Single Refrigeration Producer Controlled By Plural Sensors Patents (Class 62/208)
  • Publication number: 20120297805
    Abstract: A cooling system of a battery which efficiently cools a high voltage battery which is mounted in an electric vehicle or a hybrid vehicle so as to maintain battery performance by using a refrigeration cycle of an air-conditioning system, which is provided with an electric compressor, outside heat exchanger, inside heat exchanger, and a control device. A refrigerant path of the air-conditioning system for running refrigerant is provided with a branch path having a heat exchanger which bypasses the inside heat exchanger, a medium path connected to the heat exchanger runs another refrigerant for cooling the battery, control valves are provided which adjust the amounts of the refrigerant which flows to the refrigerant path and the branch path, and, when the control valves run the refrigerant to both the refrigerant path and the branch path, the control device increases the speed of the electric compressor.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 29, 2012
    Applicant: DENSO CORPORATION
    Inventors: Takayuki Kamada, Yoshinori Ichishi, Yasushi Kondo, Satoshi Izawa, Motohiro Yamaguchi
  • Publication number: 20120247139
    Abstract: A screw compressor includes a valve hole formed at a discharge side end surface of a discharge casing and at a position opening to a compression work chamber; a bypass flow path having the valve hole and a discharge chamber communicate with each other; and a valve body arranged in the valve hole. The screw compressor also includes cylinder chambers provided on a rear surface side of the valve body; a piston reciprocally moving in the cylinder chambers; a rod connecting the piston and the valve body; communication paths for introducing a fluid on a discharge side into the cylinder chamber on a side opposite to a valve body side of the piston and on the valve body side; a pressure discharge path; a plurality of valve means; and a controller controlling the plurality of valves means.
    Type: Application
    Filed: January 10, 2012
    Publication date: October 4, 2012
    Applicant: Hitachi Appliances, Inc.
    Inventors: Ryuichiro Yonemoto, Eisuke Kato, Masayuki Urashin, Shinichiro Yamada
  • Publication number: 20120247127
    Abstract: A distributed refrigeration appliance system in a residential kitchen and other locations in a dwelling including multiple separate refrigeration appliance modules, a central cooling system and a cooling circuit. The system can also include one or more satellite stations having a heat exchanger and arranged for supplying chilled air to one or more refrigeration appliance modules. One or more refrigeration appliance modules can include a thermal cascade cooling device to cool the module to lower temperatures than the cooling circuit can attain. One or more refrigeration appliance modules can be refrigeration/storage modules that can provide refrigerated, unconditioned or heated storage space. The central cooling system can be a vapor compression system having a refrigerant circuit connecting the modules. Alternately, the central cooling system can cool a secondary cooling medium circuit.
    Type: Application
    Filed: June 11, 2012
    Publication date: October 4, 2012
    Applicant: WHIRLPOOL CORPORATION
    Inventor: STEVEN JOHN KUEHL
  • Patent number: 8205464
    Abstract: A refrigeration device includes a compression mechanism, a radiator, a first expansion mechanism, a liquid receiver, a second expansion mechanism, an evaporator, a pressure detector, a temperature detector, and a control unit. The pressure detector is provided between the refrigerant discharge side of the compression mechanism and the refrigerant inflow side of the first expansion mechanism. The temperature detector is provided between the exit side of the radiator and the refrigerant inflow side of the first expansion mechanism. The control unit controls the first expansion mechanism using the pressure detected by the pressure detector and the temperature detected by the temperature detector so that the refrigerant flowing out from the first expansion mechanism reaches a saturated state.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: June 26, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Shinichi Kasahara, Toshiyuki Kurihara
  • Patent number: 8171747
    Abstract: A refrigeration device includes a compression mechanism, a radiator, a first expansion mechanism (15), a liquid receiver (16), a second expansion mechanism, an evaporator, a temperature detector, a first pressure storing unit (23a), and a second pressure determining unit, a pressure detector, and a control unit (23c). The first pressure storing unit stores an upper limit and lower limit of an intermediate pressure. The second pressure determining unit determines an upper limit and lower limit of a high pressure based on the upper limit and lower limit of the intermediate pressure and on a temperature in a vicinity of an exit of the radiator. The control unit controls the first expansion mechanism and the second expansion mechanism so that a pressure detected by the pressure detector will be equal to or less than the upper limit and equal to or greater than the lower limit of the high pressure.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: May 8, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Toshiyuki Kurihara, Shinichi Kasahara
  • Publication number: 20120102981
    Abstract: A control system for a refrigerator having an absorption cooling arrangement and a generator can include a temperature sensor associated with the generator and operable to sense a temperature of the cooling arrangement, a level sensor associated with the refrigerator and operable to sense a level condition of the cooling arrangement, and a heat source operably associated with at least the generator. A control circuit can include a processor and can be in communication with at least the temperature sensor, the level sensor and the heat source, and can be configured to determine a sensed temperature from the temperature sensor and a sensed level condition from the level sensor. The control circuit can be configured to turn off the heat source based on determining the sensed temperature is below a first predetermined threshold or based at least in part on determining the sensed level condition exceeds a second predetermined threshold.
    Type: Application
    Filed: October 24, 2011
    Publication date: May 3, 2012
    Applicant: NORCOLD, INC.
    Inventors: Eric Walter Klein, Amram Asher, Michael William Reck, Robert Alan Cutright
  • Patent number: 8136363
    Abstract: A method of conditioning air in a vehicle load space. The method includes providing a refrigeration circuit including an evaporator, directing refrigerant through the refrigeration circuit, directing load space air across the evaporator, sensing a first condition based on one of a temperature and a pressure of the refrigerant in the refrigeration circuit upstream from the evaporator, determining a second condition based on one of a temperature and a pressure of the refrigerant in the evaporator, determining a difference between the first condition and the second condition, and initiating a defrost process of the evaporator when the difference is greater than a threshold.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: March 20, 2012
    Assignee: Thermo King Corporation
    Inventor: Brad Ludwig
  • Patent number: 8132737
    Abstract: An air-conditioning system and associated method for air-conditioning an aircraft cabin including a first zone and a second zone of variable length and at least one intermediate zone is provided. The intermediate zone is selectively associated with the first zone or the second zone. Air at a first set temperature is supplied to the first zone, and air at a second set temperature is supplied to the second zone. Likewise, air at a third set temperature is supplied to the intermediate zone. A regulating device regulates the third set temperature such that if the intermediate zone is associated with the first zone, the third set temperature corresponds substantially to the first set temperature; but if the intermediate zone is associated with the second zone, the third set temperature.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: March 13, 2012
    Assignee: Airbus Deutschland GmbH
    Inventors: Johannes Eichholz, Torsten Schwan
  • Patent number: 8132421
    Abstract: There is provided a turbo chiller that can be operated at high efficiency within an adequate chilling capacity range even when the cooling water temperature changes during the operation. The adequate chilling capacity range is obtained by using a flow coefficient and a pressure coefficient at a specific operating point of a turbo compressor as well as a predetermined coefficient to determine an arithmetic expression representing the relationship between a head and a chilling capacity, using a chilling capacity that can lead to a substantially highest coefficient of performance at a single head to obtain the predetermined coefficient as an optimum coefficient, computing an adequate operation coefficient range having a predetermined range and including the optimum coefficient, and substituting the adequate operation coefficient range and a head at the time of operation into the arithmetic expression.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 13, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Kenji Ueda
  • Patent number: 8132419
    Abstract: In a refrigeration system (10) that includes a refrigerant circuit (20) configured by connecting a plurality of circuit component parts including a compressor (30), a pressure reduction device (36, 39) and a plurality of heat exchangers (34, 37) and operates in a refrigeration cycle by circulating refrigerant through the refrigerant circuit (20), a refrigerant state detection section (51) is provided for detecting the refrigerant temperatures and entropies at the entrance and exit of each of the compressor (30), the pressure reduction device (36, 39) and the heat exchangers (34, 37), and a variation calculation section (52) is provided that uses the refrigerant temperatures and entropies detected by the refrigerant state detection section (51) to separately calculate the magnitude of energy variation of refrigerant produced in each of the circuit component parts.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: March 13, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Tsuyoshi Yonemori, Yoshinari Sasaki, Takahiro Yamaguchi
  • Patent number: 8087258
    Abstract: An air conditioner is arranged so as to be able to accurately judge a refrigerant filling state within the air conditioner regardless of environmental and installation conditions.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: January 3, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaki Toyoshima, Kousuke Tanaka, Kouji Yamashita, Osamu Morimoto, Fumitake Unezaki
  • Patent number: 8011597
    Abstract: A method of controlling an HVAC system to more effectively cool a vehicle cabin when the solar azimuth is large. A solar azimuth, an outside air temperature, a set temperature, a cabin temperature, and an ignition time are communicated to a controller that determines how to best operate the HVAC system. When the vehicle has only been running for a short period of time, the cabin temperature is elevated, and the solar azimuth is large, the measured solar azimuth is corrected to a corrected solar azimuth. The corrected solar azimuth is smaller than the measured solar azimuth and yields a large sun temperature. The controller then calculates a TAO based upon the large sun temperature and the TAO is used to control the HVAC system.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: September 6, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: John Phillippo
  • Patent number: 8011195
    Abstract: A Kimchi refrigerator that applies cold shock to Kimchi stored therein at predetermined time intervals, while a keeping mode is performed, so as to improve the taste of the Kimchi, wherein the time intervals are changed, and a control method of the same are disclosed. The Kimchi refrigerator includes a cooling system to cool the interior of the refrigerator in which Kimchi is stored, and a control unit to control the cooling system to perform a cold shock operation in which the interior of the refrigerator is cooled to a cold shock temperature lower than a keeping temperature at predetermined time intervals, for a predetermined period of time, while a keeping mode is performed. The control unit changes the time intervals.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: September 6, 2011
    Assignee: LG Electronics Inc.
    Inventors: Eun Young Park, Yeon Yi Hwang, Jong Min Shin
  • Publication number: 20110203298
    Abstract: A heat pump system, the operation of which is controlled using a temperature difference between a water inlet and a water outlet of a heat exchanger, exchanging heat between a refrigerant and water, and a control method thereof. The heat pump system includes temperature sensors installed on a water circulation pipe unit at water inlet and outlet sides of a heat exchanger, and heats a load to a set temperature by controlling a compressor or an expander according to a difference between temperatures sensed by the temperature sensors. Here, a temperature of water transmitted to the load is set to be greater than a target load temperature by a reference value, and if the temperature difference is smaller than a designated value, the operation of the heat pump system is stopped.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 25, 2011
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sung Goo Kim, Jae Hyuk Oh, Dong Woon Jeong, Chang Seo Park
  • Patent number: 7987679
    Abstract: By studying or storing refrigerating cycle characteristics of an air conditioning apparatus at the normal time and comparing them with refrigerating cycle characteristics acquired from the air conditioning apparatus at the time of operation, it becomes possible to exactly and accurately diagnose normality or abnormality of the air conditioning apparatus under any installation conditions and environmental conditions, which eliminates operations of inputting a difference between apparatus model names, a piping length, a height difference, etc at the time of apparatus installation. Accordingly, it aims at shortening the time of judging normality or abnormality, and improving the operability.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: August 2, 2011
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kousuke Tanaka, Kouji Yamashita, Yasunori Shida, Masahumi Tomita
  • Publication number: 20110056225
    Abstract: A cooling system and method are provided for facilitating two-phase heat transfer from an electronics system including a plurality of electronic devices to be cooled. The cooling system includes a plurality of evaporators coupled to the electronic devices, and a coolant loop for passing system coolant through the evaporators. The coolant loop includes a plurality of coolant branches coupled in parallel, with each coolant branch being coupled in fluid communication with a respective evaporator. The cooling system further includes a control unit for maintaining pressure of system coolant at a system coolant supply side of the coolant branches within a specific pressure range at or above saturation pressure of the system coolant for a given desired saturation temperature of system coolant into the evaporators to facilitate two-phase heat transfer in the plurality of evaporators from the electronic devices to the system coolant at the given desired saturation temperature.
    Type: Application
    Filed: September 9, 2009
    Publication date: March 10, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. CAMPBELL, Richard C. CHU, Michael J. ELLSWORTH, JR., Madhusudan K. IYENGAR, Robert E. SIMONS
  • Publication number: 20110056226
    Abstract: Disclosed is a motor control apparatus for controlling a synchronous motor, which includes a receiver section for receiving the value detected by a temperature sensor installed inside the synchronous motor. The synchronous motor is started up with the current fed into it, whose magnitude is changed in accordance with the temperature received by the receiver section at the time of starting up the synchronous motor. In this way, the stable startup of the synchronous motor can be guaranteed and the useful life of the semiconductor elements can also be prolonged.
    Type: Application
    Filed: February 16, 2009
    Publication date: March 10, 2011
    Applicant: Hitachi, Ltd.
    Inventors: Tomofumi Okubo, Norinaga Suzuki, Hajime Uematsu, Hideharu Tanaka, Masakazu Hase, Yoshiyuki Taguchi
  • Patent number: 7900465
    Abstract: A refrigerator includes a refrigerator cabinet, a fresh food compartment disposed within the cabinet, a freezer compartment disposed within the cabinet, an ice compartment disposed within the cabinet, and an electronic control system associated with the refrigerator and adapted to monitor and control the fresh food compartment, the freezer compartment and the ice compartment. The control system provides for energy efficient control and operation through various means, including by monitoring state of an ice maker associated with the ice compartment and controlling temperature within compartments of the refrigerator based on the ice maker state. A damper controls air flow between the fresh food and freezer compartments. The control system can direct heat to the damper if the damper becomes frozen.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 8, 2011
    Assignee: Maytag Corporation
    Inventors: Robert L. Wetekamp, Kyle B. Van Meter, Alan G. Tarrant, Ryan D. Schuchart, Mauro M. Oliveira, Alvin V. Miller, Brent A. Koppenhaver, Carl J. Franken, Nelson J. Ferragut, II, Tim L. Coulter, Greg Berardi, Thomas Carl Anell
  • Patent number: 7895845
    Abstract: An adaptive defrost control for a frozen product machine implements an algorithm that utilizes various operating parameters of the machine to adaptively adjust the time interval between successive defrost cycles in a manner such that defrost cycles occur only on an as-needed basis. The adaptive defrost control minimizes the time during which the machine is in a defrost cycle, thereby maximizing the uptime of the machine during which frozen product can be prepared.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 1, 2011
    Inventors: Steve Every, John F. Paulius, III, David B. Gist, Santhosh Kumar, Gregory M. Billman, Daniel C. Leaver, Kyle B. Elsom, Nikolay Popov
  • Patent number: 7878006
    Abstract: A system and method includes a compressor operable in a refrigeration circuit and including a motor, a current sensor detecting current supplied to the motor, a discharge line temperature sensor detecting discharge line temperature of the compressor, and processing circuitry receiving current data from the current sensor and discharge line temperature data from the discharge line temperature sensor and processing the current data and the discharge line temperature data to determine a capacity of the refrigeration circuit.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: February 1, 2011
    Assignee: Emerson Climate Technologies, Inc.
    Inventor: Hung M. Pham
  • Publication number: 20110005249
    Abstract: A supercooling apparatus of the present invention is capable of regulating a supercooled state for an item at temperatures below a phase transition temperature and adjusting temperature of the item in the supercooled state, wherein the supercooling apparatus comprises a storage space for receiving liquid or a stored item containing liquid; a cooling means for cooling the liquid, the stored item, or the storage space to a temperature below zero; and a temperature regulating means for applying a controlled amount of energy to the liquid, to surface of the stored item, or to gas above the surface, thereby regulating a temperature of the liquid or the stored item below a maximum ice crystal formation temperature zone of the liquid or the stored item. Therefore, the supercooling apparatus can control a supercooling temperature that has the biggest influence on ecological preservation of liquid or a stored item.
    Type: Application
    Filed: September 22, 2008
    Publication date: January 13, 2011
    Applicant: LG Electronics Inc.
    Inventors: Su-Cheong Kim, Ju-Hyun Kim
  • Publication number: 20110000240
    Abstract: An air conditioning apparatus includes a refrigerant circuit, an operation controlling device and a liquid refrigerant accumulation determining device. The refrigerant circuit has an accumulator. The operation controlling device performs normal operation control where each device of the heat source unit and the utilization unit are controlled in accordance with operating load of the utilization unit, and refrigerant quantity determination operation control where properness of quantity of the refrigerant in the refrigerant circuit is determined while performing the cooling operation. The liquid refrigerant accumulation determining device determines whether or not liquid refrigerant is accumulating in the accumulator. When it has been determined that liquid refrigerant is accumulating in the accumulator, liquid refrigerant accumulation control is performed to eliminate liquid refrigerant accumulation in the accumulator.
    Type: Application
    Filed: February 25, 2009
    Publication date: January 6, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takurou Yamada, Masato Kotake, Takahiro Yamaguchi, Tadafumi Nishimura
  • Publication number: 20100326093
    Abstract: A method of controlling temperature for forming ice within an icemaker compartment of a refrigerator is disclosed. The method includes the steps of activating at least one of the compressor and the coolant pump during an icemaking cycle to provide cooling to the icemaker compartment sufficient to make ice at a first rate, and increasing operation of at least one of the compressor and the coolant pump to provide cooling to the icemaker compartment sufficient to make ice at a second rate, which is faster than the first rate. A related refrigerator is also disclosed.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Eric K. Watson, Matthew William Davis, Omar Haidar, Ronald Scott Tarr, Joseph Waugh
  • Publication number: 20100313585
    Abstract: An expansion-distribution assembly for simultaneously throttling, mixing, and distributing refrigerant fluid upstream of a heat-absorbing component (e.g., an evaporator) of a heat pump system. The expansion-distribution assembly comprises a valve-nozzle adjustment device which moves a pin relative to a nozzle chamber to vary flow-characteristics therethrough. The pin is moved during operation of the heat pump system (based on, for example, pressure and temperature data) to dynamically customize the valve-nozzle for the current load of the system.
    Type: Application
    Filed: June 17, 2010
    Publication date: December 16, 2010
    Inventors: Christian D. Parker, David P. Wrocklage, Brian Dolin, Jeanie Schalman
  • Patent number: 7849703
    Abstract: In a vehicle air conditioner, when a passenger set temperature of a vehicle compartment is changed through an operation portion by a passenger, a storage portion updates a value of a control set temperature corresponding to a predetermined point of a detection area at a time of the changing operation to a value of the changed passenger set temperature, and stores therein the value of the updated temperature. Furthermore, when the detection point is not any one of the predetermined points, a control portion interpolates and calculates a control set temperature corresponding to the detection point from the control set temperature stored in the predetermined point of the detection area and the control set temperature stored in the predetermined point of a surrounding area around the detection area, and then controls the air-conditioning state in the vehicle compartment based on the interpolated and calculated control set temperature.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: December 14, 2010
    Assignee: Denso Corporation
    Inventors: Hiroshi Takeda, Hiroyuki Tomita, Yasufumi Kojima
  • Patent number: 7849698
    Abstract: A method for configuring a controller for an HVAC system. The method comprises providing a closed loop refrigerant system and a control system to control the closed loop refrigerant system. The control system comprises a controller, an input device, and a processor including a signal sensing circuit. The input device is activated to provide one or more signals to the controller to control the components of the closed loop refrigerant system. One or more signals are sensed with the signal sensing circuit to determine whether signals are present between the input device and the controller. The signals are processed with the processor to determine what type of closed loop refrigerant system is present. The controller is then configured to control the type of system determined by the processor.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: December 14, 2010
    Assignee: York International Corporation
    Inventors: Gregory R. Harrod, Jeffrey L. Tucker
  • Patent number: 7823397
    Abstract: A method for detecting a clogged state of a pipe of a heat pump type multi-air conditioner includes: detecting a temperature of a pipe of an arbitrary indoor heat exchanger among a plurality of indoor heat exchangers; detecting a pressure of a refrigerant sucked into an arbitrary outdoor unit among a plurality of outdoor units in case of performing an air-conditioning operation, and detecting a pressure of a refrigerant introduced into the arbitrary indoor heat exchanger after being discharged from an arbitrary outdoor unit among the plurality of outdoor units in case of performing a heating operation; and comparing a pressure corresponding to the detected temperature of the pipe and the detected pressure of the refrigerant and determining whether the pipe is clogged based on the comparison result. By detecting a clogged state of a pipe, the heat pump type multi-air conditioner is prevented from being damaged due to a clogged state of the pipe.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: November 2, 2010
    Assignee: LG Electronics Inc.
    Inventors: Se-Dong Chang, Sung-Hwan Kim, Yoon-Been Lee, Baik-Young Chung
  • Patent number: 7797957
    Abstract: Methods, systems, and apparatus for linearizing control of a commercial refrigeration system. In an embodiment of the invention, a controller is configured to receive a non-linear sensed suction pressure and convert the suction pressure to a linear temperature equivalent. The linear temperature equivalent is used by the controller to achieve efficient system operation over an entire range of operating temperatures.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: September 21, 2010
    Assignee: Hussmann Corporation
    Inventor: Ted W. Sunderland
  • Patent number: 7793511
    Abstract: A multi type air-conditioner is provided. The multi type air conditioner includes an outdoor unit having a plurality of outdoor heat exchangers that heat-exchanges with outdoor air and a compressor that compresses a refrigerant; a plurality of indoor units that performs either cooling or heating; a high pressure pipe connected between a discharge side of the compressor and the plurality of indoor units; a low pressure pipe connected between a suction side of the compressor and the plurality of indoor units; and a refrigerant exhauster provided between the high pressure pipe and the low pressure pipe. The refrigerant exhauster discharges a liquid refrigerant to the low pressure pipe when the liquid refrigerant is accumulated in the high pressure pipe, whereby degradation of cooling capability due to a lack of refrigerant may be prevented by minimizing accumulation of the liquid refrigerant in the high pressure pipe in a cooling operation mode.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: September 14, 2010
    Assignee: LG Electronics Inc.
    Inventors: Seok-Ho Yoon, Ki-Bum Kim, Pil-Hyun Yoon, Jin-Ha Choi, Balk-Young Chung
  • Patent number: 7793513
    Abstract: A refrigerant PTAC system, such as those commonly found in hotel rooms, can be selectively configured in a hardwire or wireless configuration with respect to its thermostat. The system is controlled in response to the better of two temperature sensors, which is determined based on the PTAC's configuration and the validity of the readings provided by the sensors. While the PTAC is controlled in response to a preferred temperature sensor, the alternate sensor may be monitored for diagnostics or other reasons. In the event that the preferred sensor fails to provide valid readings, the controller automatically switches to controlling the system in response to the alternate sensor. To minimize manufacturing costs and the variety of stocked parts, the PTAC's controller preferably includes two substantially identical transceivers.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: September 14, 2010
    Assignee: Trane International Inc.
    Inventors: Richard L. Aldridge, Michael X. Song, Tedd P. Johnson
  • Patent number: 7788938
    Abstract: The invention relates to a method for regulating a coolant circuit (2) of a vehicle air conditioning system (4). According to said method, a target value (SW(VT)) for an evaporator temperature (VT) is predetermined in a base control circuit. Said value is used to determine a control value (U) for controlling the evaporator temperature (VT) by means of an evaporator temperature regulator (16). Said control value is also fed to a ventilator fan controller (26).
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: September 7, 2010
    Assignee: Behr GmbH & Co. KG
    Inventors: Wilhelm Baruschke, Armin Britsch-Laudwein, Karl Lochmahr
  • Publication number: 20100212342
    Abstract: An air conditioner includes a compressor, a first heat exchanger, and a first pipe configured to allow refrigerant to flow from the first heat exchanger. A bypass pipe is branched off from the first pipe and is configured to expand refrigerant flowing through the bypass pipe. A second heat exchanger is configured to allow the expanded refrigerant of the bypass pipe to heat-exchange with the refrigerant flowing along the first pipe. A second pipe couples the second heat exchanger to the compressor so that the refrigerant expanded by the bypass pipe and heat-exchanged at the second heat exchanger can be introduced into the compressor.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 26, 2010
    Applicant: LG ELECTRONICS INC.
    Inventors: Ho Jong JEONG, Chi Woo SONG, Baik Young CHUNG, Sai Kee OH
  • Publication number: 20100145527
    Abstract: A system and a method for operating a variable-displacement compressor are provided wherein a volume of a compression chamber of at least one cylinder is varied during a compression cycle, wherein during the cycle the at least one cylinder is alternately coupled to a low pressure side and a high pressure side of the compressor. A first thermodynamic state of the low pressure side and a second thermodynamic state of the high pressure side can be estimated and a current compression ratio ( v in v out ) of the compressor can be estimated. Accordingly, a compressor displacement (D) as a function of the compression ratio ( v in v out ) can be calculated. From this, a compressor torque (M) depending on the calculated displacement (D) can be computed, and the compressor torque (M) can be provided to a control unit for operating the compressor or an engine coupled to the compressor.
    Type: Application
    Filed: March 20, 2007
    Publication date: June 10, 2010
    Inventors: Andreas Sjöberg, Andreas Roupé
  • Publication number: 20100107658
    Abstract: A cooling system and method for cooling devices housed in a data center. A cabinet housing a set of condenser coils is located within the data center positioned on its floor and including fans for drawing air passed the condenser coils and exiting the device angularly to the floor of the data center. The present invention also contemplates the use of redundant compressors and condensers, a system that includes a secondary evaporator coil and configuration which enables the device, under certain conditions, to bypass its compressor.
    Type: Application
    Filed: November 4, 2008
    Publication date: May 6, 2010
    Inventor: Richard Erwin Cockrell
  • Publication number: 20100037641
    Abstract: A refrigeration device includes a compression mechanism, a radiator, a first expansion mechanism, a liquid receiver, a second expansion mechanism, an evaporator, a pressure detector, a temperature detector, and a control unit. The pressure detector is provided between the refrigerant discharge side of the compression mechanism and the refrigerant inflow side of the first expansion mechanism. The temperature detector is provided between the exit side of the radiator and the refrigerant inflow side of the first expansion mechanism. The control unit controls the first expansion mechanism using the pressure detected by the pressure detector and the temperature detected by the temperature detector so that the refrigerant flowing out from the first expansion mechanism reaches a saturated state.
    Type: Application
    Filed: August 30, 2007
    Publication date: February 18, 2010
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shinichi Kasahara, Toshiyuki Kurihara
  • Publication number: 20090318913
    Abstract: An apparatus and method for automatic operation of a refrigeration system to provide refrigeration power to a catheter for tissue ablation or mapping. The primary refrigeration system can be open loop or closed loop, and a precool loop will typically be closed loop. Equipment and procedures are disclosed for bringing the system to the desired operational state, for controlling the operation by controlling refrigerant flow rate, for performing safety checks, and for achieving safe shutdown. The catheter-based system for performing a cryoablation procedure uses a precooler to lower the temperature of a fluid refrigerant to a sub-cool temperature (?40° C.) at a working pressure (400 psi). The sub-cooled fluid is then introduced into a supply line of the catheter. Upon outflow of the primary fluid from the supply line, and into a tip section of the catheter, the fluid refrigerant boils at an outflow pressure of approximately one atmosphere, at a temperature of about ?88° C.
    Type: Application
    Filed: January 14, 2009
    Publication date: December 24, 2009
    Inventor: Hong LI
  • Publication number: 20090301116
    Abstract: A climate controlling system including an HVAC system and a climate modification subsystem. The HVAC system adds conditioned air into a passenger compartment of an electric vehicle. The HVAC system transmits a signal indicative of its power consumption state. The climate modification subsystem is configured to alter the perceived temperature of a vehicle occupant. The climate modification subsystem transmits a signal indicative of its power consumption state. A controller is connected to the HVAC system and to the subsystem. The controller monitors the signals transmitted by the HVAC system and the subsystem. The controller apportions power between the HVAC system and the subsystem to achieve a minimum combined power consumption state while maintaining a predetermined occupant perceived temperature.
    Type: Application
    Filed: June 9, 2008
    Publication date: December 10, 2009
    Applicant: LEAR CORPORATION
    Inventors: John F. Nathan, Karl Kennedy, Santosh Karumathil
  • Publication number: 20090301117
    Abstract: It is an object of this invention to provide an air conditioning apparatus using supercritical refrigerant for easily regulating the circulation amount of refrigerant. A refrigeration apparatus (1b) uses refrigerant operating in the supercritical zone. The refrigeration apparatus (1b) includes a compressor (21), a first heat exchanger (23), a first expansion mechanism (V2), a subcooling heat exchanger (24), a second expansion mechanism (V3), a second heat exchanger (31) and a control section (5). The compressor is configured to compress the refrigerant. The first heat exchanger is configured to cool the high-pressure refrigerant compressed by the compressor. The first expansion mechanism is configured to decompress the refrigerant to critical pressure or less. The subcooling heat exchanger is configured to subcool the refrigerant decompressed by the first expansion mechanism. The second expansion mechanism is configured to decompress the refrigerant cooled by the subcooling heat exchanger to low pressure.
    Type: Application
    Filed: November 7, 2007
    Publication date: December 10, 2009
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventor: Takayuki Setoguchi
  • Publication number: 20090301113
    Abstract: A turbo chiller that can run continuously even with a low load, for example, less than 10% load, is provided. In a turbo chiller having a low-load mode for repeatedly controlling stopping and starting of the turbo chiller when a coolant inlet temperature measured by a coolant inlet temperature sensor is equal to or lower than a first temperature forming a temperature difference with respect to the coolant outlet temperature, a stop limit mode for stopping the turbo chiller when the coolant inlet temperature or the coolant outlet temperature is equal to or lower than a second temperature below the first temperature is provided.
    Type: Application
    Filed: October 19, 2007
    Publication date: December 10, 2009
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kenji Ueda, Kazuma Taito, Minoru Matsuo
  • Patent number: 7607312
    Abstract: A refrigerator includes a refrigerator cabinet, a fresh food compartment disposed within the cabinet, a freezer compartment disposed within the cabinet, an ice compartment disposed within the cabinet, and an electronic control system associated with the refrigerator and adapted to monitor and control the fresh food compartment, the freezer compartment and the ice compartment. The control system provides for energy efficient control and operation through various means, including adjusting cut-in and cut-out temperatures of the cooling system to control.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: October 27, 2009
    Assignee: Maytag Corporation
    Inventors: Robert L. Wetekamp, Kyle B. Van Meter, Alan G. Tarrant, Ryan D. Schuchart, Mauro M. Oliveira, Alvin V. Miller, Brent A. Koppenhaver, Carl J. Franken, Nelson J. Ferragut, II, Tim L. Coulter, Greg Berardi, Thomas Carl Anell
  • Patent number: 7591141
    Abstract: A refrigerator includes a refrigerator cabinet, a fresh food compartment disposed within the cabinet, a freezer compartment disposed within the cabinet, an ice compartment disposed within the cabinet, and an electronic control system associated with the refrigerator and adapted to monitor and control the fresh food compartment, the freezer compartment and the ice compartment. The control system provides for energy efficient control and operation through various means, including by monitoring state of an ice maker associated with the ice compartment and controlling temperature within compartments of the refrigerator based on the ice maker state. The control system can also use correlations in determining appropriate temperatures for different compartments within the refrigerator.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: September 22, 2009
    Assignee: Maytag Corporation
    Inventors: Robert L. Wetekamp, Kyle B. Van Meter, Alan G. Tarrant, Ryan D. Schuchart, Mauro M. Oliveira, Alvin V. Miller, Brent A. Koppenhaver, Carl J. Franken, Nelson J. Ferragut, II, Tim L. Coulter, Greg Berardi, Thomas Carl Anell
  • Patent number: 7568359
    Abstract: A refrigerator includes a refrigerator cabinet, a fresh food compartment disposed within the cabinet, a freezer compartment disposed within the cabinet, an ice compartment disposed within the cabinet, and an electronic control system associated with the refrigerator and adapted to monitor and control the fresh food compartment, the freezer compartment and the ice compartment. The control system provides for energy efficient control and operation through various means, including by monitoring state of an ice maker associated with the ice compartment and controlling temperature within compartments of the refrigerator based on the ice maker state. A heater is controlled by the control system to increase energy efficiency of the refrigerator.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: August 4, 2009
    Assignee: Maytag Corporation
    Inventors: Robert L. Wetekamp, Kyle B. Van Meter, Alan G. Tarrant, Ryan D. Schuchart, Mauro M. Oliveira, Alvin V. Miller, Brent A. Koppenhaver, Carl J. Franken, Nelson J. Ferragut, Tim L. Coulter, Greg Berardi, Thomas Carl Anell
  • Patent number: 7555909
    Abstract: A method of fully freezing ice in a refrigerator. The method includes setting a full-frozen temperature for determining whether ice is fully frozen, and a reference ambient temperature for re-adjusting the full-frozen temperature; supplying water to the ice-making tray to thereby perform ice-making; sensing ambient temperature; sensing temperature of the ice-making tray; re-adjusting the full-frozen temperature by comparing the sensed ambient temperature with the reference ambient temperature; and if the temperature of the ice-making tray reaches the re-adjusted full-frozen temperature, driving an ice-transfer motor to transfer full-frozen ice from the ice-making tray. Thus, not fully frozen ice is prevented from being transferred, to thereby improve ice quality and avoid sticking of ice, which may occur when not fully frozen ice is broken while being transferred. A refrigerator using such a method is also disclosed.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: July 7, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-hyeok Chang
  • Patent number: 7546746
    Abstract: There is provided a cooling apparatus which can improve a cooling efficiency while preventing an abnormal increase in pressure of a high side. The cooling apparatus comprises: a refrigerant circuit which uses carbon dioxide as a refrigerant; a control device which controls a speed of rotation of the compressor between predetermined lowest and highest speeds; and a cooled state sensor which detects a cooled state in a refrigerator main body to be cooled by an evaporator included in the refrigerant circuit. The control device increases a highest speed of rotation of the compressor if a temperature in the chamber of the refrigerator main body detected by the cooled state sensor is low.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: June 16, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Haruhisa Yamasaki, Kenzo Matsumoto, Shigeya Ishigaki, Masaji Yamanaka, Kentaro Yamaguchi
  • Publication number: 20090090114
    Abstract: A refrigeration control device to reduce power consumption of a refrigeration appliance has an ambient temperature/humidity sensor and a main controller. The ambient temperature/humidity sensor is mounted outside the refrigeration appliance. The main controller is mounted in the refrigeration appliance, is electronically connected to the ambient temperature/humidity sensor and at least one defogging heater in the refrigeration appliance and stores a dew point formula, a defogging database and a defogging control process. The defogging database is a table of multiple standard dew point values and multiple defogging duration values. The defogging control process calculates a dew point from the dew point formula, enters the table with the closest standard dew point value and extracts the corresponding defogging duration value from the table in the defogging database and activates the defogging heater for a number of times equal to the extracted defogging duration value.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 9, 2009
    Inventor: Kwang-Hua Choo
  • Patent number: 7487645
    Abstract: An automatic icemaker according to the invention can be disposed in one part of a freezer and automatically make ice pieces, and is provided with temperature distribution forming means which forms a temperature distribution in which freezing progresses from the open side of ice partitions of an ice-tray and is completed near the bottom side of the ice partitions.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: February 10, 2009
    Assignee: Japan Servo Co., Ltd.
    Inventors: Naotaka Sasaki, Kenji Sugaya, Hideaki Ito
  • Patent number: 7469546
    Abstract: A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: December 30, 2008
    Inventor: Lawrence Kates
  • Patent number: 7458223
    Abstract: A system and method including a compressor operable in a refrigeration circuit and including a motor, a current sensor detecting current drawn by the motor and providing a high-side condition signal, a discharge line temperature sensor detecting a discharge line temperature of the compressor and providing a low-side condition signal, and processing circuitry processing the high-side condition signal and the low-side condition signal during installation of the compressor to initially configure the compressor based on a non-measured condition of the refrigeration circuit.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: December 2, 2008
    Assignee: Emerson Climate Technologies, Inc.
    Inventor: Hung M. Pham
  • Patent number: 7448226
    Abstract: A refrigerator has a refrigerating cycle sequentially connecting a compressor, a condenser, a drawing mechanism, and evaporator, an accumulator, an inlet temperature sensor and an outlet temperature sensor for detecting the temperatures of the inlet and outlet of the evaporator, and a cooling fan for cooling the compressor. When the difference between the temperature detected by the inlet temperature sensor and the temperature detected by the outlet temperature sensor is a predetermined value or more, the cooling fan is stopped.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: November 11, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jun Yamashita, Yasushi Takagi, Susumu Saruta, Munehiro Horie, Tsutomu Sakuma
  • Patent number: 7412840
    Abstract: A ground-based system and method of supplying electrical power and temperature-controlled air to an aircraft environmental control system during ground support operations uses a throttle valve to control the flow of compressed air flowing through a heat exchanger. An air conditioner module mounted on a wheeled cart removes heat from the compressed air that is supplied to it from an auxiliary power unit (APU), and supplies cooled compressed air at a desired temperature. The temperature of the cooled compressed air is controlled by selectively positioning a throttle valve, which regulates compressed air flow from the compressed air source. The throttle valve position is controlled in response to one or more ambient meteorological conditions and/or the amount of electrical power being supplied from the system.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: August 19, 2008
    Assignee: Honeywell International Inc.
    Inventor: Thomas M. Leathers