Sewing Ring Patents (Class 623/2.41)
  • Patent number: 11571295
    Abstract: A transcatheter stent-valve having replacement leaflets that are attached along their free edges. The stent-valve frame has supports that extend distally of the replacement leaflets to two fastening sites. The replacement leaflets are attached along a leaflet base forming a linear attachment to the stent-valve frame. The free edges of the leaflets have cords attached; the cords attach the free edges of the leaflets to the fastening sites located on the supports. The stent-valve can be a single component stent-valve or it can be a second component of a dual component stent-valve.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: February 7, 2023
    Inventors: William Joseph Drasler, William Joseph Drasler, II
  • Patent number: 10702383
    Abstract: Disclosed prosthetic valves can comprise a sewing ring configured to secure the valve to an implantation site. Some disclosed valves comprise a resiliently collapsible frame having a neutral configuration and a collapsed deployment configuration. Some disclosed frames can self-expand to the neutral configuration when released from the collapsed deployment configuration. Collapsing a disclosed valve can provide convenient access to the sewing ring, such as for securing the valve to the implantation site, as well as for the insertion of the valve through relatively small surgical incisions.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: July 7, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Hengchu Cao, Brian S. Conklin, Paul A. Schmidt, Grace M. Kim, James A. Davidson, Hoa T. Tran, Kristy L. Tam
  • Patent number: 10226331
    Abstract: A heart valve assembly includes an annular prosthesis and a valve prosthesis. The annular prosthesis includes an annular ring for dilating tissue within a biological annulus and a conformable sewing cuff extending radially from the annular member. The valve prosthesis includes a frame and a valve component. The annular ring is introduced into the biological annulus to dilate tissue surrounding the biological annulus and the sewing cuff conforms to tissue above the biological annulus. Fasteners are directed through the sewing cuff to secure the annular prosthesis to the biological annulus. The annular prosthesis may include a baleen element for biasing fabric on the annular ring outwardly to enhance sealing against the biological annulus. A valve prosthesis is then advanced into the sinus cavity, and secured relative to the annular prosthesis. The sewing cuff may enhance a seal between the valve prosthesis and annular prosthesis.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: March 12, 2019
    Assignee: Medtronic, Inc.
    Inventors: Ernest Lane, Michael J. Drews, Donnell W. Gurskis
  • Patent number: 10071186
    Abstract: Provided herein is a composite, comprising: a polymer host selected from the group consisting of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and polypropylene (PP), polyurethane, polycaprolactone (PCL), polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), and polyoxymethylene (POM); and a guest molecule comprising hyaluronic acid; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. Also provided herein are methods for forming the composite, and blood-contracting devices made from the composite, such as heart valves and vascular grafts.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: September 11, 2018
    Assignee: Colorado State University Research Foundation
    Inventors: Susan P. James, Harold Dean, IV, Lakshmi Prasad Dasi, Marcio H. Forleo, Ketul C. Popat, Nicole R. Lewis, David Alois Prawel
  • Patent number: 9814562
    Abstract: Various features are described that are adapted to improve performance of interference-relief type delivery systems. A delivery system provided herein comprises an implant comprising a socket at a proximal end of the implant; an elongate sleeve having (i) a proximal section, (ii) a distal section slidably disposed within the socket, and (iii) a window between the proximal section and the distal section, the window extending through a wall of the sleeve; and a core member having a proximal portion slidably received within the proximal section of the sleeve and a distal portion extending through the window to a space outside the sleeve and within the socket. The distal portion of the core member provides an interference fit with the distal section of the sleeve within the socket until the core member is withdrawn.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 14, 2017
    Assignee: COVIDIEN LP
    Inventors: Karl S. Halden, Nicholas C. deBeer, Frank P. Becking
  • Patent number: 9414922
    Abstract: An annuloplasty ring having a three-dimensional discontinuous form generally arranged about an axis with two free ends that are axially offset. The ring is particularly suited for repair of the tricuspid valve, and more closely conforms to the annulus shape. The ring is more flexible in bending about radially extending axes than about the central axis. The ring may have an inner structural support covered by a pliable sleeve and/or a fabric tube. The structural support may have a varying cross-section, such as a C-shaped cross-section in a mid-section between two free ends and a rectangular cross-section at the free ends.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: August 16, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventors: Patrick M. McCarthy, Richard S. Rhee, Stefan Schreck
  • Patent number: 9011529
    Abstract: Annuloplasty rings optimally sized to take into account more of the common degenerative valve pathologies. Each ring has a structural ring body with a shape that complies with predicted shapes of degenerative valvular diseases, such as fibroelastic deficiency (FED), Marfan's or Barlow's. The predicted shapes are obtained through careful echocardiographic and intraoperative measurements, and often differ for different annulus orifice sizes. For instance, in mitral rings the larger rings have larger minor axis and oblique axis dimensions relative to their major axis dimensions, and are more circular as opposed to D-shaped. The rings may also be three-dimensional and the relative heights around the rings may change for different sized rings. A mitral ring may have a higher anterior saddle relative to a posterior saddle, with the relative heights varying across the ring sizes. The ring may have varying flexibility around the ring periphery which also changes for different ring sizes.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 21, 2015
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain F. Carpentier, David H. Adams, Wesley Vazo Adzich
  • Patent number: 8900295
    Abstract: A prosthetic valve assembly and method of implanting same is disclosed. The prosthetic valve assembly includes a prosthetic valve formed by support frame and valve leaflets, with one or more tethers each having a first end secured to the support frame and the second end attached to, or configured for attachment to, to papillary muscles or other ventricular tissue. The tether is configured and positioned so as to avoid contact or other interference with movement of the valve leaflets, while at the same time providing a tethering action between the support frame and the ventricular tissue. The valve leaflets may be flexible (e.g., so-called tissue or synthetic leaflets) or mechanical.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: December 2, 2014
    Assignee: Edwards Lifesciences Corporation
    Inventors: John F. Migliazza, Hugues LaFrance, Harvey H. Chen, Travis Zenyo Oba
  • Patent number: 8728156
    Abstract: Prosthetic valves and their component parts are described, as are prosthetic valve delivery devices and methods for their use. The prosthetic valves are particularly adapted for use in percutaneous aortic valve replacement procedures. The delivery devices are particularly adapted for use in minimally invasive surgical procedures.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: May 20, 2014
    Assignee: Cardiac MD, Inc.
    Inventors: David C. Forster, Scott Heneveld, Brandon Walsh, Richard Ginn
  • Publication number: 20140107774
    Abstract: A heart valve sizing ring is disclosed. The sizing ring includes an outer ring and an inner ring configured and arranged to couple to the outer ring. A tubular portion extends from the inner ring and has a plurality of suture holders arranged about an upper end thereof. The outer ring and inner ring having a pair of complementary mating surfaces configured and arranged to grip sutures therebetween when coupled together. When coupled around sutures, the assembled ring may be tightened down against the heart valve to test the fit as if the sizing ring were a similarly sized prosthetic heart valve ring. Commissures of the heart valve may be suspended from the suture holders of the tubular portion. The surgeon can then remove the sizing ring and replace it with a prosthetic ring.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Inventor: Nikola Dobrilovic
  • Patent number: 8518108
    Abstract: Prosthetic heart valve suture rings having a suturable annulus of a compliant internal member and a cloth covering. Three evenly spaced upwardly opening depressions formed on an internal circumference of the suturable annulus receive downwardly-directed cusps of a stent structure of the heart valve. The suture ring may include a silicone sponge waffle annulus having a walled lip on an inner circumference thereof. The lip is contoured to include the three depressions, and a ring washer mounts on the annulus surrounding the walled lip for added stiffness.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: August 27, 2013
    Assignee: Edwards Lifesciences Corporation
    Inventors: Van Le Huynh, Than Nguyen, Hung Ly Lam, Xiaoming G. Guo, Ralph Kafesjian
  • Patent number: 8506625
    Abstract: A prosthetic mitral heart valve including a contoured sewing ring that better matches the mitral valve annulus. The sewing ring includes an inflow end and an outflow end, the outflow and having at least one raised portion. There may be two raised portions located approximately 120° apart from each other and designed to register with two anterior trigones of the mitral valve annulus. The sewing ring may be formed by a suture-permeable annular member surrounded by a fabric covering, the annular member desirably being molded of silicone. The raised portion(s) may gently curve upward to a height of about 2 mm above the adjacent portions of the outflow end of the sewing ring. The sewing ring may also be constructed so as to be more flexible around a posterior aspect than around an anterior aspect to accommodate calcified tissue more commonly found around the posterior annulus. The contoured sewing ring can be combined with various types of heart valve including bioprosthetic and mechanical valves.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: August 13, 2013
    Assignee: Edwards Lifesciences Corporation
    Inventor: Derrick Johnson
  • Publication number: 20130110231
    Abstract: A heart valve sizing ring is disclosed. The sizing ring includes an outer ring; and an inner ring configured and arranged to couple to the outer ring. The outer ring and inner ring having a pair of complementary mating surfaces configured and arranged to grip sutures therebetween when coupled together. When coupled around sutures, the assembled ring may be tightened down against the heart valve to test the fit as if the sizing ring were a similarly sized prosthetic heart valve ring. The surgeon can then remove the sizing ring and replace it with a prosthetic ring.
    Type: Application
    Filed: October 23, 2012
    Publication date: May 2, 2013
    Inventor: Nikola Dobrilovic
  • Patent number: 8366769
    Abstract: A sewing ring for prosthetic heart valves that is connected and configured to pivot outward. A biocompatible fabric covering surrounds at least a portion of the sewing ring, and the ring may be exclusively connected to a stent with the fabric. The sewing ring may be generally planar and of uniform thickness, or may be of varying thickness. The fabric may be used to encompass both the stent and the sewing ring, and may be a single piece. A seam may be provided in the fabric as a discrete pivoting line. The sewing ring may be convertible between bi-stable positions. The ring may extend outward in a frusto-conical shape so as to enable inversion between a position facing the inflow end of the valve and a position facing the outflow end of the valve. The sewing ring may have a compliant insert having a celled construction defined by outer walls and inner ribs. A method of implantation, and a method of assembly of the heart valve is also provided.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: February 5, 2013
    Assignee: Edwards Lifesciences Corporation
    Inventors: Van Le Huynh, Michael J. Scott, Derrick Johnson
  • Patent number: 8323337
    Abstract: A heart valve assembly includes a prosthesis and a prosthetic valve to replace a preexisting natural or prosthetic heart valve within a biological annulus. The prosthesis includes an annular member, a flexible core at least partially defining a sewing cuff extending radially outwardly from the annular member, a rail ring disposed between the flexible core and the annular member, and a plurality of guide rails extending from the rail ring through respective openings in the flexible core. A fabric covering covers the prosthesis, and the guide rails extend through respective openings in the fabric covering. The prosthetic valve includes a frame including receptacles for receiving respective guide rails. After implanting the prosthesis within a biological annulus, the prosthetic valve is advanced along the guide rails until retention elements on the guide rails engage the receptacles to secure the prosthetic valve relative to the prosthesis.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: December 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: Donnell W. Gurskis, Takashi Harry Ino, Ernest Lane, Steven R. Bacich
  • Publication number: 20120290081
    Abstract: A prosthetic tissue valve for aortic, pulmonary, mitral or tricuspid valve replacement is described herein. A sewing ring for use with the prosthetic tissue valve is also described. The valve can have a circumference that is a predetermined distance larger than the circumference of an annulus in a defective valve. The valve can be substantially planar in an unstressed position before attachment at the annulus and substantially non-planar upon attachment in a biased position at the annulus. Methods are provided for placing the valve as described herein in the biased position within the annulus of the defective valve.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 15, 2012
    Inventor: Robert G. Matheny
  • Publication number: 20120232646
    Abstract: A novel support system for bioprosthetic cardiac valves with heart shape commissural posts (18) and intercommissural conjunctions with long openings with oval closures (8), allows the better function of the valve by diminishing the forces applied on the leaflets during the cardiac cycle.
    Type: Application
    Filed: November 9, 2010
    Publication date: September 13, 2012
    Inventor: Efstathios-Andreas Agathos
  • Publication number: 20120226348
    Abstract: A heart valve assembly includes an annular prosthesis and a valve prosthesis. The annular prosthesis includes an annular ring for dilating tissue within a biological annulus and a conformable sewing cuff extending radially from the annular member. The valve prosthesis includes a frame and a valve component. The annular ring is introduced into the biological annulus to dilate tissue surrounding the biological annulus and the sewing cuff conforms to tissue above the biological annulus. Fasteners are directed through the sewing cuff to secure the annular prosthesis to the biological annulus. The annular prosthesis may include a baleen element for biasing fabric on the annular ring outwardly to enhance sealing against the biological annulus. A valve prosthesis is then advanced into the sinus cavity, and secured relative to the annular prosthesis. The sewing cuff may enhance a seal between the valve prosthesis and annular prosthesis.
    Type: Application
    Filed: April 23, 2012
    Publication date: September 6, 2012
    Applicant: Medtronic, Inc.
    Inventors: Ernest Lane, Michael J. Drews, Donnell W. Gurskis
  • Patent number: 8167936
    Abstract: A mechanical heart valve implantable as heart valve replacement comprising of an annular valve body with a central orifice and an exterior surface incorporating a suture ring having a plurality of suture tunnels, and a valve implantation flap assembly disposed on the valve body surface and wrapping around the suture ring. The inside lumen carries the occluder mechanism. The valve holder comprises of at least two parts, both parts having suture guiding grooves on the outer surface corresponding to and matching with the tunnels on the suture ring, such as to form a continuous path for the sewing material. The parts of the valve holder can be detached separately from the valve after taking all the sutures, the part on the ventricular side before lowering the valve into the heart and the other part after lowering and positioning the heart valve in the; desired position inside the heart.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: May 1, 2012
    Inventor: Valikapathalil Mathew Kurian
  • Patent number: 8128692
    Abstract: Prosthetic valves and their component parts are described, as are prosthetic valve delivery devices and methods for their use. The prosthetic valves are particularly adapted for use in percutaneous aortic valve replacement procedures. The delivery devices are particularly adapted for use in minimally invasive surgical procedures.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: March 6, 2012
    Assignee: AorTx, Inc.
    Inventors: David C. Forster, Scott Heneveld, Brandon Walsh, Richard Ginn
  • Patent number: 8075617
    Abstract: A device for connection between a heart prosthesis and a person's natural auricles includes a structure for joining to the natural auricles with individual suture attachments mounted so as to be free in rotation and movable.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: December 13, 2011
    Assignee: Carmat
    Inventors: Jean-Marc Parquet, Alain Carpentier, Pascal Bareau, Antoine Capel
  • Patent number: 8062359
    Abstract: A connecting band for a highly flexible tissue-type heart valve having a stent with cusps and commissures that are permitted to move radially. The connecting band follows the cusps and commissures and extends outwardly. The valve is connected to the natural tissue along the undulating connecting band using conventional techniques, such as sutures. The connecting band may be a cloth-covered inner suture-permeable member and attaches to the underside of the valve at the cusps to provide support to the stent and to the outer side of the valve at the commissures. The connecting band includes commissure portions defining generally axial gaps that help permit flexing of the valve. The inner member may include one or more slits along the cusps to enhance flexibility. The inner member may further include a continuous outwardly projecting sewing ridge around its periphery which includes a series of ribs separated by grooves around the inflow edge of the cusps.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: November 22, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: Salvador Marquez, Derek Nguyen, Diana Nguyen-Thien-Nhon
  • Publication number: 20110276128
    Abstract: Disclosed prosthetic valves can comprise a sewing ring configured to secure the valve to an implantation site. Some disclosed valves comprise a resiliently collapsible frame having a neutral configuration and a collapsed deployment configuration. Some disclosed frames can self-expand to the neutral configuration when released from the collapsed deployment configuration. Collapsing a disclosed valve can provide convenient access to the sewing ring, such as for securing the valve to the implantation site, as well as for the insertion of the valve through relatively small surgical incisions.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 10, 2011
    Inventors: Hengchu Cao, Brian Conklin, Paul Schmidt, Grace Myong Kim, James A. Davidson, Hoa Trinh Tran, Kristy Luong Tam
  • Patent number: 8048255
    Abstract: An implantable annuloplasty suture guide is intended to lie against at least a portion of an annulus surrounding a human heart. The implantable annuloplasty suture guide is made of an elongated ribbon of braided, heat setable material. The braided, heat-setable material is heat-set in a curved lengthwise configuration corresponding to at least a portion of the annulus of the human heart valve. A method of making an implantable annuloplasty suture guide configured to lie against at least a portion of an annulus defined by tissue surrounding a human heart. The method includes the steps of providing an elongate biocompatible ribbon comprising a braided, heat setable material. A fixture is provided, with the fixture comprising a heat conducting material defining an elongate cavity having a curved length-wise configuration corresponding to at least a portion of the annulus defined by the tissue surrounding the human heart.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: November 1, 2011
    Assignee: Medtronic, Inc.
    Inventor: John T. M. Wright
  • Publication number: 20110264207
    Abstract: A heart valve that can be expanded following its implantation in a patient, such as to accommodate the growth of a patient and the corresponding growth of the area where the valve is implanted, and to minimize paravalvular leakage. In one aspect, the invention may maximize the orifice size of the surgical valve. The invention includes expandable implantable conduits and expandable bioprosthetic stented valves. In one aspect of the invention, the valve may be adapted to accommodate growth of a patient to address limitation on bioprosthetic valve lifespans.
    Type: Application
    Filed: July 7, 2011
    Publication date: October 27, 2011
    Inventors: Phillip Bonhoeffer, Timothy R. Ryan
  • Publication number: 20110257739
    Abstract: A polymeric heart valve is disclosed including: a valve body having a central axis having a body fluid pathway extending along the central axis from an inflow end to an outflow end; a flexible stent disposed about an outer circumference of the body and including at least three flexible stent posts each extending in the axial direction to a tip; and at least three flexible leaflets extending from the stent, each of the leaflets having an attached edge defining an attachment curve along the stent extending between a respective pair of stent posts.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Inventor: Scott C. Corbett
  • Patent number: 8034104
    Abstract: An anatomically approximate prosthetic heart valve includes dissimilar flexible leaflets, dissimilar commissures and/or a non-circular flow orifice. The heart valve may be implanted in the mitral position and have one larger leaflet oriented along the anterior aspect so as to mimic the natural anterior leaflet. Two other smaller leaflets extend around the posterior aspect of the valve. A basic structure providing peripheral support for the leaflets includes two taller commissures on both sides of the larger leaflet, with a third, smaller commissure between the other two leaflets. The larger leaflet may be thicker and/or stronger than the other two leaflets. The base structure defines a flow orifice intended to simulate the shape of the mitral annulus during the systolic phase. For example, the flow orifice may be elliptical.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: October 11, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: Alain Carpentier, Hung L. Lam
  • Publication number: 20110230962
    Abstract: Embodiments of a dynamically adjustable artificial chordae tendinae implant are described. In some embodiments the implant includes a body portion, including an adjustable portion. In some embodiments, the implant includes a plurality of adjustable portions. In some embodiments the adjustable element can include a shape memory material. The adjustable portion can be configured to transform from a first conformation to a second conformation in response to an activation energy. In some embodiments, the activation energy can be one of electromagnetic energy, acoustic energy, light energy, thermal energy, electrical energy, mechanical energy, or a combination of energies. The implant couples a heart valve leaflet to a papillary muscle. Activation of the shape memory material regulates tension between the muscle and valve leaflet improving coaptation of heart valve leaflets, and reducing or eliminating regurgitation.
    Type: Application
    Filed: November 8, 2010
    Publication date: September 22, 2011
    Applicant: MICARDIA CORPORATION
    Inventors: Shahram Moaddeb, Samuel Shaolian
  • Patent number: 8021421
    Abstract: A biologically implantable prosthesis is disclosed. The prosthesis can have a circumferentially expandable wall and elements that prevent the wall from collapsing once the wall is expanded. Methods of making and using the prosthesis are also disclosed.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: September 20, 2011
    Assignee: Medtronic, Inc.
    Inventors: Thomas J. Fogarty, Michael J. Drews, Ernest Lane, Neil Holmgren, Federico Guiterrez
  • Patent number: 8020503
    Abstract: A system and method for assembling a prosthetic heart valve, including a procedure for sewing fabric around a heart valve support stent. The system includes a support stent handling component that works in conjunction with a sewing machine component. The sewing machine has a bobbin, and the system includes a non-contact sensor to monitor the passage of a needle thread loop over the bobbin. The sensor may be a monitoring laser, and a controlling processor receives information therefrom for 100% real-time inspection of each stitch. The occurrence of an unsuccessful stitch may prompt the processor to repeat the stitch at a slower speed. The automation of the fabric sewing procedure greatly enhances manufacturing throughput and reduces ergonomic strain on workers.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: September 20, 2011
    Assignee: Edwards Lifesciences Corporation
    Inventors: C. Roger Ekholm, Stephen Christopher Geist
  • Publication number: 20110066237
    Abstract: A prosthetic tissue valve for aortic, pulmonary, mitral or tricuspid valve replacement is described herein. A sewing ring for use with the prosthetic tissue valve is also described. The valve can have a circumference that is a predetermined distance larger than the circumference of an annulus in a defective valve. The valve can be substantially planar in an unstressed position before attachment at the annulus and substantially non-planar upon attachment in a biased position at the annulus. Methods are provided for placing the valve as described herein in the biased position within the annulus of the defective valve.
    Type: Application
    Filed: September 3, 2010
    Publication date: March 17, 2011
    Inventor: ROBERT G. MATHENY
  • Publication number: 20110054598
    Abstract: A prosthetic mitral heart valve including a contoured sewing ring that better matches the mitral valve annulus. The sewing ring includes an inflow end and an outflow end, the outflow and having at least one raised portion. There may be two raised portions located approximately 120° apart from each other and designed to register with two anterior trigones of the mitral valve annulus. The sewing ring may be formed by a suture-permeable annular member surrounded by a fabric covering, the annular member desirably being molded of silicone. The raised portion(s) may gently curve upward to a height of about 2 mm above the adjacent portions of the outflow end of the sewing ring. The sewing ring may also be constructed so as to be more flexible around a posterior aspect than around an anterior aspect to accommodate calcified tissue more commonly found around the posterior annulus. The contoured sewing ring can be combined with various types of heart valve including bioprosthetic and mechanical valves.
    Type: Application
    Filed: August 9, 2010
    Publication date: March 3, 2011
    Applicant: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Derrick Johnson
  • Publication number: 20100312335
    Abstract: A mechanical heart valve implantable as heart valve replacement comprising of an annular valve body with a central orifice and an exterior surface incorporating a suture ring having a plurality of suture tunnels, and a valve implantation flap assembly disposed on the valve body surface and wrapping around the suture ring. The inside lumen carries the occluder mechanism. The valve holder comprises of at least two parts, both parts having suture guiding grooves on the outer surface corresponding to and matching with the tunnels on the suture ring, such as to form a continuous path for the sewing material. The parts of the valve holder can be detached separately from the valve after taking all the sutures, the part on the ventricular side before lowering the valve into the heart and the other part after lowering and positioning the heart valve in the; desired position inside the heart.
    Type: Application
    Filed: December 1, 2008
    Publication date: December 9, 2010
    Inventor: Valikapathalil Mathew Kurian
  • Publication number: 20100262233
    Abstract: A method and apparatus directed to the repair of regurgitant mitral valves. Mitral valve regurgitation occurs due to miscoaptation of mitral valve leaflets. The mitral valve repair apparatus of the present invention is comprised of a tongue plate which is supported by a suture ring. The apparatus is inserted into the mitral valve orifice with the suture ring sutured to the mitral valve annulus placing the tongue plate between the two mitral valve leaflets. When the mitral valve opens, blood flows through the orifices of the apparatus. When the mitral valve closes, the two miscoaptated mitral valve leaflets cover the orifices on the apparatus and the tongue plate blocks the hole formed by leaflets and seals the leaky flow.
    Type: Application
    Filed: April 12, 2009
    Publication date: October 14, 2010
    Inventor: Zhaoming He
  • Patent number: 7776084
    Abstract: A prosthetic mitral heart valve including a contoured sewing ring that better matches the mitral valve annulus. The sewing ring includes an inflow end and an outflow end, the outflow and having at least one raised portion. There may be two raised portions located approximately 120° apart from each other and designed to register with two anterior trigones of the mitral valve annulus. The sewing ring may be formed by a suture-permeable annular member surrounded by a fabric covering, the annular member desirably being molded of silicone. The raised portion(s) may gently curve upward to a height of about 2 mm above the adjacent portions of the outflow end of the sewing ring. The sewing ring may also be constructed so as to be more flexible around a posterior aspect than around an anterior aspect to accommodate calcified tissue more commonly found around the posterior annulus. The contoured sewing ring can be combined with various types of heart valve including bioprosthetic and mechanical valves.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: August 17, 2010
    Assignee: Edwards Lifesciences Corporation
    Inventor: Derrick Johnson
  • Patent number: 7758640
    Abstract: A cardiovascular valve assembly comprising a base member that is affixed to a patient using conventional sutures or staples, and a replaceable valve member including a valve frame that supports a plurality of valve leaflets. The valve member mates with the base member, and can be detached from the base member for convenient replacement.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: July 20, 2010
    Assignee: ValveXchange Inc.
    Inventor: Ivan Vesely
  • Patent number: 7717955
    Abstract: A heart valve assembly includes an annular prosthesis and a valve prosthesis. The annular prosthesis includes an annular ring for dilating tissue within a biological annulus and a conformable sewing cuff extending radially from the annular member. The valve prosthesis includes a frame and a valve component. The annular ring is introduced into the biological annulus to dilate tissue surrounding the biological annulus and the sewing cuff conforms to tissue above the biological annulus. Fasteners are directed through the sewing cuff to secure the annular prosthesis to the biological annulus. The annular prosthesis may include a baleen element for biasing fabric on the annular ring outwardly to enhance sealing against the biological annulus. A valve prosthesis is then advanced into the sinus cavity, and secured relative to the annular prosthesis. The sewing cuff may enhance a seal between the valve prosthesis and annular prosthesis.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: May 18, 2010
    Assignee: Medtronic, Inc.
    Inventors: Ernest Lane, Michael J. Drews, Donnell W. Gurskis
  • Patent number: 7682391
    Abstract: A prosthetic mitral heart valve including a contoured sewing ring that better matches the mitral valve annulus. The sewing ring includes an inflow end and an outflow end, the outflow and having at least one raised portion. There may be two raised portions located approximately 120° apart from each other and designed to register with two anterior trigones of the mitral valve annulus. The sewing ring may be formed by a suture-permeable annular member surrounded by a fabric covering, the annular member desirably being molded of silicone. The raised portion(s) may gently curve upward to a height of about 2 mm above the adjacent portions of the outflow end of the sewing ring. The sewing ring may also be constructed so as to be more flexible around a posterior aspect than around an anterior aspect to accommodate calcified tissue more commonly found around the posterior annulus. The contoured sewing ring can be combined with various types of heart valve including bioprosthetic and mechanical valves.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: March 23, 2010
    Assignee: Edwards Lifesciences Corporation
    Inventor: Derrick Johnson
  • Patent number: 7655040
    Abstract: A catheter-based, annulus reduction device and system for cardiac valve repair and method of using the same. The system is usable for treating mitral valve regurgitation and comprises a catheter, a reduction ring carried within the catheter, the reduction ring including a plurality of exit ports formed in a side wall of the reduction ring and filament received in the reduction ring. The filament includes a plurality of radially extendible barbs corresponding to the sidewall openings. The reduction ring carrying the filament is deployed adjacent a mitral valve annulus and the filament is translated relative to the reduction ring to deploy the barbs through the exit ports and into the annulus and to further translate the reduction ring with deployed barbs to reshape the annulus.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: February 2, 2010
    Assignee: Medtronic Vascular, Inc.
    Inventors: Nareak Douk, Nasser Rafiee, Eliot Bloom, Douglas A. Fogg, Rany Huynh, David D. Barone
  • Publication number: 20090319038
    Abstract: A heart valve assembly includes a prosthesis and a prosthetic valve to replace a preexisting natural or prosthetic heart valve within a biological annulus. The prosthesis includes an annular member, a flexible core at least partially defining a sewing cuff extending radially outwardly from the annular member, a rail ring disposed between the flexible core and the annular member, and a plurality of guide rails extending from the rail ring through respective openings in the flexible core. A fabric covering covers the prosthesis, and the guide rails extend through respective openings in the fabric covering. The prosthetic valve includes a frame including receptacles for receiving respective guide rails. After implanting the prosthesis within a biological annulus, the prosthetic valve is advanced along the guide rails until retention elements on the guide rails engage the receptacles to secure the prosthetic valve relative to the prosthesis.
    Type: Application
    Filed: June 3, 2009
    Publication date: December 24, 2009
    Applicant: ARBOR SURGICAL TECHNOLOGIES, INC.
    Inventors: Donnell W. Gurskis, Takashi Harry Ino, Ernest Lane, Steven R. Bacich
  • Publication number: 20090264989
    Abstract: A heart valve that can be expanded following its implantation in a patient, such as to accommodate the growth of a patient and the corresponding growth of the area where the valve is implanted, and to minimize paravalvular leakage. In one aspect, the invention may maximize the orifice size of the surgical valve. The invention includes expandable implantable conduits and expandable bioprosthetic stented valves. In one aspect of the invention, the valve may be adapted to accommodate growth of a patient to address limitation on bioprosthetic valve lifespans.
    Type: Application
    Filed: February 27, 2009
    Publication date: October 22, 2009
    Inventors: Philipp Bonhoeffer, Timothy R. Ryan
  • Patent number: 7591826
    Abstract: A device, system and method provides mitral valve therapy. The device is implantable in the coronary sinus of the heart to partially encircle the mitral valve annulus. The device is elongated, is resilient, and has a preformed arched configuration. When the device is implanted in the coronary sinus, the device exerts a substantially radially inward force to the mitral valve to restore mitral valve annulus geometry.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: September 22, 2009
    Assignee: Cardiac Dimensions, Inc.
    Inventors: Clifton A. Alferness, David M. Kaye
  • Publication number: 20090192599
    Abstract: A prosthetic heart valve assembly includes a gasket member and a valve member including a plurality of fasteners and a plurality of engagement members corresponding to the fasteners. The fasteners and/or engagement members may be configured to guide the engagement members into engagement with the fasteners. For example, the fasteners may include U-shaped spring-biased clips, e.g., attached to a core or other portion of a sewing cuff of the gasket member, and the engagement members may include latches or barbed protrusions that engage one or more holes in the fasteners. During use, the gasket member is introduced into a tissue annulus, and secured to the annulus, e.g., using a plurality of clips directed through the sewing cuff. The valve member is then introduced into the annulus and the engagement members are snapped or otherwise guided into engagement with the fasteners to secure the valve member relative to the gasket member.
    Type: Application
    Filed: April 6, 2009
    Publication date: July 30, 2009
    Applicant: Arbor Surgical Technologies, inc.
    Inventors: Ernest Lane, Shouyan Lee, Charles Huang
  • Publication number: 20090171457
    Abstract: The present invention is an apparatus designed to effectuate restoration of normal aortic valvular function where there is aortic valvular regurgitation either primary or secondary to diseases of the aorta such as aortic aneurysm, aortic dissection, rheumatic aortic disease annuloaortic ectasia and etc. is present. The present invention provides an apparatus for repairing aortic annulus composed of (1) a band type inner stabilizer (sometimes ring type inner stabilizer) which is implanted in the true aortic lumen to fix the aortic annular diameter and (2) an outer felt stabilizer which is implanted on the outside surface of aorta to support the inner stabilizer.
    Type: Application
    Filed: September 5, 2008
    Publication date: July 2, 2009
    Applicant: SCIENCITY CO., LTD.
    Inventor: Meong-Gun SONG
  • Publication number: 20090157177
    Abstract: The invention provides a trileaflet semi-lunar prosthetic tissue valve for aortic, pulmonary, mitral, or tricuspid valve replacement. The valve is planar before attachment at an annulus of a valvular lumen, and non-planar upon attachment at the annulus of the defective valve. A sewing ring having a circumference greater than the annular circumference of annulus of the valve being replaced is also described and the sewing ring is placed at the approximate position of the annulus of the defective valve in a non-planar configuration.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Inventor: Robert G. Matheny
  • Publication number: 20080319543
    Abstract: A trileaflet biological prosthetic heart valve (11, 41) comprising a thin, rigid annular outer frame (25, 43) which supports three elastic, laminated spring inner frames (18, 57) which in turn provide consistent geometric form and structure for attachment of tissue leaflets (15, 71).
    Type: Application
    Filed: August 29, 2008
    Publication date: December 25, 2008
    Applicant: ARBOR SURGICAL TECHNOLOGIES, INC.
    Inventor: Ernest Lane
  • Publication number: 20080082163
    Abstract: A prosthetic heart valve includes a hydrogel material in its sewing cuff. The hydrogel material may be accompanied by an anticoagulant. If the hydrogel (and/or any included anticoagulant) might react with a packaging solution in which the valve is stored after inclusion of the hydrogel (and any anticoagulant), the hydrogel (and any anticoagulant) may be included in a protective but deliberately frangible pouch in the sewing cuff. After the valve is out of the packaging solution, the pouch can be broken to render the hydrogel (and any coagulant) effective following implantation of the valve in a patient.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 3, 2008
    Inventor: Yi-Ren Woo
  • Publication number: 20080082161
    Abstract: A synthetic blood vessel graft (e.g., for use with a prosthetic heart valve) includes a mounting cuff adjacent at least one end for facilitating attachment of the graft to another structure (e.g., a sewing cuff of a heart valve). The mounting cuff may be sized and shaped to provide good conformance to the target structure to which it may be attached (e.g., the heart valve sewing cuff). The graft is preferably preclotted. Especially for use with a tissue valve (which must be supplied in a packaging solution that would react with a preclotting agent), the graft is preferably supplied separately from the valve.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 3, 2008
    Inventor: Yi-Ren Woo
  • Patent number: RE40377
    Abstract: A heart valve can be replaced using minimally invasive methods which include a sutureless sewing cuff that and a fastener delivery tool that holds the cuff against the patient's tissue while delivering fasteners to attach the cuff to the tissue from the inside out. The tool stores a plurality of fasteners and is self-contained whereby a fastener is delivered and placed all from inside a vessel. The fasteners are self-forming whereby they do not need an anvil to be formed. Anchor elements are operated from outside the patient's body to cinch a prosthesis to an anchoring cuff of the valve body. The cuff is releasably mounted on the tool and the tool holds the cuff against tissue and drives the fastener through the cuff and the tissue before folding over the legs of the fastener whereby secure securement between the cuff and the tissue is assured. Fasteners are placed and formed whereby fasteners are located continuously throughout the entire circumference of the cuff.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: June 10, 2008
    Assignee: Cardiovascular Technologies LLC
    Inventors: Warren P. Williamson, IV, Paul A. Spence, George T. Christakis, Mark Ortiz
  • Patent number: RE44075
    Abstract: A heart valve can be replaced using minimally invasive methods which include a sutureless sewing cuff that and a fastener delivery tool that holds the cuff against the patient's tissue while delivering fasteners to attach the cuff to the tissue from the inside out. The tool stores a plurality of fasteners and is self-contained whereby a fastener is delivered and placed all from inside a vessel. The fasteners are self-forming whereby they do not need an anvil to be formed. Anchor elements are operated from outside the patient's body to cinch a prosthesis to an anchoring cuff of the valve body. The cuff is releasably mounted on the tool and the tool holds the cuff against tissue and drives the fastener through the cuff and the tissue before folding over the legs of the fastener whereby secure securement between the cuff and the tissue is assured. Fasteners are placed and formed whereby fasteners are located continuously throughout the entire circumference of the cuff.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: March 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Warren P. Williamson, Paul A. Spence, George T. Christakis, Mark Ortiz