Plural Compressors Or Multiple Effect Compression Patents (Class 62/510)
  • Publication number: 20140326018
    Abstract: A system may include first and second compressors and first, second and third heat exchangers. The first heat exchanger may receive working fluid discharged from the first and second compressors. The second heat exchanger may be disposed downstream of the first heat exchanger and may provide working fluid to the first compressor. The third heat exchanger may be disposed between the first and second heat exchangers and may include an inlet and first and second outlets. The first outlet may provide working fluid to the second heat exchanger. The second outlet may provide working fluid to the second compressor.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 6, 2014
    Applicant: Emerson Climate Technologies, Inc.
    Inventor: Kirill M. IGNATIEV
  • Publication number: 20140318171
    Abstract: A heat pump unit (1) comprises at least one main circuit (2) adapted to perform a main heat pump cycle with a respective operating fluid, which comprises: a main condenser (S4) adapted to perform the condensation of the operating fluid of the main heat pump cycle and intended to be connected to an external circuit of a first thermal user plant (10) in a heating operating mode of said heat pump unit (1), a first heat exchanger (S2), connected downstream of the main condenser (S4) and upstream of expansion means (L2) of said the main circuit (2), adapted to perform an undercooling of the operating fluid of the main heat pump cycle after the condensation of the same in the main condenser (S4), and a main evaporator (S8) adapted to perform the evaporation of the operating fluid of the main heat pump cycle and intended to be connected to an external circuit of a heat sink (20) in a heating operating mode of said heat pump unit (1).
    Type: Application
    Filed: December 12, 2012
    Publication date: October 30, 2014
    Applicant: STP S.R.L.
    Inventor: Gianfranco Pellegrini
  • Patent number: 8863534
    Abstract: A transport refrigeration system with a direct drive compressor arrangement is provided with a variable speed electrically driven booster compressor that operates in series with the direct drive compressor. The speed of the booster compressor is controlled to either boost or decrease the system capacity. The booster compressor also acts to regulate the flow of refrigerant from the evaporator during periods of operation in which the direct drive compressor might otherwise become overloaded.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: October 21, 2014
    Assignee: Carrier Corporation
    Inventor: Richard T Pandzik
  • Patent number: 8863545
    Abstract: A refrigeration apparatus includes a multi-stage compression mechanism, heat source-side and usage side heat exchangers each operable as a radiator/evaporator, a switching mechanism switchable between cooling and heating operation states, a second-stage injection tube, an intermediate heat exchanger and an intermediate heat exchanger bypass tube. The intermediate heat exchanger bypass tube ensures that refrigerant discharged from the first-stage compression element and drawn into the second-stage compression element is not cooled by the intermediate heat exchanger during a heating operation. Injection rate optimization controls a flow rate of refrigerant returned to the second-stage compression element through the second-stage injection tube so that an injection ratio is greater during the heating operation than during a cooling operation.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: October 21, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Shuji Fujimoto, Atsushi Yoshimi
  • Patent number: 8844318
    Abstract: A coaxial economizer for use in a chiller system comprising an inner housing and an outer housing having a common longitudinal axis. The outer housing has an inlet for receiving a fluid from a upstream compressor stage of a multistage compressor and an outlet for conveying a fluid to a downstream compressor stage of a multistage compressor. A flow chamber forms a fluid flow path about the inner housing. A flash chamber is coterminous with the flow chamber and flashes fluid in a liquid state to a gas state. A flow passage between said flash chamber and the flow chamber for conveying a flashed gas from the flash chamber to the flow chamber; wherein the flashed gas conveyed from the flash chamber and the fluid received from the inlet of the outer housing mix along the fluid flow path toward the outlet of the outer housing.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: September 30, 2014
    Assignee: Trane International Inc.
    Inventors: Rick T. James, Paul F. Haley, Randall L. Janssen, William J. Plzak
  • Publication number: 20140260341
    Abstract: A cooling system includes a first heat exchanger, an evaporator coupled to a thermal load of an aircraft. first and second cooling circuits coupled to the heat exchanger, the first and second cooling circuits selectable via a set of cooling circuit valves that are arranged to direct a refrigerant through the first circuit, the second circuit, or both the first and second circuits based on air passing through the first heat exchanger at ambient conditions of the aircraft, and a receiver configured to accumulate reserve refrigerant to provide flexibility in system operation as the cooling system operates in sub-critical, trans-critical, and super-critical modes of operation.
    Type: Application
    Filed: December 30, 2013
    Publication date: September 18, 2014
    Applicants: Rolls-Royce North American Technologies, Inc., Rolls-Royce Corporation
    Inventors: Igor Vaisman, Patrick C. Sweeney
  • Publication number: 20140260391
    Abstract: A system for cooling air for use with a liquid cooling fluid loop. The system includes a first refrigerant circuit with an air-cooled condenser, a second refrigerant circuit with a liquid-cooled condenser, and a free-cooling loop. A control device is provided for controlling the operation of the system between a first mode, a second mode, and a third mode. When operating in the first mode, only the free-cooling loop cooperates directly with liquid cooling fluid in the liquid cooling fluid loop to cool the liquid cooling fluid, when operating in the second mode, the second refrigerant circuit is not engaged, and when operating in the third mode, the free-cooling loop interacts with the second refrigerant circuit to reject heat of the second refrigerant circuit through the free-cooling loop.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: JOHNSON CONTROLS TECHNOLOGY COMPANY
    Inventor: William L. KOPKO
  • Patent number: 8826691
    Abstract: An air conditioner includes at least one compressor, an outlet pipe, an inlet pipe, and at least one bypass pipe. Oil and/or refrigerant discharged from the at least one compressor flows through the outlet pipe. The inlet pipe receives the oil and/or refrigerant flown through the outlet pipe and allows the oil and/or refrigerant to flow to the at least one compressor. The at least one bypass pipe is connected to the at least one compressor and allow bypass flows of the oil and/or refrigerant from the at least one compressor to the outlet pipe.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: September 9, 2014
    Assignee: LG Electronics Inc.
    Inventors: Pil Hyun Yoon, Sai Kee Oh
  • Publication number: 20140245763
    Abstract: A fluid circuit in a high-temperature heat pump absorbs thermal energy through the fluid from at least a first reservoir while performing technical work and outputs thermal energy through the fluid to at least a second reservoir, thereby heating the at least one second reservoir. The working medium may be hydrofluoroether or fluoroketone.
    Type: Application
    Filed: September 21, 2012
    Publication date: September 4, 2014
    Inventors: Bernd Grommoll, Jochen Schäfer
  • Patent number: 8820103
    Abstract: An air conditioner includes a plurality of compressors, an intake passageway, a bypass unit, and an expansion valve. The intake passageway distributes a fluid to each of the compressors. The bypass unit includes a plurality of bypass pipes connected respectively to the compressors and a common bypass pipe to discharge the fluids from the compressors to the intake passageway. The expansion valve is provided to the bypass unit to control a flow of fluid from the common bypass pipe to the intake unit.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: September 2, 2014
    Assignee: LG Electronics Inc.
    Inventors: Hojong Jeong, Sedong Chang, Baikyoung Chung, Jiyoung Jang
  • Patent number: 8806888
    Abstract: An air conditioning system includes a phase separator separating a gaseous refrigerant and a liquid refrigerant from a flowing refrigerant, an evaporator evaporating the liquid refrigerant separated by the phase separator, and at least one compressor including a first compressing part receiving the refrigerant via the evaporator and a second compressing part receiving both of the gaseous refrigerant separated by the phase separator and the refrigerant via the first compressing part.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: August 19, 2014
    Assignee: LG Electronics Inc.
    Inventors: Young Hwan Ko, Hyuk Soo Lee, Bum Suk Kim, Sang Kyoung Park, Byung Soon Kim
  • Patent number: 8800310
    Abstract: A turbo compressor to suction and compress gas includes a housing including a flow passageway through which gas flows, an impeller disposed inside the flow passageway, the impeller providing suction for the gas by being rotationally driven, a liquid discharge port provided in the flow passageway on the upstream side of the impeller, the liquid discharge port discharging, from the flow passageway, any liquid produced as the gas liquefies when the turbo compressor is stopped, a liquid discharge pipe connected to the liquid discharge port, an electromagnetic valve connected to the liquid discharge pipe, and a controller configured to open the electromagnetic valve before the impeller is rotationally driven. A refrigerator includes the turbo compressor, wherein the turbo compressor compresses refrigerant gas.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: August 12, 2014
    Assignee: IHI Corporation
    Inventor: Noriyasu Sugitani
  • Publication number: 20140202202
    Abstract: A centrifugal compressor (1) includes: an impeller (2) having full blades (21) and splitter blades (22); a shroud wall (3) forming an intake (12) and having a shape conforming to the impeller (2); and a bleed chamber (4) facing an outer surface of the shroud wall (3). The bleed chamber (4) communicates with a discharge space having a pressure equal to or lower than a pressure of a working fluid at the intake (12). The shroud wall (3) is provided with a slit (32) (a bleeding passage) that directs a portion of the working fluid that has flowed into a space between the full blade (21) and a pressurizing surface of the splitter blade (22) to the bleed chamber (4).
    Type: Application
    Filed: March 22, 2013
    Publication date: July 24, 2014
    Inventors: Hidetoshi Taguchi, Fumitoshi Nishiwaki, Kou Komori
  • Patent number: 8769983
    Abstract: The present invention provides a refrigeration cycle apparatus using a first compressor and a second compressor driven by an expander and including a high and low pressure heat exchanger, in which a low-pressure-side outlet of the high and low pressure heat exchanger is bypassed to a low pressure portion or an intermediate pressure portion to adjust an inlet density at the expander and thereby provide high efficiency. The high and low pressure heat exchanger of the refrigeration cycle apparatus of the present invention changes an amount of heat exchange between a high-pressure refrigerant and a reduced-pressure refrigerant branched from the high-pressure refrigerant at an inlet portion of the high and low pressure heat exchanger and reduced in pressure to adjust the density of the refrigerant flowing in the expander so that power recovered by the expander and power required by the second compressor match.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 8, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takashi Okazaki
  • Patent number: 8769982
    Abstract: A refrigeration system can use a flash tank to separate vapor refrigerant from liquid refrigerant. The refrigeration system can include a liquid-refrigerant injection system that can inject liquid refrigerant into an intermediate-pressure location of the compressor. The injected liquid refrigerant can absorb the heat of compression during the compression process. The refrigeration system can include an economizer system that injects a refrigerant vapor into an intermediate-pressure location of the compressor in conjunction with the injection of the cooling liquid. The refrigeration system can incorporate a cooling-liquid injection system that can inject a cooling liquid into an intermediate-pressure location of the compressor.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: July 8, 2014
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Kirill Ignatiev, Jean-Luc M. Caillat
  • Patent number: 8763425
    Abstract: A turbo compressor includes: multiple stages of compression devices arranged in series with respect to a gas passage, each of the compression devices including an impeller that rotates about an axis; an oil tank capable of supplying lubricating oil to a sliding portion of the compression devices; a partitioned intermediate space formed to communicate with the gas passage on an upstream side of the compression devices via gaps between the partitioned intermediate space and the gas passage; and a pressure equalizer provided to continuously connect the partitioned intermediate space and the oil tank.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: July 1, 2014
    Assignee: IHI Corporation
    Inventor: Noriyasu Sugitani
  • Patent number: 8756954
    Abstract: A turbo compressor is provided with a first compression stage that draws in and compresses a fluid, and a second compression stage connected to the first compression stage via a rotation shaft, that further compresses the compressed fluid from the first compression stage. The first compression stage and the second compression stage are arranged adjacent to each other with their backsides facing each other. A discharge port of the first compression stage, and a suction port of the second compression stage are formed in the same plane, and there is provided a U-shaped pipe that connects the first discharge port and the second suction port.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: June 24, 2014
    Assignee: IHI Corporation
    Inventors: Minoru Tsukamoto, Kentarou Oda
  • Patent number: 8746008
    Abstract: A vertical support rigidly mounted to a planar base positions and supports a cryocooler expander unit off axis and away from a sample to be examined. The sample support is likewise rigidly mounted to the planar base with a rigidly mounted sample housing therein. The cryocooler expander unit is suspended in the vertical support by spring dampening bearings. A pair of opposing flexible vacuum bellows connects the cryocooler expander unit to the sample housing and vertical support. This configuration isolates the sample from vibration. Flexible thermal links associated with an predictive electronic closed loop control sequence maintains sample temperature.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: June 10, 2014
    Assignee: Montana Instruments Corporation
    Inventors: Luke R. Mauritsen, Michael B. Simmonds, Dan Griffing
  • Patent number: 8739565
    Abstract: A machine for producing liquid and semi-liquid consumer food products comprises one or more containers (2) for a basic product of the consumer product to be made; a refrigeration system (3) acting on the containers (2) to reduce the temperature of the basic product; the refrigeration system (3) comprising a predetermined refrigerant; the refrigerant being carbon dioxide and the refrigeration system (3) being set up to carry out a transcritical refrigeration cycle on the refrigerant.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: June 3, 2014
    Assignee: Carpigiani Group—Ali S.p.A.
    Inventors: Gino Cocchi, Gianni Zaniboni, Roberto Lazzarini
  • Patent number: 8739562
    Abstract: Systems for limiting pressure differences in dual compressor chillers are provided. To achieve the efficiency benefits of series flow chillers within a single unit, an evaporator and/or a condenser may be partitioned into separate chambers by a baffle. Process fluid may then flow through one chamber of the evaporator and/or condenser prior to entering the other. This configuration creates a pressure differential between chambers which may reduce compressor head and result in greater chiller efficiency. However, to maintain the structural integrity of the evaporator and/or condenser baffle, a system for limiting this pressure differential may be employed. This system may include an evaporator pressure equalization valve, a common liquid line, or an equalizing line between separate liquid lines. Methods of operating dual compressor chillers using these systems are also provided.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: June 3, 2014
    Assignee: Johnson Controls Technology Company
    Inventors: Jay A. Kohler, Mark A. Adams
  • Patent number: 8726679
    Abstract: A reciprocating piston compressor for use in a refrigerant compression circuit comprises first and second intake manifolds, first and second reciprocating piston compression units, an outlet manifold and a first pulsing valve. The intake manifolds segregate inlet flow into the compressor. The first and second reciprocating piston compression units receive flow from the first and second intake manifolds, respectively. The outlet manifold collects and distributes compressed refrigerant from the compression units. The first pulsing valve is mounted externally of the first intake manifold to regulate refrigerant flow into the first intake manifold. In another embodiment, a second valve is mounted externally of the second intake manifold to regulate flow into the second intake manifold, and the first and second valves are operated by a controller. The controller activates the first valve with variable width pulses having intervals less than an operating inertia of the refrigerant compression circuit.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: May 20, 2014
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Sriram Srinivasan, Paul J. Flanigan
  • Patent number: 8726684
    Abstract: A reversible system for recovery of heat energy by sampling and transfer of calories from one or more media into one or more other media of any type. The innovation is a new principle of refrigeration operation that makes it possible—with a nonreversible plate exchanger, a reversible plate exchanger, and a finned battery on an outside air circuit—to implement the following functions: total or partial restoration of calories on the nonreversible exchanger from the outside battery or from the reversible exchanger in evaporator mode, total or partial restoration of the calories on the reversible exchanger from the outside battery, refrigeration production on the reversible exchanger with total or partial evacuation of the calories on the nonreversible exchanger and/or on the outside battery.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: May 20, 2014
    Inventor: Jean-Luc Maire
  • Patent number: 8713958
    Abstract: A triple-pipeline type first outdoor unit 2 provided with a first compressor 20 and a first outdoor heat exchanger 21, a plurality of indoor units 4A to 4D are provided, a second outdoor unit 3 provided with a second compressor 30, a second outdoor heat exchanger 32, and a second expansion valve 33, the first outdoor unit 2 is provided with a first four-way valve 60 that makes a refrigerant discharge pipe 25 of the first compressor 20 and a high-pressure gas pipe 7 capable of communicating with each other and if all the indoor units 4A to 4D perform a cooling operation at the same time, the first four-way valve 60 shuts off the communication between the refrigerant discharge pipe 25 and the high-pressure gas pipe 7, while a third four-way valve 51 is switched so as to connect a gas pipe 35d to the high-pressure gas pipe 7.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: May 6, 2014
    Assignee: SANYO Electric Co., Ltd.
    Inventor: Takashi Sekine
  • Patent number: 8701435
    Abstract: A frozen product dispenser is characterized by at least two product freeze barrels for receiving product therein and for freezing the product for dispensing, and a refrigeration system for chilling the at least two barrels. The refrigeration system has at least two evaporators for and heat transfer coupled to each barrel, separate and controllable expansion valves each having an outlet coupled to an inlet to an inlet to an associated one of the evaporators, at least two compressors having outlets coupled to inlets to the expansion valves and inlets coupled to outlets from the evaporators, and at least one condenser in fluid circuit between outlets from the compressors and inlets to the expansion valves.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 22, 2014
    Assignee: IMI Cornelius, Inc.
    Inventors: David B. Gist, Kyle B. Elsom, Gregory M. Billman, Nikolay Popov, Santhosh Kumar, Daniel C. Leaver
  • Publication number: 20140102131
    Abstract: In an outdoor unit, first through third intermediate heat exchangers and an outdoor heat exchanger are disposed to stand along an air inlet of an outdoor casing, and the outdoor heat exchanger is located above the first through third intermediate heat exchangers.
    Type: Application
    Filed: June 28, 2012
    Publication date: April 17, 2014
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Tetsuya Okamoto, Kazuhiro Furusho, Guozhong Yang, Ikuhiro Iwata, Hirokazu Fujino, Shun Yoshioka
  • Publication number: 20140090414
    Abstract: A flow control valve includes a housing forming internal passages in fluid communication with a port of the valve, and an internal cavity. A flow direction block is disposed in the internal cavity and forms at least one flow passage extending through a portion thereof. The flow direction block is moveable within the internal cavity such that the free ends of the least one flow passage can be selectively aligned with a respective internal passage along an interface as the flow direction block is moved from a first, closed position to a second, open position. A seal is disposed around each interface and includes an internal face, which presses against an outer surface of the flow direction block, and an external face, which presses against the housing. Sealing function is improved, at least in part, by a differential fluid pressure that acts on the seal.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Allan R. McLane, Jermaine Ealy
  • Patent number: 8671713
    Abstract: According to the present invention, an air condition comprises: a first compressor and a second compressor which compress a refrigerant through multiple stages; a condenser which condenses the refrigerant compressed by the second compressor; a first flow channel through which a portion of the refrigerant condensed by the condenser passes, in order to be cooled; a supercooling heat exchanger having a second flow channel for exchanging heat with the first flow channel; an expansion instrument which expands the refrigerant cooled by the supercooling heat exchanger; a shell-tube-type evaporator which evaporates the refrigerant expanded by the expansion instrument, and which is connected to a location requiring cold water via a water pipe to supply cold water to said location requiring cold water; a first bypass channel which guides the refrigerant condensed in the condenser to the second flow channel; a supercooling expander installed in the first bypass channel; and a second bypass channel which interconnects th
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 18, 2014
    Assignee: LG Electronics Inc.
    Inventor: Eun Jun Cho
  • Patent number: 8671706
    Abstract: A heat pump according to the present invention comprises a plurality of the compression chambers, and compresses refrigerant with multistage, and injects vapor refrigerant into the space between the plurality of the compression chambers by using the first refrigerant injection flow path and the second refrigerant injection flow path. Performance and efficiency of the heat pump can be improved compared with non-injection, as flow rate of the refrigerant circulating the indoor heat exchanger is increased. Thus heating performance can be improved also in the extremely cold environmental condition such as the cold area by increasing the injection flow rate. Also, because the heat pump according to the present invention comprises the first refrigerant injection flow path and the second refrigerant injection flow path, refrigerant is injected twice. Thus, as the injection flow rate of the refrigerant is increased, heating capacity can be improved.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 18, 2014
    Assignee: LG Electronics Inc.
    Inventors: Simwon Chin, Eungyul Lee, Younghwan Ko, Sangkyoung Park
  • Patent number: 8667810
    Abstract: An air conditioner for communication equipment is provided. The air conditioner includes an indoor module disposed at an indoor space of a base station having communication equipment and including an indoor heat exchanger and an indoor ventilator disposed closely to the indoor heat exchanger, an outdoor module disposed at an outside of the base station and including an outdoor ventilator, a brine cooling cycle including the indoor heat exchanger on a brine pipe, a brine pump, first and second outdoor brine heat exchanger, and first and second brine coolers, which are connected in a brine circulating direction, and a refrigerant cooling cycle including first and second expansion valves on a refrigerant pipe, the first and second brine coolers on the brine pipe, first and second compressors, first and second outdoor refrigerant heat exchangers, which are connected in a refrigerant circulating direction.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: March 11, 2014
    Assignee: Chang Jo 21 Co., Ltd.
    Inventor: Hee Tae Park
  • Publication number: 20140053597
    Abstract: A refrigeration cycle apparatus (1A) includes: a main circuit (2) composed of an evaporator (25), a first compressor (21), an intercooler (8), a second compressor (22), and a condenser (23) which are connected in this order; and an evaporation-side circulation path (5) that allows a refrigerant liquid retained in the evaporator (25) to circulate via a heat exchanger for heat absorption (6). The intercooler (8) is a heat exchanger that allows a refrigerant vapor compressed by the first compressor (21) to be cooled by the refrigerant liquid. A supply path (71) supplies, to the intercooler (8), a portion of the refrigerant liquid flowing in the first circulation path (5), and a recovery path (73) recovers the refrigerant liquid from the intercooler (8) to the evaporator (25).
    Type: Application
    Filed: January 18, 2013
    Publication date: February 27, 2014
    Applicant: Panasonic Corporation
    Inventors: Takahiro Matsuura, Tomoichiro Tamura, Bunki Kawano
  • Publication number: 20140053583
    Abstract: A transcritical R-744 refrigeration system with an energy efficiency ratio of a level comparable to that of refrigeration systems using common refrigerants by mechanically subcooling of the R-744 refrigerant. Mechanical subcooling increases the refrigeration capacity without increasing the power consumption of the refrigeration system's compressors. The compressors used to provide the refrigeration capacity for the subcooling process operate at much more favorable conditions, therefore have a very high energy efficiency ratio. The result is higher refrigeration capacity and lower power consumption.
    Type: Application
    Filed: February 22, 2013
    Publication date: February 27, 2014
    Inventors: Jordan KANTCHEV, Gaetan Lesage
  • Publication number: 20140047862
    Abstract: An air conditioner (1A) as a refrigeration apparatus includes: a refrigerant circuit (2) including an evaporator (25), a first compressor (21), a vapor cooler (3), a second compressor (22), and a condenser (23) that are connected in this order; a heat release circuit (4) that allows a heat medium to circulate between the condenser (23) and a first heat exchanger (5) that releases heat to the atmosphere; and a heat absorption circuit (6) that allows a heat medium to circulate between the evaporator (25) and a second heat exchanger (7). The vapor cooler (3) is a heat exchanger that exchanges heat between a refrigerant vapor compressed by the first compressor (21) and the heat medium flowing in the heat release circuit (4) or the heat medium flowing in the heat absorption circuit (6).
    Type: Application
    Filed: April 27, 2012
    Publication date: February 20, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Tomoichiro Tamura, Kou Komori, Bunki Kawano, Hidetoshi Taguchi
  • Patent number: 8635879
    Abstract: A heat pump and a method of controlling a heat pump are provided. The heat pump may perform gas injection through a plurality of coolant injection circuits formed in a compressor, such as a scroll compressor, to increase a corresponding flow rate. The heat pump may control the plurality of coolant injection circuits based on one or more operation conditions by selecting an appropriate optimal middle pressure from a high-and-low pressure difference, a pressure ratio, and a compression ratio of the compressor to enhance cooling/heating performance.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: January 28, 2014
    Assignee: LG Electronics Inc.
    Inventors: Byoungjin Ryu, Yonghee Jang
  • Publication number: 20140020424
    Abstract: A body part of a decompression device has a swirl space for swirling a refrigerant that flows from a refrigerant inlet, and a refrigerant outlet that is positioned on an extension line of a swirl center line of the refrigerant and functions as a throttle. Further, a passage cross-sectional area of the refrigerant inlet is configured to be smaller than a twelve-fold value of a passage cross-sectional size of the refrigerant outlet, such that a swirl speed of the refrigerant in the swirl space is increased so as to enable a decompression boiling of the refrigerant around the swirl center line. In such manner, a gas-liquid mixture phase refrigerant securely flows into the refrigerant outlet, and it restricts a fluctuation of a flow amount of the refrigerant flowing toward a downstream side without complicating a cycle structure.
    Type: Application
    Filed: March 21, 2012
    Publication date: January 23, 2014
    Applicant: DENSO CORPORATION
    Inventors: Tatsuhiro Suzuki, Etsuhisa Yamada, Haruyuki Nishijima
  • Patent number: 8627680
    Abstract: A centrifugal compressor assembly for compressing refrigerant in a 250-ton capacity or larger chiller system comprising a motor, preferably a compact, high energy density motor or permanent magnet motor, for driving a shaft at a range of sustained operating speeds under the control of a variable speed drive. Another embodiment of the centrifugal compressor assembly comprises a mixed flow impeller and a vaneless diffuser sized such that a final stage compressor operates with an optimal specific speed range for targeted combinations of head and capacity, while a non-final stage compressor operates above the optimum specific speed of the final stage compressor. Another embodiment of the centrifugal compressor assembly comprises an integrated inlet flow conditioning assembly to condition flow of refrigerant into an impeller to achieve a target approximately constant angle swirl distribution with minimal guide vane turning.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 14, 2014
    Assignee: Trane International, Inc.
    Inventors: Paul H. Haley, Dennis R. Dorman, Frederic Byron Hamm, Jr., David M. Foye, James A. Kwiatkowski, Rick T. James, Randall L. Janssen, William J. Plzak
  • Publication number: 20130333403
    Abstract: A system and method of cooling a compressed working fluid is disclosed. The method includes compressing the working fluid above its critical pressure point in a compression stage to generate a compressed working fluid at or about local ambient temperature. The compressed working fluid can be cooled to below ambient by throttling a portion of the compressed working fluid to its saturated liquid-vapor state to generate a recycle working fluid. The recycle working fluid may then be atomized using an atomizing nozzle whereby the recycle working fluid evaporates and cools working fluid entering a target compression stage.
    Type: Application
    Filed: July 29, 2011
    Publication date: December 19, 2013
    Applicant: DRESSER-RAND COMPANY
    Inventors: Jiri Polansky, Lukas Choulik, Jorge E. Pacheco
  • Patent number: 8601832
    Abstract: A turbo compressor has a plurality of stages of compression means, each including an impeller and a diffuser, arranged in tandem with the flow of a fluid, and is capable of compressing the fluid sequentially in a plurality of the compression means and supplying the fluid compressed in the compression means in a final stage to a condenser. The diffuser of at least the compression means in the final stage is a vaneless diffuser which does not include diffuser vanes which reduce the turning speed of the fluid in the diffuser. As such, according to this turbo compressor, it is possible to reduce generation of noise resulting from the transmission of turbulence of the fluid to the condenser, which occurs as the refrigerant collides against the diffuser vane.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: December 10, 2013
    Assignee: IHI Corporation
    Inventor: Minoru Tsukamoto
  • Publication number: 20130319036
    Abstract: A water-cooled heat rejection heat exchanger is provided and includes a housing having first and second opposing end plates and sidewalls extending between the end plates to form an enclosure, at least the first end plate including first and second inlet/outlet pairs for first and second fluids, respectively, a plurality of plates disposed within the enclosure between the first and second end plates to define a first fluid pathway disposed in fluid communication with the first inlet/outlet pair and a second fluid pathway disposed in fluid communication with the second inlet/outlet pair and a plurality of brazed formations disposed between adjacent ones of the first end plate, the plurality of plates and the second end plate to isolate the first fluid pathway from the second fluid pathway.
    Type: Application
    Filed: January 31, 2012
    Publication date: December 5, 2013
    Applicant: CARRIER CORPORATION
    Inventors: Michael F. Taras, Mark J. Perkovich, Mel Woldesemayat
  • Patent number: 8590326
    Abstract: A refrigeration cycle apparatus 100 includes a first compressor 101, a second compressor 102 provided in parallel with the first compressor 101, a radiator 103 for cooling a refrigerant compressed by the compressors 101 and 102, an expander 104 for recovering power while expanding the refrigerant cooled by the radiator 103, an evaporator 105 for evaporating the refrigerant expanded by the expander 104, a rotation shaft 123 connecting the first compressor 101 to the expander 104 so that the first compressor 101 uses the power recovered by the expander 104, a controller 112 for executing a control including a step of increasing a flow rate of the refrigerant gradually during a defrosting operation in which frost formed on the evaporator 105 is melted by allowing the refrigerant having a high temperature to flow through the evaporator 105.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: November 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Yuichi Yakumaru, Katsuji Taniguchi, Masaya Honma
  • Patent number: 8584487
    Abstract: A refrigerant system utilizes an expander to expand refrigerant and to drive or assist in driving an associated compressor. By varying the compressor load, the speed of the expander can be adjusted to achieve the desired thermodynamic characteristics of the expanding refrigerant and enhance expander operation.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: November 19, 2013
    Assignee: Carrier Corporation
    Inventors: Alexander Lifson, Michael F. Taras
  • Publication number: 20130283833
    Abstract: A refrigeration system (2) comprises a condenser/gas cooler (4), an intermediate expansion device (6) and a refrigerant collecting container (8); a normal refrigeration branch (10) connecting the refrigerant collecting container (8) to the condenser/gas cooler (4) said normal refrigeration branch (12) comprising a first expansion device (12), a first evaporator (14) and a compressor unit (16) of the normal refrigeration branch (10); a freezing branch (18) connecting the refrigerant collecting container (8) to the condenser/gas cooler (4), said freezing branch (18) comprising a second expansion device (20), a second evaporator (22), and a first compressor unit (24) and a second compressor unit (26) of said freezing branch (18), the first and second compressor units (24, 26) of the freezing branch (18) being connected in series.
    Type: Application
    Filed: January 14, 2011
    Publication date: October 31, 2013
    Inventors: Hans-Joachim Huff, Tobias Sienel
  • Patent number: 8570002
    Abstract: A generator set including a prime mover, a generator coupled to the prime mover, and a controller that is associated with a temperature controlled space and operates the generator set in one of a start/stop mode and a continuous mode depending on a demand defined at least in part by contents within the temperature controlled space.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 29, 2013
    Assignee: Thermo King Corporation
    Inventors: Randy S. Burnham, David J. Renken
  • Publication number: 20130255309
    Abstract: A high-efficiency air conditioning system for chilling an interior of a building that includes: a compressor; a condenser having a condenser fan associated with the condenser that moves air to cool the condenser; at least two evaporator sections wherein a first evaporator section operates at a first evaporator pressure and a second evaporator section operates at a second evaporator pressure that is different than the first evaporator pressure; at least a first throttling device and a second throttling device having different throttling characteristics with the first throttling device being less restrictive than the second throttling device; and a plurality of refrigerant conduits.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 3, 2013
    Applicant: Whirlpool Corporation
    Inventors: Guolian Wu, Steven Kuehl, Alberto Gomes, Nihat Cur
  • Patent number: 8539791
    Abstract: A manufacturing method of a transition critical refrigerating cycle device in which a gas cooler and a sub-cooler are integrated to constitute one heat exchanger so as to most efficiently cool a refrigerant in the device. The transition critical refrigerating cycle device is constituted by successively connecting a compressor, the gas cooler, a capillary tube and an evaporator, and having a supercritical pressure on a high-pressure side of the device. The sub-cooler cools an intermediate-pressure refrigerant of the device. A ratio of the number of refrigerant pipes of the sub-cooler to the number of refrigerant pipes of the whole heat exchanger is set to 20% or more and 30% or less. The refrigerant pipes of the sub-cooler have a uniform heat transfer area per unit length of each refrigerant pipe.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: September 24, 2013
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Satoshi Hariu, Jun Sato, Hiroshi Tamayama
  • Patent number: 8529215
    Abstract: A liquid hydrocarbon slug-containing vessel for incorporation into a system integrating a low-pressure separator with a vapor recovery process system, and a method for regulating the temperature of a gas to be compressed by a two stage compressor so as to prevent liquification of the gas and to prevent over-heating of the compressor.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: September 10, 2013
    Inventors: Rodney T. Heath, Forrest D. Heath, Gary Heath
  • Patent number: 8516838
    Abstract: An improved refrigeration system may include a first refrigeration loop or one to multiple units of split chillers providing cooling for HVAC, dehumidification, medium temperature load cases and further condensing the refrigerant utilizing a heat exchanger for the cascadable low temperature units. The system may be scalable and the distributive design utilizes chillers to replace the traditional rack system. The first refrigeration loop may incorporate an integral or remote pump(s) which provides coolant through conduits to the medium temperature cases, HVAC and low temperature heat exchangers. The system may further include a combined direct expansion condenser and free cooler system incorporating a partial, pre-chiller through the combination direct expansion, water, fluid (secondary) coolant condenser. This may allow for the water or fluids systems to be cooled by the ambient temperature and fans reducing the compressor run time or even allowing the compressors to turn off.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: August 27, 2013
    Inventor: Anthony Papagna
  • Publication number: 20130213084
    Abstract: In a two-stage compression refrigeration cycle device, a low-pressure side compression mechanism and a high-pressure side compression mechanism are intermittently operated to control such that the temperature of air blown into a freezer approaches a target temperature. Under the control, the high-pressure side compression mechanism is first stopped, and then the low-pressure side compression mechanism is stopped. Further, when a reference time has elapsed after driving the high-pressure side compression mechanism, then the low-pressure side compression mechanism is driven. The refrigeration cycle device can reduce a high-pressure side pressure difference upon driving the high-pressure side compression mechanism, and can also reduce a low-pressure side pressure difference upon driving the low-pressure side compression mechanism, thereby protecting both compression mechanisms.
    Type: Application
    Filed: September 6, 2011
    Publication date: August 22, 2013
    Applicant: DENSO CORPORATION
    Inventors: Ryo Takizawa, Masami Taniguchi, Jun Yamazaki
  • Patent number: 8511112
    Abstract: A refrigeration cycle apparatus which is capable of performing matching of the volumetric flow rate without performing pre-expansion it obtained. A refrigeration circuit includes a compression unit including a main compressor and a second compressor, a gas cooler, an expansion mechanism, and an evaporator interconnected with pipes, and a sub-compression mechanism driven by power recovered by the expansion mechanism, a suction side of the sub-compression mechanism is connected to a compression process of the compression unit, a discharge side of the sub-compression mechanism is connected to an inlet side of the gas cooler, and flow rate of refrigerant flowing into the sub-compression mechanism is controlled.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 20, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masayuki Kakuda, Fumihiko Ishizono, Hideaki Nagata, Naofumi Takenaka, Takashi Okazaki, Mihoko Shimoji, Shin Sekiya, Toshihide Koda
  • Publication number: 20130192294
    Abstract: A compressor control apparatus and method, and a refrigerator including the same, are provided. In a refrigerator having two compressors, starting of two compressors may be staggered to reduce an effect of the suction pressure and discharge pressure between the two compressors, to provide for stable operation of the compressors, and improve reliability and power consumption.
    Type: Application
    Filed: January 29, 2013
    Publication date: August 1, 2013
    Inventors: Jaeyoo YOO, Taewoong NAH
  • Publication number: 20130167577
    Abstract: A combined heating, ventilation, air conditioning, and refrigeration (“HVACR”) system including an HVAC sub-system and a refrigeration sub-system. The HVAC sub-system is in communication with an open space of an indoor environment and includes a first condenser, a first evaporator, and a first compressor at least partially defining a first refrigerant circuit circulating a first refrigerant for selectively conditioning an airflow within the HVAC subsystem that conditions the open space. The refrigeration sub-system is in communication with an enclosed space within the indoor environment and includes a second con-denser, a second evaporator, and a second compressor and at least partially defining a second refrigerant circuit circulating a second refrigerant for selectively conditioning the enclosed space. Heat from the second refrigerant is selectively transferred to the airflow within the second condenser to reheat the airflow prior to the airflow being discharged into the open space.
    Type: Application
    Filed: July 7, 2011
    Publication date: July 4, 2013
    Applicant: HUSSMANN CORPORATION
    Inventors: Norm E. Street, Roger J. Voorhis, Doron Shapiro