Combined With Surgical Tool Patents (Class 623/2.11)
  • Patent number: 11382780
    Abstract: A system and method for loading a self-expandable prosthetic device into a delivery device. The system includes a compression member that has a chamber with a tapered inner surface, a support member, a splay member and a constriction member. The compression member and the constriction member can be releasably attached to each other directly or via a spacer element, in two different positions relative to each other. The first position offers an optimal configuration for releasable attachment of the prosthetic device to the delivery device and the second position offers an optimal configuration for reducing the diameter of the delivery device. The risk of damaging the delivery device and to the prosthetic device during the loading procedure is thereby reduced.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: July 12, 2022
    Assignee: BIOTRONIK AG
    Inventors: Maximilian Mayer, Christian Erbe, Markus Hepke
  • Patent number: 11382737
    Abstract: This invention relates to the design and function of a compressible valve replacement prosthesis, collared or uncollared, which can be deployed into a beating heart without extracorporeal circulation using a transcatheter delivery system. The design as discussed focuses on the deployment of a device via a minimally invasive fashion and by way of example considers a minimally invasive surgical procedure preferably utilizing the intercostal or subxyphoid space for valve introduction. In order to accomplish this, the valve is formed in such a manner that it can be compressed to fit within a delivery system and secondarily ejected from the delivery system into the annulus of a target valve such as a mitral valve or tricuspid valve.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: July 12, 2022
    Assignee: Tendyne Holdings, Inc.
    Inventors: Robert Vidlund, Kemal Schankereli, Lucian Lozonschi, Georg Lutter
  • Patent number: 11376120
    Abstract: A transcatheter valve prosthesis is disclosed that has a compressed, delivery configuration and an expanded configuration for deployment within a native heart valve. The valve prosthesis includes a self-expanding frame and a prosthetic valve component. The self-expanding frame includes a valve receiving portion defining an opening therethrough and first and second anchors at opposing ends of the valve receiving portion. The valve receiving portion is substantially planar and the first and second anchors are oriented substantially perpendicular to the valve receiving portion when the valve prosthesis is in the expanded configuration. The prosthetic valve component is disposed within the opening of the valve receiving portion and secured thereto.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: July 5, 2022
    Assignee: MEDTRONIC VASCULAR GALWAY
    Inventor: Declan Costello
  • Patent number: 11376125
    Abstract: A valve holder for delivering a prosthetic heart valve to an implant site is in various embodiments configured to reduce or eliminate the occurrence of suture looping or other damage to the prosthetic valve during implantation. The valve holder can be configured to deploy or actuate automatically when performing preparatory steps that are already familiar to practitioners, such as attaching a delivery handle to the valve holder, so that the valve holders will not require additional steps or training to use. Therefore, operation of the valve holders is kept simple, and occurrences of mistakes caused by user error can be minimized or reduced. Valve holders according to different embodiments can be designed to accommodate implantation of prosthetic heart valves from either the inflow end or the outflow end of the native valve annulus.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: July 5, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian S. Conklin, Michael C. Murad
  • Patent number: 11369470
    Abstract: A loading tool for loading a collapsible prosthetic heart valve into a delivery device may include a body extending in a longitudinal direction between a proximal end and a distal end, an extension on the distal end of the body, and a slot extending through the extension from a free end of the extension toward the distal end of the body. The body may include a lumen extending between the proximal end and the distal end, the body lumen having a first diameter. The extension may have a lumen coaxial with the body lumen, the extension lumen having a second diameter less than the first diameter so as to define a shelf surface between the proximal end of the body and the free end of the extension.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 28, 2022
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Mark Krans, Theodore Paul Dale, Andrea N. Para, Mathias Charles Glimsdale, Thomas M. Benson, Peter N. Braido
  • Patent number: 11364136
    Abstract: Stent delivery systems and methods for making and using stent delivery systems are disclosed. An example stent delivery system may include an inner member having a stent receiving region, a stent disposed along the stent receiving region, a deployment sheath axially slidable relative to the inner member, the deployment sheath having a proximal end region, a handle coupled to the deployment sheath, a rod coupled to the handle, the rod having a distal end region, a proximal end region and a first threaded portion extending from the distal end region to the proximal end region and a coupling member configured to couple the rod to the deployment sheath, the coupling member having an engagement portion. Additionally, the first threaded portion of the rod is designed to engage the engagement portion of coupling member and rotation of the rod is designed to translate the coupling member along the rod.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: June 21, 2022
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Brady Scott Logan, Paul Goudreau, Ian Forte, Andrew Smith, Tyler Hebig, Ryan Hendrickson, Derek Kenneth Larson, Jason T. Anderson, Rowan Olund Hettel
  • Patent number: 11357485
    Abstract: A device for performing tricuspid regurgitation operation is proposed. The device for performing tricuspid regurgitation operation is easily inserted through the inferior vena cava, the tricuspid valve, and the pulmonary artery in sequence in order to treat tricuspid regurgitation (TR) which is a disease where blood from the right ventricle flows back into the right atrium through an empty space (i.e., orifice) formed by incomplete closing of the tricuspid valve (TV) which is positioned between the right atrium and the right ventricle of the heart. The device includes: a fixing member for pulmonary artery installed in the pulmonary artery; a fixing member for inferior vena cava installed in the inferior vena cava; a connecting tube connecting the fixing member for the pulmonary artery and the fixing member for the inferior vena cava to each other; and a blocking part passing obliquely through the tricuspid valve.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: June 14, 2022
    Inventor: June Hong Kim
  • Patent number: 11344412
    Abstract: A delivery system for side-delivery of a prosthetic valve includes a compression device defining a lumen having a first perimeter at a proximal end that is larger than a second perimeter of the lumen at a distal end. A loading device is coupleable to the compression device and defines a lumen having substantially the second perimeter. A distal end of the loading device includes a first gate that is movable between an open state and a closed state to at least partially occlude the lumen of the loading device. A delivery device defines a lumen having substantially the second perimeter. A proximal end of the delivery device is coupleable to the distal end of the loading device and includes a second gate movable between an open state and a closed state to at least partially occlude the lumen of the delivery device.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: May 31, 2022
    Assignee: VDyne, Inc.
    Inventors: Robert Vidlund, Mark Christianson, Neelakantan Saikrishnan, Scott Kramer, Lucas Harder, David Holtan, Craig Ekvall, Cameron Vidlund
  • Patent number: 11344413
    Abstract: A prosthetic valve includes a frame and a flow control component. The frame has an aperture extending through the frame about a central axis. The flow control component is mounted within the aperture and is configured to permit blood flow in a first direction approximately parallel to the vertical axis from an inflow end to an outflow end of the flow control component and to block blood flow in a second direction, opposite the first direction. The frame has an expanded configuration with a first height along the central axis, a first lateral width along a lateral axis perpendicular to the central axis, and a first longitudinal length along a longitudinal axis perpendicular to the central axis and the lateral axis. The frame has a compressed configuration with a second height less than the first height and a second lateral width less than the first lateral width.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: May 31, 2022
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan
  • Patent number: 11344416
    Abstract: A medical arrangement is configured to introduce an object, such as an implant, from a distal end into an anatomical target position. The medical arrangement comprises a first introducer having distal and proximal ends, and a second introducer having distal and proximal ends. The first introducer is an outer introducer and said second introducer is configured to be operated inside and guided by said first introducer. At least a portion of the first introducer is configured to take a first curved shape, and at least a portion of the second introducer is configured to take a second curved shape. The portion of the second introducer configured to take said second curved shape comprises a tubular member inside said second introducer for enabling introducing of the object or implant through said tubular member and thereby over at least said second curved shape of said second introducer.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: May 31, 2022
    Assignee: Medtentia International Ltd Oy
    Inventor: Olli Keränen
  • Patent number: 11337809
    Abstract: A kit for repairing and/or replacing a mitral valve includes a mitral valve prosthesis and a loop-shaped element with a proximal end, a distal end, and a curved body. A proximal portion of the curved body is sized for positioning on an atrial side of the mitral valve and a distal portion of the curved body is sized for positioning on a ventricular side of the mitral valve. The distal portion has a first curved region with a radius of curvature that is larger than the radius of curvature of a second curved region so that the distal portion passes between heart muscle wall and chordae and circumflex the chordae of the mitral valve when the distal portion is rotated into place at the ventricular side of the native mitral valve.
    Type: Grant
    Filed: May 1, 2021
    Date of Patent: May 24, 2022
    Assignee: Medtentia International Ltd Oy
    Inventors: Olli Keränen, Per Antonsson
  • Patent number: 11324591
    Abstract: A prosthesis can comprise an expandable frame, a plurality of distal anchors and a plurality of proximal anchors. The anchors can extend outwardly from the frame. The frame can be configured to radially expand and contract for deployment within a body cavity. The frame and anchors can have one of many different shapes and configurations. For example, when the frame is in an expanded configuration, the frame can have a larger cross-sectional dimension in a middle portion of the frame and a smaller cross-sectional dimension in a proximal portion and a distal portion of the frame, wherein the middle portion is between the proximal and distal portions. As another example, the anchors can have looped ends, the entire anchor may loop out from the frame.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: May 10, 2022
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: J. Brent Ratz, Arshad Quadri, Luca Pesce
  • Patent number: 11324593
    Abstract: An annuloplasty band and method of implantation. The band is shaped and sized to avoid the adjacent aortic valve structure and better protects against dehiscence along the muscular mitral annulus. The band is asymmetric and when implanted spans more around the side of the mitral annulus having the posterior commissure than the side with the anterior commissure. The band has a saddle shape with a posterior upward bow centered on a minor axis of the mitral annulus, and a span extending clockwise therefrom is longer than a span extending counter-clockwise. The longer span may be 150° while the shorter span extends 90°. A set of rings may have different saddle profiles and different plan view shapes for different sized bands. A method includes implanting so that the band extends over the posterior leaflet and a short distance past the posterior commissure outside of the anterior leaflet.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: May 10, 2022
    Assignee: Edwards Lifesciences, LLC
    Inventor: David H. Adams
  • Patent number: 11311377
    Abstract: A transcatheter atrio-ventricular valve prosthesis for functional replacement of an atrio-ventricular valve in a connection channel, having a circumferential connection channel wall structure, between atrial and ventricular chambers of a heart, including an inner device to be disposed in the interior of the connection channel, the inner device having a circumferential support structure which is radially expandable and having a valve attached to the circumferential support structure, and an outer device to be disposed on the exterior of the connection channel, wherein the outer device at least partly extends around the inner device at a radial distance to the inner device, wherein the inner and outer devices form a securing mechanism for securing the circumferential connection channel wall structure therebetween.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: April 26, 2022
    Assignee: HIGHLIFE SAS
    Inventor: Josef Weber
  • Patent number: 11311375
    Abstract: A stent (300, 400, 400?) for a prosthetic heart valve includes a body having an inflow end (310, 410) and an outflow end (312, 412), and an anchoring section (340, 440) adjacent the inflow end. The anchoring section may include structure (342, 344, 420) that extends radially outwardly from the body when the stent is in an expanded condition. The stent may include a transition section (370, 470) between the body and the anchoring section, the transition section in the expanded condition of the stent having a diameter that is smaller than the diameters of the body and the anchoring section. When implanted into a native valve annulus, such as the mitral valve annulus, the anchoring section may help the stent resist migrating away from the native valve annulus.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: April 26, 2022
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventor: Xue Mei Li
  • Patent number: 11311376
    Abstract: A low-profile prosthetic valve for treating a native valve includes a radially expandable frame having an expanded configuration and a collapsed configuration. The atrial end of the prosthetic valve forms a flared shape that engages an atrial surface of the native valve. The flare shape flares downward toward a ventricle of the native valve when initially expanded followed by inversion of the flared shape to form a tapered shape tapering toward the ventricle and flaring toward the atrium of the native valve when fully expanded. The prosthetic valve also has a plurality of prosthetic valve leaflets that open and close to control fluid flow through the prosthetic valve.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: April 26, 2022
    Assignee: Neovase Tiara Inc.
    Inventors: Eric Soun-Sang Fung, Karen Tsoek-Ji Wong, Ephraim Ben-Abraham
  • Patent number: 11311380
    Abstract: An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: April 26, 2022
    Assignee: Cardiac Dimensions Pty. Ltd.
    Inventors: Mark L. Mathis, Gregory D. Nieminen, Nathan Aronson, Garrett R. Beget
  • Patent number: 11311374
    Abstract: This invention relates to the design and function of a compressible valve replacement prosthesis, collared or uncollared, which can be deployed into a beating heart without extracorporeal circulation using a transcatheter delivery system. The design as discussed focuses on the deployment of a device via a minimally invasive fashion and by way of example considers a minimally invasive surgical procedure preferably utilizing the intercostal or subxyphoid space for valve introduction. In order to accomplish this, the valve is formed in such a manner that it can be compressed to fit within a delivery system and secondarily ejected from the delivery system into the annulus of a target valve such as a mitral valve or tricuspid valve.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: April 26, 2022
    Assignee: Tendyne Holdings, Inc.
    Inventors: Robert Vidlund, Kemal Schankereli, Lucian Lozonschi, Georg Lutter
  • Patent number: 11304802
    Abstract: A prosthesis is provided for implantation at a native semilunar valve of a native valve complex, the native valve complex having three semilunar sinuses and three native commissures. The prosthesis includes a valve prosthesis support, which comprises a support structure comprising exactly three engagement arms that meet one another at three respective junctures. The engagement arms are shaped so as define three peak complexes at the three respective junctures, and three trough complexes, each of which is between two of the peak complexes. Upon implantation of the prosthesis, each of the engagement arms is at least partially disposed within a respective one of the semilunar sinuses, such that each of the peak complexes is disposed distal to and in rotational alignment with a respective one of the native commissures, and each of the trough complexes is disposed at least partially within the respective one of the semilunar sinuses.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: April 19, 2022
    Assignee: MEDTRONIC VENTOR TECHNOLOGIES LTD.
    Inventors: Yossi Tuval, Raphael Benary, Ido Kilemnik
  • Patent number: 11304715
    Abstract: Devices, systems and methods are provided for stabilizing and grasping tissues such as valve leaflets, assessing the grasp of these tissues, approximating and fixating the tissues, and assessing the fixation of the tissues to treat cardiac valve regurgitation, particularly mitral valve regurgitation.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: April 19, 2022
    Assignee: EVALVE, INC.
    Inventors: Eric A. Goldfarb, Troy L. Thornton, Alfred H. Raschdorf, Jaime E. Sarabia, John P. Madden, Ferolyn T. Powell, Brian B. Martin, Sylvia Erickson, Jan Komtebedde, Yen C. Liao
  • Patent number: 11285001
    Abstract: The present disclosure relates to heart valve prostheses, delivery devices, actuation handles, and other improved devices and methods that facilitate delivery of a heart valve prosthesis to a defective native valve structure in a patient, such as the aortic valve.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: March 29, 2022
    Assignee: JC Medical, Inc.
    Inventors: Ji Zhang, Brandon G. Walsh, Cheng Yong Yang, Jinhua Zhu
  • Patent number: 11278437
    Abstract: The invention relates to a transcatheter heart valve replacement (A61F2/2412), and in particular Compression Capable Annular Frames for a side delivered transcatheter prosthetic heart valve having a annular support frame having compressible wire cells that facilitate rolling and folding the valve length-wise, or orthogonally to the central axis of the flow control component, allowing a very large diameter valve to be delivered and deployed to the tricuspid valve from the inferior vena cava or superior vena cava, or trans-atrially to the mitral valve, the valve having a height of about 5-60 mm and a diameter of about 25-80 mm, without requiring an oversized diameter catheter and without requiring delivery and deployment from a catheter at an acute angle of approach.
    Type: Grant
    Filed: June 23, 2019
    Date of Patent: March 22, 2022
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan
  • Patent number: 11278403
    Abstract: A system has a heart valve assembly that includes a stent-frame having an anchoring section and an outflow section, with the anchoring section having a distal annulus section and a support section that is positioned between the distal annulus section and the outflow section. The distal annulus section has a concave inflection. A leaflet assembly is stitched to the anchoring section. The system also includes a balloon on which the heart valve assembly is crimped, the balloon having a central valve contact portion that has an outflow portion, a neck portion, and a central portion between the outflow portion, and the neck portion. The outflow portion of the balloon receives the outflow section of the stent-frame, the central portion of the contact portion of the balloon receives the support section of the stent-frame, and the neck portion receives the annulus section of the stent-frame.
    Type: Grant
    Filed: May 10, 2020
    Date of Patent: March 22, 2022
    Assignee: Vitae LLC
    Inventor: Bin Tian
  • Patent number: 11273036
    Abstract: Disclosed herein are embodiments of a balloon shaped to have one or more enlarged recons to selectively increase expansion forces on an implant. For example, the balloon may have a central portion that is enlarged to exert more force on the center of a stent-mounted prosthetic heart valve. This overcomes the stent-mounted prosthetic heart valve's tendency to expand with flared ends. This forms a more cylindrical or barrel shaped stent frame during expansion of the balloon—reducing or eliminating the instance wherein the cylindrical stent frame has flared ends. Alternatively, the balloon may have conical flares placed to cause or enhance flared ends of the cylindrical implant to enhance its anchoring capabilities.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: March 15, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: David Maimon, Michael R. Bialas, Mindy Lee Ann Black, Tamir S. Levi, Linda Thai, Yidong M. Zhu
  • Patent number: 11273033
    Abstract: The invention relates to a transcatheter heart valve replacement (A61F2/2412), and in particular a side delivered transcatheter prosthetic valve having a tubular frame with a flow control component mounted within the tubular frame and configured to permit blood flow in a first direction through an inflow end of the valve and block blood flow in a second direction, opposite the first direction, through an outflow end of the valve, wherein the valve is compressible to a compressed configuration for introduction into the body using a delivery catheter for implanting at a desired location in the body, said compressed configuration having a long-axis oriented at an intersecting angle of between 45-135 degrees to the first direction, and expandable to an expanded configuration having a long-axis oriented at an intersecting angle of between 45-135 degrees to the first direction, wherein the long-axis of the compressed configuration of the valve is substantially parallel to a length-wise cylindrical axis of the deliv
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: March 15, 2022
    Assignee: VDyne, Inc.
    Inventors: Mark Christianson, Robert Vidlund, Neelakantan Saikrishnan
  • Patent number: 11273024
    Abstract: In a particular embodiment, the present disclosure provides a prosthetic valve delivery assembly that includes a storage tube. A prosthetic valve having a frame is at least partially disposed within the storage tube. A nose cone is disposed about an elongated shaft. A stylet having at least a first bent portion extends through a lumen of the nose cone. The at least a first bent portion is disposed within the lumen of the nose cone and restricts axial movement of the elongated shaft relative to the prosthetic valve.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: March 15, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alexander H. Cooper, Michael R. Bialas, David M. Taylor, Gregory Scott Tyler, II, Zachary R. Kowalski, Art Z. Kwan, Darshin S. Patel, Asher L. Metchik, Michael J. Popp, Amanda Kristine Anderson White
  • Patent number: 11266498
    Abstract: The present invention provides a method of making a leaflet assembly, the leaflet assembly thus made and a prosthetic valve.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: March 8, 2022
    Assignee: DSM IP ASSETS B.V.
    Inventors: Paul Frederik Grundeman, Jolanda Kluin, Karlien Kristel Boon-Ceelen, Thomas König
  • Patent number: 11259921
    Abstract: A transcatheter atrio-ventricular valve prosthesis for functional replacement of an atrio-ventricular valve in a connection channel, having a circumferential connection channel wall structure, between atrial and ventricular chambers of a heart, including an inner device to be disposed in the interior of the connection channel, the inner device having a circumferential support structure which is radially expandable and having a valve attached to the circumferential support structure, and an outer device to be disposed on the exterior of the connection channel, wherein the outer device at least partly extends around the inner device at a radial distance to the inner device, wherein the inner and outer devices form a securing mechanism for securing the circumferential connection channel wall structure therebetween.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: March 1, 2022
    Assignee: HIGHLIFE SAS
    Inventor: Josef Weber
  • Patent number: 11259927
    Abstract: A system for implanting a repair device onto a native valve of a natural heart to repair the native valve of a patient during a non-open-heart procedure. The system includes a surgical delivery instrument and a valve repair device. The surgical delivery instrument has at least one lumen. The valve repair device is configured to be delivered through the lumen of the surgical delivery instrument and to be attached to a native valve of a patient. The valve repair device includes a pair of paddles and a pair of gripping members. The paddles are movable between an open position and a closed position, and the paddles are configured to flex upon being attached to the native valve of a patient. The paddles and the gripping members are configured to attach to the native valve of the patient.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: March 1, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Asher L. Metchik, Gregory Scott Tyler, II, Matthew T. Winston, Sergio Delgado, Lauren R. Freschauf, Eric Robert Dixon, Alexander J. Siegel
  • Patent number: 11259924
    Abstract: Apparatuses, systems, and devices usable for annuloplasty are provided. These can include an annuloplasty system comprising a segment having a lumen therethrough, the segment being positionable in a vicinity of a surface of a heart valve of a heart. The system can include a tube having a distal portion that is movable through the lumen of the segment and a distal end passable through an opening in the segment that is in fluid communication with the lumen. One or more tissue anchors are deliverable through the tube, the tissue anchor(s) being shaped so as to define a tissue coupling element. The distal portion of the tube can be removably positioned within the lumen of the segment, and, while so positioned, to deploy the tissue coupling element from the distal end of the tube in order to penetrate the tissue coupling element into cardiac tissue. Other embodiments are also described.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: March 1, 2022
    Assignee: Valtech Cardio Ltd.
    Inventors: Amir Gross, Iftah Beinart, Eran Miller, Oz Cabiri, Eliahu Eliachar, Nir Lilach, Ram Grossfeld, Dmitry Golom, Gideon Meyer-Brodnitz, Arnon Mosaiuf
  • Patent number: 11259922
    Abstract: A transcatheter atrio-ventricular valve prosthesis for functional replacement of an atrio-ventricular valve in a connection channel, having a circumferential connection channel wall structure, between atrial and ventricular chambers of a heart, including an inner device to be disposed in the interior of the connection channel, the inner device having a circumferential support structure which is radially expandable and having a valve attached to the circumferential support structure, and an outer device to be disposed on the exterior of the connection channel, wherein the outer device at least partly extends around the inner device at a radial distance to the inner device, wherein the inner and outer devices form a securing mechanism for securing the circumferential connection channel wall structure therebetween.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: March 1, 2022
    Assignee: HIGHLIFE SAS
    Inventor: Josef Weber
  • Patent number: 11253363
    Abstract: The present disclosure relates to heart valve prostheses, delivery devices, actuation handles, and other improved devices and methods that facilitate delivery of a heart valve prosthesis to a defective native valve structure in a patient, such as the aortic valve.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: February 22, 2022
    Assignee: JC Medical Inc.
    Inventors: Ji Zhang, Brandon G. Walsh, Cheng Yong Yang, Jinhua Zhu
  • Patent number: 11246707
    Abstract: An annuloplasty implant is disclosed comprising first and second supports being adapted to be arranged as a coil in a coiled configuration around an axial direction. The first and second supports are adapted to be arranged on opposite sides of native heart valve leaflets. The first support comprises first retention units fixed in relation to an outer surface of the first support and arranged along at least a first retention portion thereof. The second support comprises second retention units fixed in relation to an outer surface of the second support and arranged along at least a second retention portion thereof. First and second retention portions are curved in the coiled configuration, and the first and second retention units extend from respective first and second retention portions to produce a retention force, in use, at both of said opposite sides. A method of repairing a defective heart valve is also disclosed.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: February 15, 2022
    Assignee: Medtentia International Ltd Oy
    Inventors: Hans-Reinhard Zerkowski, Olli Keränen
  • Patent number: 11241310
    Abstract: A medical device system may include a delivery device including an outer sheath and an inner shaft having a coupler fixed to a distal end of the inner shaft, and a replacement heart valve implant releasably attached to the coupler, the replacement heart valve implant including an expandable anchor member and a plurality of locking mechanisms configured to engage with the coupler. The delivery device may include a plurality of collars configured to secure the coupler to the plurality of locking mechanisms. The delivery device may include a stop element configured to selectively prevent disengagement of the plurality of collars from the plurality of locking mechanisms.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: February 8, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Declan Loughnane, Tim O'Connor, Sean O'Sullivan
  • Patent number: 11234820
    Abstract: In certain aspects, the invention relates to a method for generating a mitral repair ring for a corresponding mitral valve, comprising the steps of generating (S1) a reference circumference (13) indicative of said valve ring (110); generating (S2) a reference grid (2); inscribing (S3) said reference circumference (13) in said reference grid (2); combining (S4) said reference circumference (13) with a plurality of characteristic measures (15, 16, 17, r1-r6) of said mitral valve (100); generating (S5) a three-dimensional reference grid (250); identifying (S6) on said three-dimensional reference grid (250) a plurality of deformation points (300-302) of said reference circumference (13); deforming said reference circumference (13) at said deformation points (300-303) so as to obtain a geometric model (10) of said mitral repair ring (10?); and generating said mitral repair ring (10?) from said obtained geometric model (10).
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: February 1, 2022
    Inventor: Luca Deorsola
  • Patent number: 11234817
    Abstract: Systems and methods for delivering and implanting heart valves are disclosed. The delivery systems can include an integrated introducer. The integrated introducer can include a sheath having an inner diameter that is smaller than the outer diameter of a delivery capsule of the delivery system and an outer diameter that is approximately equal to the outer diameter of the delivery capsule. The integrated introducer can include a hub having a hemostatic seal. The hub can have a locking mechanism configured to fix the integrated introducer in place on the delivery system.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: February 1, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Susheel R. Deshmukh, Patrick Griffin, Patrick E. Macaulay, A K M Masud, Adam J. Shipley, John P. Shanahan, Hubert K. Yeung, Stephen J. Peter, Gustaf L P Belt, Joshua J. Dwork
  • Patent number: 11234818
    Abstract: An annuloplasty device is disclosed comprising first and second support rings being configured to be arranged as a coil in a first configuration around an axial direction, wherein the first and second support rings are configured to be arranged on opposite sides of native heart valve leaflets of a heart valve, a stiffening unit, wherein at least part of the first and second support rings comprises an interior channel configured to receive the stiffening unit, wherein insertion of the stiffening unit into the interior channel increases the stiffness of the first and/or second support rings. A method of repairing a defective heart valve is also disclosed.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: February 1, 2022
    Assignee: Medtentia International Ltd Oy
    Inventors: Hans-Reinhard Zerkowski, Olli Keränen, Johannes Jung
  • Patent number: 11234811
    Abstract: Systems and methods for replacing a native heart valve. An anchor comprises multiple coils adapted to support a heart valve prosthesis. At least one of the coils is normally at a first diameter, and is expandable to a second, larger diameter upon application of radial outward force from within the anchor. An expansible heart valve prosthesis is provided and is configured to be delivered into the anchor and expanded inside the multiple coils. This moves at least one coil from the first diameter to the second diameter while securing the anchor and the heart valve prosthesis relative to each other. The system further includes a seal on the anchor that can prevent at least some blood leakage after implantation of the heart valve prosthesis in the helical anchor. Additional apparatus and methods are disclosed.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: February 1, 2022
    Assignee: Mitral Valve Technologies Sarl
    Inventors: Paul A. Spence, Landon H. Tompkins, Mark Chau, Alexander J. Siegel
  • Patent number: 11229515
    Abstract: Systems and methods comprising an anchor adapted to be positioned at a native heart valve annulus. The anchor comprises multiple coils adapted to support a heart valve prosthesis. A flexible outer tube adapted to hold the multiple coils of the anchor can combine with the anchor to form an assembly. A delivery tool adapted to deliver the assembly into position at a native heart valve can be provided and used. The outer tube is adapted to be removed from the multiple coils of the anchor after the coil portions of the anchor are positioned above and/or below the heart valve annulus. Additional apparatus and methods are disclosed.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: January 25, 2022
    Assignee: Mitral Valve Technologies Sarl
    Inventors: Paul A. Spence, Landon H. Tompkins
  • Patent number: 11224508
    Abstract: Heart valve implants and methods utilizing those valves designed to reduce or eliminate the regurgitant jet associated with an incompetent atrioventricular valve. The heart valve implants, which are deployed via a transcatheter venous approach, comprise a collapsible framework connected to an anchored guide shaft, a valve portion and an apron which permits ingrowth of native heart tissue into the apron.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: January 18, 2022
    Inventor: George Kramer
  • Patent number: 11224510
    Abstract: A prosthetic heart valve includes a self-expanding wire frame body, a valve disposed in the body, a leaflet clip coupled to the body, and a control element operably coupled to the leaflet clip. The body has a proximal end and a distal end. The leaflet clip is configured to be transitioned between a first configuration in which the prosthetic valve can be inserted into a heart, and a second configuration in which the leaflet clip is disposed to capture a native valve leaflet between the leaflet clip and the wire frame body when the body is disposed in a native annulus of an atrioventricular valve of a heart. The control element extends from the leaflet clip through a ventricle of the heart and out a wall of the ventricle to allow a user to transition the leaflet clip from its first configuration to its second configuration.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: January 18, 2022
    Assignee: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Zachary Tegels, Craig Ekvall, Robert Vidlund
  • Patent number: 11219540
    Abstract: A stent graft delivery system and method for implanting a stent graft includes and employs at least one control rod that extends along a luminal wall of a stent graft and at least one ligature. The ligature extends about radial stents. Rotation of the control rod or a tube extending about the control rod wraps the ligature about the control rod, thereby radial constricting the stent about which the ligature extends.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: January 11, 2022
    Assignee: Bolton Medical, Inc.
    Inventor: Samuel Arbefeuille
  • Patent number: 11219521
    Abstract: A prosthetic heart valve for replacing a native valve includes a collapsible and expandable stent having a proximal end and a distal end, and a valve assembly including a plurality of leaflets, the valve assembly being disposed within the stent. The heart valve further includes a first plurality of elongated legs coupled to the stent and transitionable from an extended configuration to a relaxed configuration. A first sealing portion connected to the first plurality of legs forms a sealing structure when the legs transition to the relaxed configuration to reduce perivalvular leakage between the implanted valve and surrounding tissue.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: January 11, 2022
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Yousef F. Alkhatib, Tracee Eidenschink, Sounthara Khouengboua
  • Patent number: 11213392
    Abstract: Among other things, there are disclosed embodiments of belts or bands that can be used in treatments for tricuspid valve regurgitation. In some embodiments, such belts may be heat-set in a particular configuration to effectively decrease tricuspid annulus when deployed around the atrioventricular groove. Embodiments include one or more tensioning sutures for applying cinching or tightening to belts when deployed, and structure for effectively distributing force during such tightening.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: January 4, 2022
    Assignee: Muffin Incorporated
    Inventors: Shaun Davis Gittard, John C. Sigmon, Jr., Gregory James Hardy, Jeremy T. Newkirk, Neal E. Fearnot, William J. Havel, Rita Hadley, Yun Zhou
  • Patent number: 11213387
    Abstract: A heart valve stent having a section with a heart valve implant and several proximally disposed tissue anchors, also comprising a plurality of anchoring threats, each with a proximate end fastened to the stent or valve and a distal end attached to tissue within a heart chamber to provide tension between the heart chamber tissue and the stent.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: January 4, 2022
    Inventors: Georg Lutter, Lucian Lozonschi
  • Patent number: 11213391
    Abstract: Prosthetic heart valves described herein can be deployed using a transcatheter delivery system and technique to interface and anchor in cooperation with the anatomical structures of a native heart valve. Deployment systems and methods for using the deployment systems described herein facilitate implanting a two-part prosthetic heart valve that is arranged in a nested configuration during the transcatheter delivery and deployment processes.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: January 4, 2022
    Assignee: Caisson Interventional, LLC
    Inventors: Kavitha Ganesan, Ramji Iyer, Lucas T. Schneider, Todd J. Mortier, Cyril J. Schweich, Jr.
  • Patent number: 11207184
    Abstract: A catheter member for interacting with a circumferential tissue structure includes: an elongate primary catheter having at least one inner lumen and extending along a longitudinal axis; first and second elongate secondary catheters, each having an inner lumen, and each positionable in an inner lumen of the primary catheter to be moveable relatively thereto and exposable therefrom; and a first flexing mechanism to provide a distal end portion of the first and/or second secondary catheter with a tendency to assume a first secondary bent shape. The distal end portion of the first and/or second secondary catheters is provided so as to be able to be flexed by the first flexing mechanism to form an arm portion substantially transverse to the direction of the longitudinal axis of the primary catheter so as to assume the first secondary bent shape when exposed from a distal end portion of the primary catheter.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: December 28, 2021
    Assignee: HIGHLIFE SAS
    Inventors: Georg Bortlein, Malek Nasr
  • Patent number: 11207177
    Abstract: A heart valve prosthesis and methods of its implantation are described herein. The prosthesis can be implanted in a heart of a patient by positioning an upper support of an anchoring element into a left atrium of the patient. The upper support can expand adjacent to a native valve structure of the patient. Further, the upper support can be moved against the native valve structure in a direction toward a left ventricle of the patient. A lower support of the anchoring element can be positioned into the left ventricle, spaced apart from the upper support, the lower support being separate from the upper support and coupled to the upper support by a flexible connector. Finally, the lower support can expand within the left ventricle, and engagement members of the lower support can engage with tissue of the native valve structure.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: December 28, 2021
    Assignee: Micor Limited
    Inventors: Ji Zhang, Brandon G. Walsh, Cheng Y. Yang, Jinhua Zhu
  • Patent number: 11207180
    Abstract: Prosthetic heart valves described herein can be deployed using a transcatheter delivery system and technique to interface and anchor in cooperation with the anatomical structures of a native heart valve. Deployment systems and methods for using the deployment systems described herein facilitate accurately and conveniently controllable percutaneous, transcatheter techniques by which the prosthetic heart valves can be delivered and deployed within a patient.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: December 28, 2021
    Assignee: Caisson Interventional, LLC
    Inventors: Kavitha Ganesan, Andrew T. Forsberg, Cyril J. Schweich, Jr., Todd J. Mortier
  • Patent number: 11207182
    Abstract: A heart valve therapeutic device (1) comprises a coaptation assist valve (20) comprising a conduit (2) with an outer surface (3) for coaption with the native leaflets, and a prosthetic flow valve (5) mounted within the conduit (2) to allow one-way flow through the conduit (2). Support for the coaptation assist valve (20) is provided by a support (10) for positioning the conduit (2) across the native leaflets, and connectors (15) attaching the conduit (2) to the support (10).
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: December 28, 2021
    Assignee: The Provost Fellows, Foundation Scholars and the Other Members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth, Near Dublin (TCD)
    Inventors: Paul Heneghan, Bruce Murphy, Lucy O'Keeffe, Martin Quinn, Conor Quinn