therapy circuit is configured to provide therapy in response to the therapy control signal to adjust at least one of the pulmonary fluid status or the non-pulmonary fluid status.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: February 3, 2015
    Assignee: CVRx, Inc.
    Inventors: Dimitrios Georgakopoulos, Eric Grant Lovett
  • Patent number: 8948873
    Abstract: The present invention includes methods and devices for treating hypotension, such as in cases of shock, including septic shock, anaphylactic shock and hypovolemia. The method includes the step of applying at least one electrical impulse to at least one selected region of a parasympathetic nervous system of the patient. The electrical impulse is sufficient to modulate one or more nerves of the parasympathetic nervous system to increase the ratio of blood pressure to heart rate and relieve the condition and/or extend the patient's life.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: February 3, 2015
    Assignee: Electrocore, LLC
    Inventors: Bruce J. Simon, Joseph P. Errico, Steven Mendez
  • Patent number: 8948872
    Abstract: System and methods for adhering a patch of stimulation electrode(s) to blood vessels to stimulate a target site on the blood vessel are described. In one embodiment, the system includes an adhesion patch and at least one electrode. The adhesion patch includes an active adhesion mechanism that may produce an adhesive force sufficiently strong to adhere the adhesion patch to the exterior of the blood vessel and to operationally position the at least one electrode for use in electrically stimulating a target site of the blood vessel. The adhesion patch may also include a release mechanism that is configured for a user to disengage the patch from the exterior of the blood vessel without significant trauma to the blood vessel. After being released, the adhesion patch may be re-adhered to a different target site of the blood vessel and stimulate the different target site.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: February 3, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Ismail Guler, Richard Charles Gunderson, Joel P. Grover, Eric A. Mokelke, Adam Grovender
  • Publication number: 20150032179
    Abstract: A device according to some embodiments may include a housing configured for location external to a body of a subject. The device may also include at least one processor associated with the housing and configured to communicate with a circuit implanted in the subject within proximity to a tongue of the subject, wherein the circuit is in electrical communication with at least one electrode, receive a physiological signal from the subject via the circuit, and send a control signal to the implanted circuit in response to the physiological signal, wherein the control signal is predetermined to activate neuromuscular tissue within the tongue.
    Type: Application
    Filed: August 4, 2014
    Publication date: January 29, 2015
    Inventor: Adi Mashiach
  • Patent number: 8942808
    Abstract: A coin-sized implantable electroacupuncture (EA) device defines a stimulation paradigm, or stimulation regimen, that controls when EA stimulation pulses are applied to a selected acupoint, or other specified tissue location, to treat hypertension or nondipping. The stimulation regimen is applied when the patient is sleeping in order to minimize or mitigate the occurrence of nondipping or reverse dipping of the patient's blood pressure. In one embodiment, medical personnel, set a timing reference marker at the time of implant that defines how much time should elapse before a nighttime stimulation window opens that allows an EA stimulation session to be applied to the patient. In another embodiment, the patient sets the time when the nighttime stimulation window opens or when the EA stimulation session begins. Typically, an EA stimulation session is applied to the patient at a low duty cycle, e.g., only once a week during the nighttime.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: January 27, 2015
    Assignee: Valencia Technologies Corporation
    Inventors: David K. L. Peterson, Stacy O. Greiner
  • Patent number: 8934978
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for percutaneous intravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: January 13, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark E. Deem, Hanson Gifford, III, Denise Zarins, Douglas Sutton, Erik Thai, Mark Gelfand, Howard R. Levin
  • Publication number: 20150012055
    Abstract: Disclosed is an implantable, coin-sized, self-contained, leadless electroacupuncture (EA) device having at least two electrode contacts attached to the surface of its housing. The electrodes include a central cathode electrode on a bottom side of the housing, and a circumferential anode electrode that surrounds the cathode electrode. In one embodiment, the anode annular electrode is a ring electrode placed around the perimeter edge of the coin-shaped housing. The EA device is adapted to be implanted through a very small incision, e.g., less than about 2-3 cm in length, directly adjacent to a selected acupuncture site known to moderate or affect a hypertension condition of a patient. Appropriate power management circuitry within the device allows a primary battery having a relatively high internal impedance to be used without causing unacceptable dips in battery voltage when the instantaneous battery current surges.
    Type: Application
    Filed: July 30, 2014
    Publication date: January 8, 2015
    Applicant: Valencia Technologies Corporation
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara
  • Publication number: 20150012056
    Abstract: Disclosed is an implantable, coin-sized, self-contained, leadless electroacupuncture (EA) device having at least two electrode contacts attached to the surface of its housing. The electrodes include a central cathode electrode on a bottom side of the housing, and a circumferential anode electrode that surrounds the cathode electrode. In one embodiment, the anode annular electrode is a ring electrode placed around the perimeter edge of the coin-shaped housing. The EA device is adapted to be implanted through a very small incision, e.g., less than about 2-3 cm in length, directly adjacent to a selected acupuncture site known to moderate or affect a hypertension condition of a patient. Appropriate power management circuitry within the device allows a primary battery having a relatively high internal impedance to be used without causing unacceptable dips in battery voltage when the instantaneous battery current surges.
    Type: Application
    Filed: July 30, 2014
    Publication date: January 8, 2015
    Applicant: VALENCIA TECHNOLOGIES CORPORATION
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara
  • Patent number: 8929990
    Abstract: This document discusses, among other things, apparatus, systems, and methods for transvascularly stimulation of a nerve or nerve trunk. In an example, an apparatus is configured to transvascularly stimulate a nerve trunk through a blood vessel. The apparatus includes an expandable electrode that is chronically implantable in a blood vessel proximate a nerve trunk. The expandable electrode is configured to abut a predetermined surface area of the vessel wall along a predetermined length of the vessel. An electrical lead is coupled to the expandable electrode. An implantable pulse generator is coupled to the lead and configured to deliver an electrical stimulation signal to the electrode through the lead. In an example method, an electrical signal is delivered from an implanted medical device to an electrode chronically implanted in a blood vessel proximate a nerve trunk to transvascularly deliver neural stimulation from the electrode to the nerve trunk.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 6, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Julia Moffitt, Imad Libbus
  • Patent number: 8923973
    Abstract: Apparatus for treating obstructive blood flow disorders, is provided, including (1) an external device, configured for placement outside of a body of a subject and to sense a factor of the subject, and to generate a signal in response to the sensed factor, and (2) an implant, which comprises a wireless receiver for receiving the signal, and an effector element, the implant configured and positioned to alter a blood flow of the subject in response to the signal.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: December 30, 2014
    Assignee: Rainbow Medical Ltd.
    Inventor: Yossi Gross
  • Patent number: 8923972
    Abstract: Apparatus is provided for treating hypertension of a subject. The apparatus includes an implantable element which has a non-circular shape and which is configured to reduce the hypertension by facilitating an assumption of a non-circular shape by a blood vessel in a vicinity of a baroreceptor of the subject, during diastole of the subject. Other embodiments are also described.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: December 30, 2014
    Assignee: Vascular Dynamics, Inc.
    Inventor: Yossi Gross
  • Publication number: 20140371810
    Abstract: An example of a method embodiment may place a set of stimulation electrodes on tissue containing the baroreceptor region, and may test bipolar configurations of the electrodes. Each of the bipolar configurations of the electrodes includes at least one of the electrodes configured to function as an anode and at least one other of the electrodes configured to function as a cathode. Testing the bipolar configurations may include stimulating the tissue using each of the bipolar configurations. For each of the tested bipolar configurations at least one physiological parameter may be monitored for a baroreflex response to stimulation of the tissue, and the baroreflex response may be recorded for each of the tested bipolar configurations.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 18, 2014
    Inventors: Eric A. Mokelke, Eric Falbe Hammill
  • Patent number: 8909316
    Abstract: A catheter apparatus for assessing denervation comprises: an elongated catheter body; a deployable structure coupled to the catheter body, the deployable structure being deployable outwardly from and contractible inwardly toward the longitudinal axis of the catheter body; one or more ablation elements disposed on the deployable structure to move outwardly and inwardly with the deployable structure; one or more stimulation elements spaced from each other and disposed on the deployable structure to move with the deployable structure, the stimulation elements being powered to supply nerve stimulating signals to the vessel; and one or more recording elements spaced from each other and from the stimulation elements, the recording elements being disposed on the deployable structure to move with the deployable structure, the recording elements configured to record response of the vessel to the nerve stimulating signals.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: December 9, 2014
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: Kok-Hwee Ng
  • Publication number: 20140330333
    Abstract: A method of promoting the healing of a lesion in a smooth muscle (200), comprises selecting a smooth muscle portion having a lesion, and applying a non-excitory electric field (210) to the portion, which reduces the mechanical activity of the portion.
    Type: Application
    Filed: July 16, 2014
    Publication date: November 6, 2014
    Inventors: Shlomo Ben-Haim, Nissim Darvish, Yuval Mika, Maier Fenster
  • Patent number: 8880170
    Abstract: Some embodiments provide a system, comprising a peripheral nerve field modulation (PNFM) therapy delivery system, PNFM electrodes configured to be implanted subcutaneously, and a controller. The PNFM electrodes are electrically connected to the PNFM therapy system. The PNFM therapy delivery system and the PNFM electrodes are configured to deliver current and/or control the field potentials at one or more peripheral nerve fields. The controller is configured to control the PNFM therapy delivery system to deliver a PNFM therapy to the one or more peripheral nerve fields. The controller includes a scheduler configured to control timing of the PNFM therapy.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: November 4, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kerry Bradley, Rafael Carbunaru, Jason J. Hamann
  • Patent number: 8880175
    Abstract: Systems and devices for selectively applying electrical energy to a target region beneath a skin surface of a patient involve applying an electrical impulse to one or more electrodes on a skin surface of the patient to modulate one or more nerves at the target region, where the impulse is substantially blocked at nerves located between the target region and the skin surface such that only the nerves at the target region are modulated by the electrical impulse.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: November 4, 2014
    Assignee: Electrocore, LLC
    Inventor: Bruce J. Simon
  • Patent number: 8880186
    Abstract: A method and apparatus for treatment of heart failure, hypertension and renal failure by stimulating the renal nerve. The goal of therapy is to reduce sympathetic activity of the renal nerve. Therapy is accomplished by at least partially blocking the nerve with drug infusion or electrostimulation. Apparatus can be permanently implanted or catheter based.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: November 4, 2014
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Howard R. Levin, Mark Gelfand
  • Patent number: 8874211
    Abstract: According to an embodiment of a method for using an implantable device to deliver a hypertension therapy to a patient, an activity level is sensed using the implantable medical device. The implantable device may be programmed with a mapping of the sensed activity level to intensity levels for the hypertension therapy. The method may determine a desired intensity for the hypertension therapy as a function of both a circadian rhythm template and the sensed activity level, and use the implantable device to deliver the hypertension therapy using the desired intensity.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: October 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Publication number: 20140316478
    Abstract: A method and apparatus for treating a condition associated with impaired blood pressure and/or heart rate in a subject comprising applying an electrical treatment signal, wherein the electrical treatment signal is selected to at least partially block nerve impulses, or in some embodiments, to augment nerve impulses.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Katherine S. Tweden, Richard R. Wilson, Mark B. Knudson, Dennis Dong-Won Kim, Deepak Bhole
  • Patent number: 8855775
    Abstract: Systems and methods for neuromonitoring a subject are described. The system may include a stimulation assembly including a pulse generator that generates one or more stimulus waveforms; an electrode array coupled to the stimulation assembly and configured to deliver a stimulation signal to nervous system of the subject; a sensing assembly adapted to acquire a signal from a subject indicative of the subject's brain activity; a power supply configured to supply power to the stimulation assembly and the sensing assembly; and a timing controller programmed to control the use of the power supply by the stimulation assembly and the sensing assembly, said timing controller being programmed to control the time the sensing assembly is powered to acquire the signal to be substantially different than the time the stimulation assembly is powered to stimulate the subject.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: October 7, 2014
    Assignee: Cyberonics, Inc.
    Inventor: Kent W. Leyde
  • Patent number: 8845510
    Abstract: Systems and methods of the invention generally involve a convertible power transfer system for supplying wireless energy to an implant. According to certain aspect, a system of the invention includes a convertible inductive coil and a receiver inductive coil. The convertible inductive coil may be disposed externally on a body of a patient and to inductively transmit electromagnetic power. The convertible inductive coil transitions between direct electromagnetic power transfer and passive electromagnetic power transfer. The receiver inductive coil can be implanted within the body and provides received electromagnetic power to the implant. The convertible inductive coil, during passive electromagnetic power transfer, couples to the receiver inductive coil such that the convertible inductive coil and receiver inductive coil operate together as single receiver inductive coil that receives inductively transferred electromagnetic power from a distant transmitter inductive coil.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: September 30, 2014
    Assignee: Leviticus Cardio Ltd.
    Inventor: Michael Zilbershlag
  • Publication number: 20140277254
    Abstract: A device according to some embodiments may include an implantable flexible carrier and a pair of electrodes located on the carrier. The electrodes may be spaced from each other by a distance greater than 3 mm, and may be configured to cause, when supplied with an electrical signal, a unidirectional electric field sufficient to modulate at least one nerve.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 18, 2014
    Inventor: Adi Maschiach
  • Publication number: 20140277253
    Abstract: A system and method for treating a patient suffering from chronic hypertension. Electrical therapeutic energy is delivered to a nerve branch of a renal artery of the patient, thereby treating the chronic hypertension. Another system and method for treating a medical condition of a patient. Electrical stimulation energy is delivered to a stimulation site on the wall of a blood vessel, thereby evoking a compound action potential in a nerve branch associated with the blood vessel, sensing the evoked compound action potential at a sensing site on the wall of the blood vessel, identifying a circumferential location of the nerve branch as being adjacent the stimulation site or sensing site based on the sensed compound action potential(s), and delivering therapeutic energy to a therapeutic site on the wall of the blood vessel adjacent the circumferential location of the nerve branch, thereby modulating the nerve branch and treating the medical condition.
    Type: Application
    Filed: March 9, 2014
    Publication date: September 18, 2014
    Applicant: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Kristen Jaax
  • Patent number: 8838246
    Abstract: Devices, systems and methods are described which control blood pressure, nervous system activity, and neurohormonal activity by activating baroreceptors. By selectively and controllably activating baroreceptors, the present invention reduces excessive blood pressure, sympathetic nervous system activity and neurohormonal activity, thereby minimizing their deleterious effects on a heart, vasculature and other organs and tissues. A baroreceptor activation device is positioned near a low-pressure baroreceptor, preferably in the venous system, heart, or pulmonary vasculature.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: September 16, 2014
    Assignee: CVRx, Inc.
    Inventor: Robert S. Kieval
  • Publication number: 20140257425
    Abstract: System and methods for programming and delivering electrical stimulation to treat hypertension are discussed. In various embodiments, an ambulatory stimulator system, such as an implantable medical device, can receive a power-saving command and deliver the electrical stimulation to a target site in a patient according to one or more simulation parameters including a therapy on-off pattern. In some embodiments, stimulation with therapy on-off pattern can reduce the power consumption while maintaining the anti-hypertension therapy efficacy. In some embodiments, the ambulatory stimulator system can include one or more of a physiologic response detector, a patient status detector, or a battery longevity detector. The power-saving command can be generated using one or more of the detected physiologic signal, the patient status, or the information about the battery longevity.
    Type: Application
    Filed: February 20, 2014
    Publication date: September 11, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Eric A. Mokelke, David J. Ternes
  • Publication number: 20140257426
    Abstract: System and methods for programming and delivering electrical stimulation to treat hypertension are described. In various embodiments, an ambulatory stimulator system, such as an implantable medical device, can detect a respiration-mediated heart rate variation (RM-HRV), monitor the efficacy of hypertension therapy and adjust the stimulation parameters using the detected RM-HRV to achieve desired therapy outcome. In some embodiments, the system can be configured to synchronize the detected heart rates to one or more respiration cycles or respiration phases within the respiration cycles, and determine the RM-HRV using the heart rates synchronized with the respiration cycles or the respiration phases. The RM-HRV may be presented to the system operator to monitor the efficacy of the AHT therapy. The ambulatory stimulator system can adjust the stimulation parameters using at least the RM-HRV.
    Type: Application
    Filed: February 20, 2014
    Publication date: September 11, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Eric A. Mokelke, David J. Ternes
  • Patent number: 8818514
    Abstract: Methods for intravascularly-induced renal neuromodulation. In some embodiments, a method can include positioning a pair of bipolar electrodes within renal vasculature of a human patient and expanding a balloon within the renal vasculature. The method can further include delivering an electric field via the bipolar electrodes.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: August 26, 2014
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Nicolas Zadno, Benjamin J. Clark, Erik Thai
  • Patent number: 8818513
    Abstract: An embodiment of a baroreflex stimulator comprises a pulse generator to provide a baroreflex stimulation signal through an electrode, and a modulator to modulate the baroreflex stimulation signal based on a circadian rhythm template. According to an embodiment of a method for operating an implantable medical device, comprising a baroreflex stimulation therapy is applied at a stimulation intensity using a baroreflex stimulator in the implantable medical device, and the baroreflex stimulation therapy is modulated based on a circadian rhythm template stored within the implantable medical device. Modulating the baroreflex stimulation therapy includes using the circadian rhythm template to change the stimulation intensity to mimic natural blood pressure fluctuations during the day.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 26, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Imad Libbus
  • Publication number: 20140236256
    Abstract: A real time, heart rate monitor and a hemodynamic monitoring system are operably integrated with the programmer system for an implantable hypertension treatment device. A series of tests are automatically performed to set programmable parameters for the implantable hypertension treatment device without clinician intervention. In one embodiment, a predetermined level of a dose-response evaluation is initiated for each test in the series. Preferably, the programmer system monitors the heart rate to determine whether a hemodynamic measurement should be initiated at all for a given test, as well as whether the hemodynamic measurement should be initiated earlier or later than a predetermined settling period for assessing the sympathetic nervous response to the test dose. In one embodiment, this determination is based on heart rate stability/instability.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Inventor: Martin A. Rossing
  • Patent number: 8805512
    Abstract: An implantable electroacupuncture device (IEAD) treats hypertension through application of stimulation pulses applied at at least one of acupoints PC5, PC6, ST36, or ST37. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: August 12, 2014
    Assignee: Valencia Technologies Corporation
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara
  • Patent number: 8805513
    Abstract: A system example may include a vagus nerve stimulator, a physiological parameter monitor and a controller. The stimulator may be configured to deliver vagus nerve stimulation in a recurring succession of stimulation cycles, where the vagus nerve stimulation is provided for a portion of each cycle and not provided for another portion each stimulation cycle. The monitor may be configured to monitor a physiological parameter within the portion of each cycle when the stimulation is generated and within another portion of each cycle when the stimulation is not generated. The controller may be configured to determine a change in the sensed physiological parameter where the change reflects a difference in the sensed physiological parameter between the portions of a stimulation cycle, compare the detected change to a target change to provide a comparison result, and adjust the vagus nerve stimulation based on the comparison result.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: August 12, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Imad Libbus
  • Patent number: 8805501
    Abstract: An aspect of the present subject relates to an implantable medical system. An embodiment of the system includes a baroreflex stimulator, a myocardial infarction detector, and a controller. The baroreflex stimulator applies a baroreflex stimulation signal through an electrode. The myocardial infarction detector detects an event indicative of myocardial infarction, The controller is connected to the baroreflex stimulator and to the myocardial infarction detector, and is adapted to apply a baroreflex therapy in response to a detected event indicative of myocardial infarction. Other aspects are provided herein.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: August 12, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Imad Libbus
  • Publication number: 20140222100
    Abstract: An embodiment relates to a method for delivering a vagal stimulation therapy to a vagus nerve, including delivering a neural stimulation signal to non-selectively stimulate both afferent axons and efferent axons in the vagus nerve according to a predetermined schedule for the vagal stimulation therapy, and selecting a value for at least one parameter for the predetermined schedule for the vagal stimulation therapy to control the neural stimulation therapy to avoid physiological habituation to the vagal stimulation therapy. The parameter(s) include at least one parameter selected from the group of parameters consisting of a predetermined therapy duration parameter for a predetermined therapy period, and a predetermined intermittent neural stimulation parameter associated with on/off timing for the intermittent neural stimulation parameter.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Publication number: 20140214114
    Abstract: An implantable electroacupuncture device (IEAD) treats hypertension through application of stimulation pulses applied at at least one of acupoints PC5, PC6, ST36, or ST37. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
    Type: Application
    Filed: August 29, 2012
    Publication date: July 31, 2014
    Applicant: VALENCIA TECHNOLOGIES CORPORATION
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara