Back Flow Or Pressure Regulator Patents (Class 62/217)
  • Patent number: 11506404
    Abstract: A refrigeration cycle device includes a heating unit, an air-heating expansion valve, an outdoor heat exchanger, an air-cooling expansion valve, an indoor evaporator, and a cooler-unit expansion valve, a cooler unit, and a refrigerant circuit switching unit. In a heating series cooler-unit mode, refrigerant is circulated in order of the heating unit, the air-heating expansion valve, the outdoor heat exchanger, the cooler-unit expansion valve, and the cooler unit. In a heating parallel cooler-unit mode, refrigerant is circulated in order of the heating unit, the air-heating expansion valve, and the outdoor heat exchanger, and refrigerant is circulated in order of the heating unit, the cooler-unit expansion valve, and the cooler unit.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: November 22, 2022
    Assignee: DENSO CORPORATION
    Inventors: Satoshi Ito, Kengo Sugimura, Yuichi Kami, Hiroyuki Kobayashi
  • Patent number: 11448221
    Abstract: A light-weight, high-strength insulating compressor component formed via additive manufacturing is provided. The component may have at least one interior region comprising a lattice structure that comprises a plurality of repeating cells. A solid surface is disposed over the lattice structure. The interior region comprising the lattice structure minimizes or reduces transmission of at least one of thermal energy, sound, or vibrational energy through the component. Methods of making such compressor components via additive manufacturing processes are also provided.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: September 20, 2022
    Assignee: Emerson Electric Co.
    Inventors: Marc J. Scancarello, Robert C. Stover
  • Patent number: 11377578
    Abstract: A heat transfer device that contains a circulation route enclosing a refrigerant containing a hydrohaloolefin, the heat transfer device being capable of reducing the influence of oxygen entrapped in the circulation route; and a heat transfer method using the heat transfer device. Also, a heat transfer device that contains a circulation route enclosing a refrigerant containing at least one member selected from the group consisting of hydrofluoroolefins (HFOs), hydrochlorofluoroolefins (HCFOs), and hydrochloroolefins (HCOs); and the device containing an oxygen adsorption device between an evaporator and a compressor present in the circulation route; and a heat transfer method using the same.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: July 5, 2022
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Tatsumi Tsuchiya, Kouhei Koba, Masaru Tanaka
  • Patent number: 11255582
    Abstract: A method for cooling air in an HVAC system includes moving refrigerant through a closed refrigeration circuit having, inter alia, an expansion device subsystem, which includes a full-load pathway and at least one partial-load pathway and a flow selector for directing refrigerant flow from the condenser to either the partial-load pathway or the full-load pathway. The method also involves directing refrigerant flow from the condenser to the full-load pathway when the refrigerant pressure is greater than or equal to a first preselected activation pressure and stepping down a refrigerant pressure with a set orifice and directing refrigerant flow from the condenser to the partial-load pathway when the refrigerant pressure is less than a second preselected activation pressure and stepping down a refrigerant pressure with a variable expansion device configured for partial loads. Refrigerant is delivered from the full-load pathway or partial-load pathway to the evaporator.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: February 22, 2022
    Assignee: Lennox Industries Inc.
    Inventor: Wenqian Liu
  • Patent number: 11192426
    Abstract: A control apparatus in a cooling system has an opening schedule of a degree of opening of each of a plurality of outflow ports in a control valve including at least a heater cut mode, a heater passing water mode, a fully closed mode, and a switching mode in which the opening and closing of an air conditioning outflow port is switched in a state in which at least one outflow port of a radiator outflow port and a bypass outflow port is opened and switches the heater cut mode and the heater passing water mode via the switching mode.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: December 7, 2021
    Assignee: YAMADA MANUFACTURING CO., LTD.
    Inventors: Akifumi Ozeki, Toshihito Nagai
  • Patent number: 11060493
    Abstract: A fuel pump includes a fuel pump housing made of stainless steel and having a pumping chamber therewithin, a plunger bore extending thereinto, an inlet passage extending thereinto, and an outlet passage extending thereinto. A pumping plunger reciprocates within the plunger bore such that an intake stroke of the pumping plunger increases volume of the pumping chamber and a compression stroke of the pumping plunger decreases volume of the pumping chamber. An outlet valve controls fuel flow from the pumping chamber out of the fuel pump housing. The outlet valve includes an outlet valve seating surface formed by the fuel pump housing within the outlet passage such that a nitrided layer extends from the outlet valve seating surface into the fuel pump housing. The outlet valve also includes an outlet valve member within the outlet passage which is moveable between a seated position and an unseated position.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: July 13, 2021
    Inventors: Youssef Kazour, Joseph G. Spakowski
  • Patent number: 10240803
    Abstract: A computer room air conditioner (CRAC) unit includes a housing having an inlet configured to receive IT air and an outlet configured to exhaust treated air. The CRAC unit further includes a heat exchanger supported by the housing and disposed between the inlet and the outlet of the housing and at least one fan module supported by the housing. The at least one fan module is configured to draw IT air into the housing through the inlet, direct IT air through the heat exchanger, and exhaust treated air through the outlet. The CRAC unit further includes an airfoil frame secured to the housing at the inlet of the housing.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: March 26, 2019
    Assignee: SCHNEIDER ELECTRIC IT CORPORATION
    Inventor: Daniele Marchetti
  • Patent number: 9863675
    Abstract: An oil separator includes a cylindrical first separating section having a first inner space where the refrigerant can swirl; a cylindrical second separating section disposed below the first separating section and having a second inner space where the refrigerant can swirl; an introduction tube sending the refrigerant toward an inner wall of the first separating section so that a swirl flow occurs; a delivery tube delivering the separated refrigerant; and an exhaust pipe discharging the separated refrigerant oil, the second separating section having a surface connecting the inner wall of the first separating section and an upper end of an inner wall of the second separating section and forming a step, and an angle between the surface and the inner wall of the first separating section and an angle between the surface and the inner wall of the second separating section being 90 degrees or smaller.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: January 9, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Osamu Ogawa, Atsushi Kakimoto
  • Patent number: 9759454
    Abstract: Provided is a cascade heat pump. The cascade heat pump includes a first refrigerant cycle including a first compressor and a first indoor heat exchanger, a second refrigerant cycle including a second compressor and a second indoor heat exchanger, an outdoor heat exchanger in which a refrigerant compressed in the first compressor or the second compressor is condensed, a bypass tube allowing the refrigerant compressed in the second compressor to bypass the first compressor, thereby flowing into a discharge side of the first compressor, and a first flow rate regulating part disposed on a discharge side of the second compressor to introduce the refrigerant discharged from the second compressor into one of the first compressor and the bypass tube.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: September 12, 2017
    Assignee: LG ELECTRONICS INC.
    Inventors: Jaeheuk Choi, Taehee Kwak, Yoonho Yoo
  • Patent number: 9689730
    Abstract: A required-circulated-refrigerant flow-rate calculating portion provided in a chilled-water flow-rate estimation calculation portion calculates an evaporator exchanged heat quantity exchanged between a refrigerant and chilled water at an evaporator based on a planned chilled-water-flow-rate value and a measured value of the temperature of the chilled water flowing in the evaporator, and calculates an evaporator-refrigerant flow rate based on that evaporator exchanged heat quantity.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: June 27, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Minoru Matsuo, Kenji Ueda, Toshihiko Niinomi, Hitoi Ono
  • Patent number: 9297578
    Abstract: A method for controlling the operation of a transport refrigeration system to limit current drawn by a compressor powered by AC electric current includes the steps of: (a) determining whether an ambient temperature in which the refrigeration unit is operating has been greater than a set point ambient temperature for a first time period; (b) determining whether the refrigeration unit has been operating in a temperature pulldown mode; (c) determining whether the AC electric current is equal to or exceeds a preset maximum current limit; (d) determining whether a time period between a last defrost cycle and a next previous defrost cycle is less than fifteen minutes; and (e) if the determination is YES in both of step (a) and step (b) and is also YES in at least one of step (c) and step (d), reducing the preset maximum current limit to a reset maximum current limit.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: March 29, 2016
    Assignee: CARRIER CORPORATION
    Inventors: Scott D. Fulmer, Donald B. Hotaling, Mark J. Perkovich
  • Patent number: 9188374
    Abstract: A cooling system for cooling food on board an aircraft includes a cooling circuit adapted to supply cooling energy to at least one cooling station, a refrigerant circulating in the cooling circuit selected such that it is convertible at least partially from the liquid to the gaseous state of aggregation on releasing its cooling energy to the at least one cooling station and subsequently convertible back at least partially to the liquid state of aggregation again by an appropriate pressure and temperature control in the cooling circuit, and a refrigerant container including a receiving space arranged in an interior space of the refrigerant container which receives the refrigerant circulating in the cooling circuit, the receiving space of the refrigerant container connected to the cooling circuit by a flow line for discharging the refrigerant from the receiving space and by a return line for returning the refrigerant into the receiving space.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 17, 2015
    Assignee: AIRBUS OPERATIONS GMBH
    Inventors: Markus Piesker, Ahmet Kayihan Kiryaman, Sebastian Roering
  • Patent number: 9175999
    Abstract: A glass-to-metal hermetic seal assembly in a sight glass assembly or a hermetic terminal assembly is disclosed and includes a glass component, an intermediate component, and an outer ring. The intermediate component is provided around the glass component. The glass component is fused to the intermediate component. The outer ring, which has a coefficient of thermal expansion that is greater than a coefficient of thermal expansion of the glass component, compresses the intermediate component against the glass component to create a hermetic compression seal.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: November 3, 2015
    Assignee: Emerson Electric Co.
    Inventors: Franz Dieter Paterek, Albertus Jan Hendrik Kolkman
  • Patent number: 9148982
    Abstract: Methods and coolant distribution systems are provided for automated coolant flow control for, for instance, facilitating cooling of multiple different electronic systems. The methods include, for instance, automatically controlling coolant flow to a plurality of coolant circuits, and for a coolant circuit i of the coolant circuits: automatically determining the heat load transferred to coolant flowing through coolant circuit i, and automatically controlling coolant flow through coolant circuit i based on the determined heat load transferred to the coolant. The different coolant circuits may have the same or different coolant flow impedances, and flow through the different coolant circuits may be controlled using different heat load-to-coolant ranges for the different circuits.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: September 29, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 9148983
    Abstract: Methods are provided for automated coolant flow control for, for instance, facilitating cooling of multiple different electronic systems. The methods include, for instance, automatically controlling coolant flow to a plurality of coolant circuits, and for a coolant circuit i of the coolant circuits: automatically determining the heat load transferred to coolant flowing through coolant circuit i, and automatically controlling coolant flow through coolant circuit i based on the determined heat load transferred to the coolant. The different coolant circuits may have the same or different coolant flow impedances, and flow through the different coolant circuits may be controlled using different heat load-to-coolant ranges for the different circuits.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: September 29, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levi A. Campbell, Richard C. Chu, Milnes P. David, Michael J. Ellsworth, Jr., Madhusudan K. Iyengar, Roger R. Schmidt, Robert E. Simons
  • Patent number: 8984903
    Abstract: A refrigerant cycle device includes a first refrigerant passage for guiding refrigerant from a refrigerant radiator to an inlet side of an outdoor heat exchanger, a first throttle part capable of varying an opening area of the first refrigerant passage, a second refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to a compressor-suction side, a first opening/closing part for opening/closing the second refrigerant passage, a third refrigerant passage for guiding the refrigerant from the outdoor heat exchanger to the compressor-suction side via an evaporator, a second throttle part capable of varying an opening area of the third refrigerant passage, a bypass passage for guiding the refrigerant flowing between the refrigerant radiator and the first throttle part to a position between the outdoor heat exchanger and the second throttle part in the third refrigerant passage, and a second opening/closing part for opening/closing the bypass passage.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: March 24, 2015
    Assignee: Denso Corporation
    Inventors: Satoshi Itoh, Atsushi Inaba, Mikiharu Kuwahara
  • Patent number: 8904813
    Abstract: A pulse width modulation control is provided for a suction valve on a suction line, delivering refrigerant into a housing shell of a compressor. When the suction valve is closed, the pressure within the housing shell can become very low. Thus, a pressure regulator valve is included within the refrigerant system to selectively deliver a limited amount of refrigerant into the housing shell when the suction valve is closed. The delivery of this limited amount of refrigerant ensures that a specified pressure is maintained within the housing shell to achieve the most efficient operation while at the same time preventing problems associated with damage to electrical terminals, motor overheating and excessive discharge temperature.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: December 9, 2014
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 8769976
    Abstract: A method for controlling a refrigerant distribution in a vapour compression system, such as a refrigeration system, e.g. an air condition system, comprising at least two evaporators. The refrigerant distribution determines the distribution of the available amount of refrigerant among the evaporators. While monitoring a superheat, SH, at a common outlet for the evaporators, the distribution of refrigerant is modified in such a manner that a mass flow of refrigerant to a first evaporator is altered in a controlled manner. The impact on the monitored SH is then observed, and this is used for deriving information relating to the behaviour of the first evaporator, in the form of a control parameter. This is repeated for each evaporator, and the refrigerant distribution is adjusted on the basis of the control parameters. The impact may be in the form of a significant change in SH.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: July 8, 2014
    Assignee: Danfoss A/S
    Inventors: Claus Thybo, Rafael Wisniewski
  • Patent number: 8720213
    Abstract: A variable displacement compressor with a compensated suction shutoff valve (SSV). The SSV prevents noise generated by a suction reed valve at low refrigerant flow rates in an internal suction region from propagating to an air conditioner evaporator by moving a piston to obstruct an opening and restrict fluid communication. The degree of restriction is decreased by an opening force generated by refrigerant at an external suction pressure acting over a first area, and increased by refrigerant at a crankcase pressure acting over a second area. The second area is smaller than the first area so that at high refrigerant flow rates, the effect of crankcase pressure is reduced so that the restriction is reduced and the compressor operates at greater efficiency. The piston position is also influenced by refrigerant at a pressure intermediate the external suction pressure and the internal suction pressure acting over a third area.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: May 13, 2014
    Assignee: Delphi Technologies, Inc.
    Inventors: Theodore R. Cochran, Joseph M. Bona, Gregory M. Dennis, Matthew R. Warren
  • Patent number: 8713950
    Abstract: In a method of the application, cooling energy is produced by a refrigerating device. The cooling energy produced by the refrigerating device is supplied to at least one cooling station by a cooling circuit, circulating in which is a refrigerant, which upon release of its cooling energy to the at least one cooling station is converted from the liquid to the gaseous state and is then converted back to the liquid state by corresponding pressure- and temperature control in the cooling circuit. Upon transfer of the cooling system to its state of rest, a control value disposed in the cooling circuit is controlled in such a way that a desired operating pressure (??) arises in the cooling circuit downstream of the control valve. Refrigerant cooled by the refrigerating device is received in a reservoir disposed upstream of the control valve in the cooling circuit.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 6, 2014
    Assignee: Airbus Operations GmbH
    Inventor: Sebastian Roering
  • Patent number: 8596080
    Abstract: An air conditioning system having an improved internal heat exchanger (IHX) assembly. The IHX assembly includes an elongated cavity for low pressure refrigerant flow from an evaporator and an interior tube disposed within the cavity for high pressure refrigerant flow from a condenser, and a pressure equalization passage between the low and high pressure sides. The passage is large enough to allow pressures to equalize between the condenser and evaporator while the air conditioning system is inactive, so as to prevent the pressure differential that would otherwise enable the loss of refrigerant oil from the compressor, and small enough not to effect the operation of the air conditioning system. The pressure equalization passage may be a by-pass valve assembly having a reed portion that is normally open when the air conditioning system is inactive and closed when the air conditioning system is active for maximum cooling efficiency.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 3, 2013
    Assignee: Delphi Technologies, Inc.
    Inventors: Edward Wolfe, IV, Prasad Shripad Kadle, James Alan Bright, Mingyu Wang
  • Patent number: 8539785
    Abstract: A climate control system is provided and may include a compressor, a first heat exchanger in fluid communication with the compressor, a second heat exchanger in fluid communication with the compressor and the first heat exchanger, and a third heat exchanger disposed between the first heat exchanger and the second heat exchanger. A conduit may be fluidly coupled to the third heat exchanger and the compressor and may selectively supply fluid to the compressor. A valve may control a volume of fluid supplied to the compressor via the conduit and a controller may control the valve based on a discharge temperature of the compressor and a super heat temperature of the third heat exchanger.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: September 24, 2013
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Chao Jiang, Ying Wang
  • Patent number: 8505321
    Abstract: For cooling operation, a refrigeration apparatus includes a heat-source-side valve opening controller for controlling a degree of opening of a heat-source-side expansion valve so that pressure of a refrigerant flowing into the utilization-side expansion valve in the cooling operation becomes equal to or lower than a predetermined reference pressure value. For heating operation, the refrigeration apparatus includes a utilization-side valve opening controller for performing, when a low-quantity utilization unit in which a quantity of the refrigerant falls below a quantity of the refrigerant required for delivering capacity of the utilization unit is found among a plurality of the utilization units in the heating operation, valve opening reducing operation of reducing a degree of opening of the utilization-side expansion valve of the utilization unit except for the low-quantity utilization unit.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: August 13, 2013
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoshi Kawano, Shinya Matsuoka
  • Patent number: 8468842
    Abstract: Alternative means of inhibiting frosting in the interior heat exchanger of a DX system when switching from the heating mode to the cooling mode, plus an improved insulation and heat transfer means for vertically oriented sub-surface geothermal heat transfer tubing, as well as a means to protectively coat the sub-surface metal tubing of a DX system in a corrosive environment.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: June 25, 2013
    Assignee: Earth to Air Systems, LLC
    Inventor: B. Ryland Wiggs
  • Patent number: 8240161
    Abstract: A refrigerant system is provided with a pulse width modulation valve. A compressor temperature is monitored to prevent potential reliability problems and compressor failures due to an excessive temperature inside the compressor. A control changes the pulse width modulation valve duty cycle rate to maintain temperature within specified limits, while achieving the desired capacity, and complying with design requirements of a conditioned environment, without compromising refrigerant system reliability. As the compressor temperature increases, the pulse width modulation valve duty cycle time is adjusted to ensure that adequate amount of refrigerant is circulated through the compressor to cool the compressor internal components.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: August 14, 2012
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 8161763
    Abstract: A refrigerator control method is disclosed which ensures efficient operation of a compressor. To control a refrigerator including a compressor, a first evaporator and a second evaporator connected to the compressor, and a refrigerant control valve that controls introduction of a refrigerant into the first evaporator and the second evaporator, the refrigerator control method includes operating the compressor, and controlling the opening and closing of the refrigerant control valve, to reduce not only consumption of electricity by the compressor, but also a pressure difference between an entrance and an exit of the compressor upon starting of the compressor.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: April 24, 2012
    Assignee: LG Electronics Inc.
    Inventors: Young Hoon Yun, Hyoung Keun Lim, Gye Young Song
  • Publication number: 20120055182
    Abstract: A CO2 refrigeration system comprises a refrigeration circuit in which circulates CO2 refrigerant between a compression stage in which the CO2 refrigerant is compressed. A condensation stage is provided in which the CO2 refrigerant releases heat and is accumulated in a condensation reservoir. An evaporation stage is provided in which the CO2 refrigerant is expanded to a gaseous state to absorb heat from a fluid for refrigeration, with at least a portion of CO2 refrigerant exiting the evaporation stage being directed to a supra-compression circuit comprising a supra-compression stage in which the portion of CO2 refrigerant is compressed. A heat exchanger is provided by which the compressed CO2 refrigerant is in a heat-exchange relation with a secondary-refrigerant circuit, such that the compressed CO2 refrigerant releases heat to a secondary refrigerant used for heating purposes. Pressure-regulating means control a pressure of the compressed CO2 refrigerant being returned to the condensation stage.
    Type: Application
    Filed: October 23, 2009
    Publication date: March 8, 2012
    Inventor: Serge Dubé
  • Patent number: 8082746
    Abstract: In a refrigeration cycle device for a vehicle, a weak-inflammability refrigerant that does not ignite at a high-temperature heat source mounted in an engine compartment of the vehicle in a refrigerant single state is circulated in a refrigerant cycle. The refrigerant cycle includes a compressor for compressing and discharging the refrigerant. The compressor includes an oil separator that is located at a refrigerant discharge side of the compressor to separate a lubrication oil from the refrigerant and to return the separated lubrication oil to an interior of the compressor, a shutting portion configured to shut a reverse flow of the refrigerant at a refrigerant suction side of the compressor, and a driving portion located to drive the shutting portion. Furthermore, the driving portion causes the shutting portion to shut the reverse flow of the refrigerant when the refrigerant cycle is damaged.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: December 27, 2011
    Assignee: Denso Corporation
    Inventors: Takashi Yamanaka, Shin Nishida
  • Patent number: 8047449
    Abstract: An expansion valve for an air conditioning system circulates refrigerant through a fixed-displacement compressor, a condenser, and an evaporator. An inlet is provided for receiving refrigerant liquefied in the condenser. An outlet of the expansion valve supplies refrigerant to the evaporator. A valve element controls flow of refrigerant between the inlet and the outlet, wherein the valve element is normally closed. A control assembly is coupled to the valve element and is responsive to at least one temperature or pressure in the air conditioning system to open the valve element to variably meter the refrigerant to the evaporator. A bleed passage bypasses the valve element to conduct refrigerant between the inlet and the outlet.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: November 1, 2011
    Assignee: Automotive Components Holdings LLC
    Inventors: Zheng Lou, Thomas J. Joseph, Sr., Thomas B. Harris
  • Patent number: 7966838
    Abstract: A pulse width modulation control is provided for a suction modulation valve in a refrigerant system. An intentional small “leakage” path is maintained through the suction modulation valve to ensure that the pressure inside the compressor shell does not decrease below a safe reliability threshold but, at the same time, does not exceed a certain value, which would cause the refrigerant system to operate inefficiently, when the pulse width modulation control has moved the suction modulation valve to a closed position. The size of this minimum “leakage” path is continuously adjusted to ensure that the optimum pressure inside the compressor shell is maintained regardless of the evaporator pressure and other operating conditions.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 28, 2011
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Patent number: 7845179
    Abstract: A system includes a compressor temperature sensor that generates a compressor discharge temperature signal corresponding to a compressor of a refrigeration system, a compressor pressure sensor that generates a compressor discharge pressure signal corresponding to the compressor, and a controller processing the signals over a predetermined time period. The processing includes calculating a discharge saturation temperature based on the compressor discharge pressure signal, calculating compressor superheat data based on the compressor discharge temperature signal and the discharge saturation temperature, accumulating the compressor superheat data over the predetermined time period, and comparing the accumulated compressor superheat data to a predetermined threshold. The controller generates an alarm indicating a compressor fault based on the comparing.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: December 7, 2010
    Assignee: Emerson Retail Services, Inc.
    Inventors: Abtar Singh, Thomas J. Matthews, Stephen T. Woodworth
  • Patent number: 7770406
    Abstract: A high-pressure side discharge port of a two-stage compressor (12A) and a condenser (14A) are connected, condenser (14A) and a PMV (15A) are connected, a refrigerating side exit of PMV (15A) is connected to a medium pressure side suction port of two-stage compressor (12A) via an R capillary tube (16A) and an F evaporator (18A), connected to an F evaporator (26A) via an F capillary tube (24A), F evaporator (26A) is connected to a low-pressure side suction port of two stage compressor (12A) via a low-pressure suction pipe (28A), PMV (15A) can switch a simultaneous cooling mode and a freezing mode, and in the simultaneous cooling mode, a refrigerant flow rate toward R evaporator (18A) is adjusted by PMV (15A), and thereby a temperature difference control is performed so as to make a difference between an entrance temperature and an exit temperature of R evaporator (18A) equal to a preset temperature difference (for example, 4° C.).
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: August 10, 2010
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Consumer Marketing Corporation, Toshiba HA Products Co., Ltd.
    Inventors: Takahiro Yoshioka, Hidetake Hayashi, Minoru Temmyo
  • Patent number: 7654098
    Abstract: A system includes a scroll compressor having a first scroll member interleaved with a second scroll member to define at least two moving fluid pockets that decrease in size as they move from a radially outer position to a radially inner position. A valve in fluid communication with the compression chamber is movable between an open state allowing fluid to the compression chamber and a closed state preventing fluid to the compression chamber. A controller continuously cycles the valve between the open state and the closed state at a rate that is faster than a thermal time constant of a load on the system.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: February 2, 2010
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Hung M Pham, Abtar Singh, Jean-Luc Caillat, Mark Bass
  • Patent number: 7607315
    Abstract: A pressure control valve includes a valve portion disposed in a passage from a refrigerant radiator to a suction port of a refrigerant compressor in a vapor-compression refrigerant cycle system. The valve portion controls a refrigerant pressure at an outlet of the refrigerant radiator in accordance with a refrigerant temperature at the outlet of the refrigerant radiator, and the valve portion has a control pressure characteristic in which a pressure change relative to a temperature is smaller than that of the refrigerant. Furthermore, the valve portion may have a fluid passage through which refrigerant flows even when a valve port of the valve portion is closed by a valve body. Accordingly, when the refrigerant radiator is used for heating a fluid, heating capacity for heating the fluid can be rapidly increased at a heating start time.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: October 27, 2009
    Assignee: Denso Corporation
    Inventor: Hiromi Ohta
  • Publication number: 20090095003
    Abstract: A refrigeration cycle device includes a first branch portion with branched first and second refrigerant passages, an ejector located in the first refrigerant passage, a first evaporator located in the first refrigerant passage to evaporate refrigerant flowing out of the ejector, a branch passage through which refrigerant upstream of a nozzle portion of the ejector flows into a refrigerant suction port of the ejector, a first throttle provided in the branch passage, a second evaporator located in the branch passage to evaporate the refrigerant flowing out of the first throttle, a second throttle provided in the second refrigerant passage, and a third evaporator located in the second refrigerant passage to evaporate the refrigerant flowing out of the second throttle. Furthermore, a pressure-loss generation portion is located to generate a pressure loss in the first refrigerant passage, thereby causing the refrigerant to easily flow into the second refrigerant passage.
    Type: Application
    Filed: October 13, 2008
    Publication date: April 16, 2009
    Applicant: DENSO CORPORATION
    Inventors: Yohei Nagano, Gota Ogata, Koichi Kawabata
  • Publication number: 20080282716
    Abstract: An air conditioning compressor for air conditioning systems in motor vehicles, wherein the air conditioning compressor at the high pressure output comprises a check valve and a pressure control device, for example a pressure control valve or a bursting disk.
    Type: Application
    Filed: November 4, 2006
    Publication date: November 20, 2008
    Inventors: Willi Parsch, Thomas Di Vito, Jan Hinrichs, Robert Mager, Jurgen Wertenbach
  • Patent number: 7415836
    Abstract: A cooling apparatus (1) has a compressor (2), a condenser (3), an expansion valve (5), an evaporator (6) and an electric valve (10), all connected to each other in this order by a piping line to form a refrigeration circuit. The apparatus further has a heating section (11) and a bypass (12), and a thermosensitive tube (13) of the expansion valve is disposed between the heating section (11) and the electric valve (10) so that temperature of a refrigerant having left this section is detected before entering this valve (10). The refrigerant remains as a gas-liquid mixture until it leaves the evaporator (6) such that temperature of the refrigerant is uniform within the evaporator and equal to the saturation vapor temperature of this refrigerant, and therefore fluctuation in the refrigerant temperature is diminished.
    Type: Grant
    Filed: October 11, 2004
    Date of Patent: August 26, 2008
    Inventor: Shinichi Enomoto
  • Publication number: 20080190125
    Abstract: A high-pressure side discharge port of a two-stage compressor (12A) and a condenser (14A) are connected, condenser (14A) and a PMV (15A) are connected, a refrigerating side exit of PMV (15A) is connected to a medium pressure side suction port of two-stage compressor (12A) via an R capillary tube (16A) and an F evaporator (18A), connected to an F evaporator (26A) via an F capillary tube (24A), F evaporator (26A) is connected to a low-pressure side suction port of two-stage compressor (12A) via a low-pressure suction pipe (28A), PMV (15A) can switch a simultaneous cooling mode and a freezing mode, and in the simultaneous cooling mode, a refrigerant flow rate toward R evaporator (18A) is adjusted by PMV (15A), and thereby a temperature difference control is performed so as to make a difference between an entrance temperature and an exit temperature of R evaporator (18A) equal to a preset temperature difference (for example, 4° C.).
    Type: Application
    Filed: November 22, 2004
    Publication date: August 14, 2008
    Inventors: Takahiro Yoshioka, Hidetake Hayashi, Minoru Temmyo
  • Patent number: 7287396
    Abstract: An apparatus for refrigeration system control includes a plurality of circuits, each circuit having at least one refrigeration case and an electronic evaporator pressure regulator in communication with each circuit. Each electronic evaporator pressure regulator controls a temperature of one of the circuits. A sensor in communication with each circuit measures a parameter from the circuit. A controller associated with each electronic evaporator pressure regulator controls the respective electronic evaporator pressure regulator based upon measured parameters from each of the circuits.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: October 30, 2007
    Assignee: Computer Process Controls, Inc.
    Inventors: Albert W. Maier, John R. Aggers, Robert A. Kensinger, Richard P. Vogh, III, Timothy D. Campbell, Scott M. Gelber
  • Patent number: 7207184
    Abstract: A method for regulating a most loaded circuit of a refrigeration system is provided. Each circuit includes at least one case and an EEPR valve. At least one controller communicates with the EEPR valves for receiving signals from the circuits corresponding to operating conditions for each circuit, and for issuing command signals to the EEPR valves and compressor. The operation of each circuit is monitored and a load signal is calculated for each circuit. The load signals for each circuit are compared and the most loaded circuit is determined. The EEPR valve of the most loaded circuit is adjusted to be approximately 100 percent open and a suction pressure of the compressor is adjusted to move a circuit temperature of the most loaded circuit to a target temperature. The process of selecting and regulating the most loaded circuit is repeated after a predetermined period of time.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: April 24, 2007
    Assignee: Danfoss A/S
    Inventors: Lars Mou Jessen, Christian Bendtsen
  • Patent number: 7197890
    Abstract: An inventive method of preventing unpowered reverse rotation in a compressor includes the steps of placing a solenoid valve at a location near compressor discharge. The valve is preferably actuated soon after the power to the motor is cut off, blocking the flow of refrigerant from expanding back toward the compression chambers of the compressor. The compressor is disclosed as a scroll compressor, but may also be a screw compressor. These two types of compressors are susceptible to undesirable unpowered reverse rotation when compressed refrigerant re-expands through the compression elements from the compressor discharge into the compressor suction. By blocking the flow of refrigerant, this unpowered reverse rotation is prevented. A high pressure switch can be positioned directly upstream of the solenoid valve to immediately stop the compressor if the valve malfunctions and blocks the flow of refrigerant during normal compressor operation.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: April 3, 2007
    Assignee: Carrier Corporation
    Inventors: Michael F. Taras, Alexander Lifson, Thomas J. Dobmeier
  • Patent number: 7134294
    Abstract: A method and apparatus for refrigeration system control includes a control system operable to meet cooling demand and control suction pressure for a plurality of refrigeration circuits each including a variable valve and an expansion valve. The controller controls the variable valve independently of the expansion valves to meet cooling demand by determining a change in a measured parameter and controlling at least one of the variable valves based upon the change to an approximately fully open position.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: November 14, 2006
    Assignee: Computer Process Controls, Inc.
    Inventors: Abtar Singh, Jim Chabucos, Paul Wickberg, John G Wallace
  • Patent number: 6983618
    Abstract: A method and apparatus for refrigeration system control includes an evaporator pressure regulator and sensor in communication with one of a plurality of refrigeration circuits. The sensor is operable to measure a parameter of the refrigeration circuit. A controller is operable to adaptively control a suction pressure of the compressor rack based upon the measured parameter, whereby the controller controls a circuit temperature for one of the plurality of circuits. Further, the controller is operable to control the electronic evaporator pressure regulator to control the temperature in the one of a plurality of refrigeration circuits by determining a change in the parameter and updating a set point based upon the change of parameter.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: January 10, 2006
    Assignee: Computer Process Controls, Inc.
    Inventors: Abtar Singh, Jim Chabucos, Paul Wickberg, John Wallace
  • Patent number: 6938432
    Abstract: A cooling apparatus (1) has a compressor (2), a condenser (3), an expansion valve (5), an evaporator (6) and an electric valve (10), all connected to each other in this order by a piping line to form a refrigeration circuit. The apparatus further has a heating section (11) and a bypass (12), and a thermosensitive tube (13) of the expansion valve is disposed between the heating section (11) and the electric valve (10) so that temperature of a refrigerant having left this section is detected before entering this valve (10). The refrigerant remains as a gas-liquid mixture until it leaves the evaporator (6) such that temperature of the refrigerant is uniform within the evaporator and equal to the saturation vapor temperature of this refrigerant, and therefore fluctuation in the refrigerant temperature is diminished.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: September 6, 2005
    Assignee: Espec Corp.
    Inventor: Shinichi Enomoto
  • Patent number: 6931867
    Abstract: A cooling system including a pulse-width modulated variable capacity compressor operable between on-cycles and off-cycles, and in electrical communication with the compressor and operable to respectively synchronize opening and closing thereof with on- and off-cycles of the compressor.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: August 23, 2005
    Assignee: Copeland Corporation
    Inventors: John Joseph Healy, Man Wai Wu, Mark Lai Yuen Ng, Hung M. Pham
  • Patent number: 6877342
    Abstract: A controlled method for an energy-saving and energy-releasing air conditioning discloses the energy-saving and energy-releasing actions performed by the two adjoined heat exchangers of the storage means. The feature of this design is to meet refrigerating and heat-produced requirements by using the controlled method of the present invention. Automatically adjusting the refrigerant flow rates of the first and the second circular refrigerant loops can place it into the optimum operational condition while central air conditioner is either under high loading or under low loading condition.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: April 12, 2005
    Assignee: Cohand Technology Co., Ltd.
    Inventor: Kuo-Liang Weng
  • Patent number: 6854277
    Abstract: An ice cube-making machine that is characterized by noiseless operation at the location where ice cubes are dispensed and be lightweight packages for ease of installation. The ice cube-making machine has an evaporator package, a separate compressor package and a separate condenser package. Each of these packages has a weight that can generally by handled by one or two installers for ease of installation. The noisy compressor and condenser packages can be located remotely of the evaporator package. The maximum height distance between the evaporator package and the condenser package is greatly enhanced by the three package system. A pressure regulator operates during a harvest cycle to limit flow of refrigerant leaving the evaporator, thereby increasing pressure and temperature of the refrigerant in the evaporator and assisting in defrost thereof.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: February 15, 2005
    Assignees: Scotsman Ice Systems, Mile High Equipment Co.
    Inventors: David Brett Gist, Matthew Allison, Daniel Leo Ziolkowski
  • Patent number: 6804972
    Abstract: A system and method for controlling the climate within a storage container including at least two cargo areas. The system includes one compressor, one condenser, and two evaporators. Each of the evaporators includes a crankcase pressure regulator, a gas valve and a liquid valve. The crankcase pressure regulators provide a common pressure between each of the evaporators and the compressor regardless of the pressure at the evaporator. A control system selectively actuates the gas and liquid valves according to a predefined control mode to obtain and maintain a desired temperature.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: October 19, 2004
    Assignee: Carrier Corporation
    Inventor: Hussein El-Habhab
  • Patent number: RE40499
    Abstract: Step control in capacity modulation of a refrigeration or air conditioning circuit is achieved by rapidly cycling a solenoid valve in the suction line, economizer circuit or in a bypass with the percent of “open” time for the valve regulating the rate of flow therethrough. A common port in the compressor is used for economizer flow and for bypass.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: September 16, 2008
    Assignee: Carrier Corporation
    Inventor: Alexander Lifson
  • Patent number: RE42006
    Abstract: A diagnostic system includes a controller adapted for coupling to a compressor or electronic stepper regulator valve. The controller produces a variable duty cycle control signal to adjust the capacity of the compressor or valve position of the electronic stepper regulator valve as a function of demand for cooling. The diagnostic system further includes a diagnostic module coupled to the controller for monitoring and comparing the duty cycle with at least one predetermined fault value indicative of a system fault condition and an alert module responsive to the diagnostic module for issuing an alert signal when the duty cycle bears a predetermined relationship to the fault value.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: December 28, 2010
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Hung M. Pham, Abtar Singh, Jean-Luc Caillat, Mark Bass