Having Electrical Actuator Patents (Class 623/24)
  • Patent number: 8870967
    Abstract: Artificial limbs and joints that behave like biological limbs and joints employ a synthetic actuator which consumes negligible power when exerting zero force, consumes negligible power when outputting force at constant length (isometric) and while performing dissipative, nonconservative work, is capable of independently engaging flexion and extension tendon-like, series springs, is capable of independently varying joint position and stiffness, and exploits series elasticity for mechanical power amplification.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: October 28, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Lee Harris Magnusson, Ken Endo
  • Patent number: 8870970
    Abstract: A dynamic support apparatus having a frame, a dynamic interface, a temperature control mechanism, and a control system. The dynamic interface is capable of changing its geometry and is disposed on the top surface of the frame. The control system is operably connected to the dynamic interface and controls the changing geometry of the dynamic interface. There is also a temperature control mechanism disposed on the top surface of the frame for maintaining a comfortable temperature and moisture environment between the apparatus and the user's body.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: October 28, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: David E. Altobelli, N. Christopher Perry
  • Patent number: 8864845
    Abstract: A system for control of a prosthetic device includes at least one Inertial Measurement Unit detecting orientation of a user's foot. The at least one Inertial Measurement Unit is in communication with a device module configured to command at least one actuator of a prosthetic device. The at least one Inertial Measurement unit sends output signals related to orientation of the user's foot to the device module and the device module controls the at least one actuator of the prosthetic device based on the signals from the at least one Inertial Measurement Unit. The device module controls movement of an endpoint of the device within a movement envelope. The device module commanding movement of the end point within the movement envelope through at least simultaneous and/or independent actuation of the plurality of actuators based on the at least one body input signal in accordance with a movement function to achieve the desired directional movement of the endpoint within the movement envelope.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: October 21, 2014
    Assignee: DEKA Limited Partnership
    Inventors: Dirk Albertus van der Merwe, Gregory Randall Lanier, Jr., John Matthew Kerwin, Gerald Michael Guay, N. Christopher Perry, Susan D. Dastous
  • Patent number: 8858648
    Abstract: Disclosed are adjustable powered rehabilitation devices and methods for using the same to rehabilitate and/or train a user. The rehabilitation devices preferably have a plurality of selectable power settings that correspond to one or more rehabilitation-oriented actions or functions of the rehabilitation devices. For example, the power of the rehabilitation device may be selected based on a need, ability, muscle-power and/or physiological characteristics of the user. For instance, a rehabilitation device may be operated at a relatively low power setting to allow a patient to use his or her own muscle power when moving with the rehabilitation device. The rehabilitation device may also include an adjustable sensitivity level that corresponds to a user difficulty in triggering a particular rehabilitation-oriented action. The powered rehabilitation device may also temporarily be used to train a user in interacting with a passive or more conventional prosthetic device.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 14, 2014
    Assignee: Össur hf
    Inventor: Kim De Roy
  • Patent number: 8852292
    Abstract: A prosthetic or orthotic system including a sensor module and a processing module usable to determine a terrain variable, such as a terrain transition. In certain examples, the system is capable of anticipating a terrain transition prior to the user experiencing the terrain transition, which may include, for instance, a transition from level ground walking to walking on stairs or may include a change in a slope of the ground surface. In certain embodiments, the system advantageously monitors a posture and/or movement of the patient to anticipate the terrain transition. Furthermore, the system may control an actuator to appropriately adjust the prosthetic or orthotic device to encounter the anticipated terrain transition.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: October 7, 2014
    Assignee: Ossur HF
    Inventors: Heiôrún Gigja Ragnarsdóttir, Arinbjörn Viggo Clausen
  • Publication number: 20140296997
    Abstract: In an artificial limb system having an actuator coupled to a joint for applying a torque characteristic thereto, a control bandwidth of a motor controller for a motor included in the actuator can be increased by augmenting a current feedback loop in the motor controller with a feed forward of estimated back electromotive force (emf) voltage associated with, the motor. Alternatively, the current loop is eliminated and replaced with a voltage loop related to joint torque. The voltage loop may also be augmented with the feed forward of estimated back emf, to improve the robustness of the motor controller.
    Type: Application
    Filed: November 2, 2012
    Publication date: October 2, 2014
    Applicant: iWalk, Inc.
    Inventors: Hugh Miller Herr, Christopher Williams, Christopher Eric Barnhart, Zhixiu Han, Charles E. Rohrs, Richard J. Casler, JR.
  • Patent number: 8849457
    Abstract: A robot displacement device for use with a robotic frame shaped to approximate and be coupleable to at least a portion of the human body and configured to mimic movement of the human body. The device employs a plurality of force sensors which are attached to the robotic frame which detect a baseline controlling interface force status relationship between the sensors and the extremities of the human operator. Based on the output force signal from the sensors and the force and direction of gravity relative to the robotic frame, the computation system calculates at least a rotational force required to maintain the controlling force status relationship. That system then generates and transmits an actuation signal to a drive system attached to the robotic frame which displaces a portion of the robotic frame in order to maintain the controlling force status relationship.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: September 30, 2014
    Assignee: Raytheon Company
    Inventors: Stephen C. Jacobsen, Marc X. Olivier
  • Publication number: 20140288665
    Abstract: A prosthesis (1) or an orthosis and a method of controlling movable components (3) of the same. The prosthesis or orthosis comprising a plurality of movable components, each component being movable by a respective motor (7) and a control device operative to determine when movement of at least a first component is arrested when the at least first component bears against a surface; and to move one or more further components by means of respective one or more further motors so that each subsequent component is moved upon determination that the movement of the preceding component is arrested when the preceding component bears against a surface.
    Type: Application
    Filed: August 29, 2012
    Publication date: September 25, 2014
    Applicant: Touch Emas Limited
    Inventor: Hugh Gill
  • Publication number: 20140288664
    Abstract: A finger assist device is formed by rotatably connecting a plurality of units in a finger bending direction and a finger spreading direction. The unit is worn on a finger by nipping the finger with a nipping part from the pad and the back of the finger, and a drive force is controlled by detecting a first contact force between the finger pad and the nipping part and a second contact force between the finger back and the nipping part. Since the intention of the wearer of the finger assist device appears in the first contact force and the second contact force, the drive force of the finger assist device is appropriately controlled according to the wearer's intention, and thereby, bending and spreading of the finger may be appropriately assisted.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 25, 2014
    Applicant: Seiko Epson Corporation
    Inventor: Osamu Miyazawa
  • Publication number: 20140277581
    Abstract: A prosthetic includes a pair of prosthetic members movably coupled together to allow movement of the pair of prosthetic members with respect to one another. A hydraulic actuator or damper including hydraulic fluid in a hydraulic chamber is coupled to one of the pair of prosthetic members. A hydraulic piston is movably disposed in the hydraulic chamber and coupled to another of the pair of prosthetic members. A hydraulic flow channel is fluidly coupled between opposite sides of the chamber to allow hydraulic fluid to move between the opposite sides of the chamber as the hydraulic piston moves therein. A voice coil valve is coupled to the hydraulic flow channel to vary resistance to flow of hydraulic fluid through the flow channel, and thus movement of the piston in the chamber, and thus influencing a rate of movement of the pair of prosthetic members with respect to one another.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Freedom Innovations, LLC
    Inventor: Freedom Innovations, LLC
  • Publication number: 20140257518
    Abstract: A bioelectronic device and method of making is disclosed. The device includes a scaffold formed via 3D printing. The device also includes a biologic and an electronic device formed via 3D printing, the biologic and electronic device being interweaved with or coupled to the scaffold. The electronic component may e.g., include at least one of hard conductors, soft conductors, insulators and semiconductors. The scaffold may be formed of at least one of synthetic polymers and natural biological polymers. The biologic may include at least one of animal cells, plant cells, cellular organelles, proteins and DNA (including RNA).
    Type: Application
    Filed: March 10, 2014
    Publication date: September 11, 2014
    Applicant: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Michael C. McAlpine, Manu Sebastian-Mannoor, Yong Lin Kong, Blake N. Johnson
  • Publication number: 20140257519
    Abstract: An artificial foot and ankle joint consists of a curved leaf spring foot member having a heel extremity and a toe extremity, and a flexible elastic ankle member that connects the foot member for rotation at the ankle joint. An actuator motor applies torque to the ankle joint to orient the foot when it is not in contact with the support surface and to store energy in a catapult spring that is released along with the energy stored in the leaf spring to propel the wearer forward. A ribbon clutch prevents the foot member from rotating in one direction beyond a predetermined limit position. A controllable damper is employed to lock the ankle joint or to absorb mechanical energy as needed. The controller and sensing mechanisms control both the actuator motor and the controllable damper at different times during the walking cycle for level walking, stair ascent, and stair descent.
    Type: Application
    Filed: May 21, 2014
    Publication date: September 11, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Kwok Wai Samuel Au, Daniel Joseph Paluska, Peter Dilworth
  • Patent number: 8821587
    Abstract: A prosthetic device control apparatus includes at least one sensor worn by a user. The sensor(s) determines a user's movement. A control module is in communication with the sensor(s). The control module communicates movement information to a prosthetic. A method for controlling a prosthetic device includes sensing a user's movement, communicating the movement through a control module to a prosthetic device; and controlling the movement of a prosthetic device.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: September 2, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: Gregory R. Lanier, N. Christopher Perry, Andrew P. Pascoe, Dirk A. Van der Merwe
  • Patent number: 8814948
    Abstract: The invention relates to an orthopedic knee joint, comprising an upper part (2), on which upper connecting means (20) are disposed, a lower part (3) pivotally supported on the upper part (2), connecting means for orthopedic components (4), and a stop ( ) for delimiting an extension movement, wherein the stop (7) is configured displaceably and coupled to an adjusting device (64), which is coupled to a control device (6), which actuates the adjusting device (64) as a function of sensor data and changes the position of the stop (7).
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: August 26, 2014
    Assignee: Otto Bock Healthcare GmbH
    Inventors: Martin Pusch, Philipp Kampas
  • Patent number: 8801802
    Abstract: Embodiments include a system for controlling motion of a human limb. The system may include a plurality of mechatronic devices, each of which may be in communication with at least one other of the plurality of mechatronic devices. Each of the mechatronic devices includes one or more of a processor, an actuator, or a sensor. One or more of the mechatronic devices may be configured to generate a control state for at least one other of the plurality of mechatronic devices based on the communicated data. In one embodiment, the communicated data is used to synchronize the mechatronic devices. In one embodiment, one or more of the mechatronic devices is configured to receive executable instructions for controlling an actuator via a communications interface.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: August 12, 2014
    Assignee: Össur hf
    Inventors: Magnús Oddsson, Arinbjörn V. Clausen
  • Patent number: 8790117
    Abstract: The presently disclosed subject matter has application in the fields of Medicine, Neurology, Stomatology, Dentistry, Maxillofacial Surgery and Gerontology, using electronics nanotechnology and biomechanics technologies. The disclosed subject matter includes a bionic device of transduction of the mastication pressure into an electrical stimulus, capable of being perceived by the organism in the form of a nociceptive stimulus, which triggers in the organism an appropriate motor response of defense or decrease of muscle contraction. A generating device of nociceptive stimulus able to stimulate the brain areas related to chewing can be provided, modulating the muscular response thus avoiding the problems of overload during the process of mastication or while sleeping, involuntary movements called parafunctions of mastication, which translates to sharply wear down the dental crowns, also called bruxism.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: July 29, 2014
    Assignee: Clínica Médica Santo António de Joane, LDA.
    Inventor: Jorge Serafim Sobrado Marinho
  • Patent number: 8785196
    Abstract: Compositions and methods are provided for modulating the growth, development and repair of bone, cartilage or other connective tissue. Devices and stimulus waveforms are provided to differentially modulate the behavior of osteoblasts, chondrocytes and other connective tissue cells to promote proliferation, differentiation, matrix formation or mineralization for in vitro or in vivo applications. Continuous-mode and pulse-burst-mode stimulation of cells with charge-balanced signals may be used. Bone, cartilage and other connective tissue growth is stimulated in part by nitric oxide release through electrical stimulation and may be modulated through co-administration of NO donors and NO synthase inhibitors. Bone, cartilage and other connective tissue growth is stimulated in part by release of BMP-2 and BMP-7 in response to electrical stimulation to promote differentiation of cells.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: July 22, 2014
    Assignee: MedRelief Inc.
    Inventors: James W. Kronberg, Timothy Ganey, Stephen L. Gordon
  • Patent number: 8784502
    Abstract: A computerized prosthesis alignment system includes a transducer that can measure socket reactions in the anterior/posterior plane and the right/left planes, while canceling or reducing the transverse forces on the measurements of these socket reactions. In addition, the transducer is also capable of determining the axial load or weight experienced by the prosthesis. The computerized prosthesis alignment system is in communication with a host computer. The moment data from the transducer is interpreted by the user via a computer interface. The host computer includes memory for storing one or more applications. These applications receive data from the transducer, interpret the data with discrete algebraic or fuzzy logic algorithms, and display the output numerically and graphically. Applications may also interpret the data to provide analysis to the user for aligning the prosthesis.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: July 22, 2014
    Assignee: Orthocare Innovations LLC
    Inventors: Ben Gilbert Macomber, David Alan Boone
  • Publication number: 20140200680
    Abstract: A method of controlling a gait device includes a first sensor disposed on a first mobile body. A physical state of the first mobile body is measured using the first sensor to obtain a first physical state measurement. A second sensor is disposed on a second mobile body. A physical state of the second mobile body is measured using the second sensor to obtain a second physical state measurement. The first and second physical state measurements are conditioned by pseudo integration. A reference function is based on a gait activity. A reference function is determined by measuring a physical state of an able-bodied human and correlating an output position of the actuator to the physical state of the able-bodied human. A command is generated by inputting the first and second physical state measurements into the reference function to control an actuator of the gait device to match the output position.
    Type: Application
    Filed: March 13, 2014
    Publication date: July 17, 2014
    Applicant: SpringActive, Inc.
    Inventors: Matthew A. Holgate, Nathan Cahill
  • Publication number: 20140195007
    Abstract: A powered leg prosthesis includes powered knee joint comprising a knee joint and a knee motor unit for delivering power to the knee joint. The prosthesis also includes a prosthetic lower leg having a socket interface coupled to the knee joint and a powered ankle joint coupled to the lower leg opposite the knee joint comprising an ankle joint and an ankle motor unit to deliver power to the ankle joint. The prosthesis further includes a prosthetic foot coupled to the ankle joint, at least one sensor for measuring a real-time input, and at least one controller for controlling movement of the prosthesis based on the real-time input.
    Type: Application
    Filed: January 6, 2014
    Publication date: July 10, 2014
    Applicant: VANDERBILT UNIVERSITY
    Inventors: Michael Goldfarb, Huseyin Atakan Varol, Frank Charles Sup, IV, Jason E. Mitchell, Thomas J. Withrow
  • Patent number: 8771370
    Abstract: An orthopedic device includes two components that are configured to be movable relative to on another (e.g., longitudinally translatable, pivotable, etc.). The relative movement of the two components is transmitted as unidirectional mechanical energy by means of a transmitting mechanism which includes an energy accumulator connected to a generator. The mechanical energy is thereby converted to electric power.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: July 8, 2014
    Assignee: Otto Bock Healthcare GmbH
    Inventors: Erik Albrecht-Laatsch, Ralf Carstens, Jens Northemann, Matthias Schilling
  • Patent number: 8771371
    Abstract: A prosthetic device comprises a connecting portion for connecting to a person using vacuum; and a control structure for controlling an amount of vacuum used to connect the connecting portion to the person, wherein the control structure includes: a vacuum pump (502) in fluid communication with the connecting portion for controlling an amount of vacuum used to connect the connecting portion to the person, a vacuum sensing mechanism (506) configured to provide signals indicating the amount of vacuum in the connecting portion, a movement sensing mechanism (509) configured to provide signals indicating at least one of acceleration of the prosthetic device, orientation of the prosthetic device, force experienced by the prosthetic device, and a direction of force experienced by the prosthetic device, and a controller configured to receive signals from the vacuum sensing mechanism (506) and the movement sensing mechanism (509), and to control the vacuum pump (502).
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: July 8, 2014
    Assignee: Hanger Orthopedic Group, Inc.
    Inventor: Michael E. Tompkins
  • Patent number: 8747486
    Abstract: A humanoid electric hand includes a metacarpophalangeal joint and an interphalangeal joint. The interphalangeal joint bends or extends together with a bending or extending operation of the metacarpophalangeal joint, by linking a finger motor for driving a finger to a worm deceleration mechanism, an output gear of which moves rotationally to bend or extend the metacarpophalangeal joint, and by linking the metacarpophalangeal joint to the interphalangeal joint via a link mechanism.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: June 10, 2014
    Assignees: Gifu University, Dainichi, Co., Ltd.
    Inventors: Haruhisa Kawasaki, Tetuya Mouri, Tatuya Hara, Hisayuki Shimomura
  • Publication number: 20140156025
    Abstract: A prosthetic or orthotic system including a magnetorheological (MR) damper. The MR damper may be configured to operate in shear mode. In one embodiment, the MR damper includes a rotary MR damper. A controller is configured to operate the damper. A mobile computing device may be adapted to intermittently communicate configuration parameters to the controller. A method of configuring a prosthetic or orthotic system is also disclosed.
    Type: Application
    Filed: November 15, 2013
    Publication date: June 5, 2014
    Applicant: OSSUR hf
    Inventors: Charles R. Bisbee, III, Scott B. Elliott, Magnus Oddsson
  • Patent number: 8734528
    Abstract: An artificial foot and ankle joint consists of a curved leaf spring foot member having a heel extremity and a toe extremity, and a flexible elastic ankle member that connects the foot member for rotation at the ankle joint. An actuator motor applies torque to the ankle joint to orient the foot when it is not in contact with the support surface and to store energy in a catapult spring that is released along with the energy stored in the leaf spring to propel the wearer forward. A ribbon clutch prevents the foot member from rotating in one direction beyond a predetermined limit position. A controllable damper is employed to lock the ankle joint or to absorb mechanical energy as needed. The controller and sensing mechanisms control both the actuator motor and the controllable damper at different times during the walking cycle for level walking, stair ascent, and stair descent.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 27, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Kwok Wai Samuel Au, Daniel Joseph Paluska, Peter Dilworth
  • Patent number: 8736087
    Abstract: An apparatus for harvesting energy from motion of a human or animal body segment and providing the energy to an electrical load is disclosed. The apparatus comprises a generator operatively coupled to the body segment such that particular movement of the body segment causes the generator to output a generator current and to oppose the particular movement of the body segment with a generator torque. An electrical load is coupled to receive the generator current. A control system is operatively connected between the generator and the electrical load and is configured to control the generator torque during the particular movement of the body segment. Corresponding methods are also disclosed.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: May 27, 2014
    Assignee: Bionic Power Inc.
    Inventors: Clive Edward Mullins, Daniel Loren Hepler
  • Publication number: 20140121782
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Application
    Filed: January 9, 2014
    Publication date: May 1, 2014
    Applicant: iWalk, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, JR., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon, David Adams Garlow
  • Patent number: 8709097
    Abstract: A system and method associated with the movement of a limb. In one example, the system, such as a prosthetic or orthotic system, includes an actuator that actively controls, or adjusts, the angle between a foot unit and a lower limb member. The actuator preferably selectively locks during a desired phase in a gait cycle and minimizes friction against a rotor of the actuator. A processing module may control movement of the actuator based on data obtained from a sensor module. For instance, data may include information relating to a user's gait and may be used to adjust the foot unit to substantially mimic the movement of a natural ankle. The system may accommodate level ground walking, traveling up/down stairs or sloped surfaces, and various other user movements. In addition, the processing module may receive user input, such as a heel height, or display output signals through an external interface.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: April 29, 2014
    Assignee: Össur hf
    Inventors: Helgi Jónsson, Arinbjörn Viggo Clausen, Gudni Ingimarsson, Christophe Lecomte, Larus Sigfusson, Heiörún Gígja Ragnarsdóttir
  • Publication number: 20140114437
    Abstract: In some embodiments of a prosthetic or orthotic ankle/foot, a prediction is made of what the walking speed will be during an upcoming step. When the predicted walking speed is slow, the characteristics of the apparatus are then modified so that less net-work that is performed during that step (as compared to when the predicted walking speed is fast). This may be implemented using one sensor from which the walking speed can be predicted, and a second sensor from which ankle torque can be determined. A controller receives inputs from those sensors, and controls a motor's torque so that the torque for slow walking speeds is lower than the torque for fast walking speeds. This reduces the work performed by the actuator over a gait cycle and the peak actuator power delivered during the gait cycle.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: iWalk, Inc.
    Inventors: Hugh Miller Herr, Richard J. Casler, JR., Zhixiu Han, Christopher Eric Barnhart, Gary Girzon
  • Patent number: 8702811
    Abstract: A prosthetic or orthotic system including a sensor module and a processing module usable to determine a terrain variable, such as a terrain transition. In certain examples, the system is capable of anticipating a terrain transition prior to the user experiencing the terrain transition, which may include, for instance, a transition from level ground walking to walking on stairs or may include a change in a slope of the ground surface. In certain embodiments, the system advantageously monitors a posture and/or movement of the patient to anticipate the terrain transition. Furthermore, the system may control an actuator to appropriately adjust the prosthetic or orthotic device to encounter the anticipated terrain transition.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 22, 2014
    Assignee: Össur hf
    Inventors: Heidrun Gigja Ragnarsdottir, Arinbjorn Viggo Clausen
  • Publication number: 20140107805
    Abstract: A prosthetic or robot part, comprising a base, a proximal and a distal. The proximal is mounted on the base so as to be rotatable thereabout in a given sense. The distal is mounted on the proximal so as to be rotatable thereabout in the same sense to effect a gripping action of the prosthetic or robot part. The proximal and the distal are rotatable in the opposite sense to release the grip. One part of a drive of the part is pivoted to the base about a base pivot axis. Another part of the drive is pivoted to the distal about a distal pivot axis. The distal is also pivoted to the proximal about the said distal pivot axis. Thus the proximal, the distal and the said another part of the drive are all pivotable relative to one another about the said distal pivot axis.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 17, 2014
    Applicant: RSL STEEPER GROUP LIMITED
    Inventor: Edward William VARLEY
  • Patent number: 8696763
    Abstract: The invention provides a prosthetic apparatus (10) and method of operating the same. The prosthetic apparatus (10) includes an upper limb prosthesis (12) comprising at least one mechanically operable digit (14) and at least one sensor configured to be disposed on the user. The at least one sensor being operative to sense a path described by the sensor during movement thereof by the user and to provide a sensed path output in dependence upon the path. The apparatus (10) also includes a processor (24) operative to provide for actuation of the at least one digit (14) in dependence on the sensed path output having a predetermined characteristic and such that the at least one digit (14) moves in a predetermined fashion.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: April 15, 2014
    Assignee: Touch EMAS Ltd.
    Inventor: Hugh Gill
  • Publication number: 20140088726
    Abstract: A robotic prosthesis alignment device is disclosed that may automatically move the alignment of a prosthesis socket in relation to a prosthesis shank. The robotic prosthesis alignment device provides automatic translation in two axes. The robotic prosthesis alignment device includes angulation mechanics that automatically provide for plantarflexion, dorsiflexion, inversion, and eversion of the foot and shank with respect to the prosthesis socket. A surrogate device is also disclosed that can replicate the alignment achieved with the robotic prosthesis alignment device.
    Type: Application
    Filed: April 1, 2013
    Publication date: March 27, 2014
    Applicant: ORTHOCARE INNOVATIONS LLC
    Inventors: David Alan Boone, Ben Gilbert Macomber
  • Publication number: 20140088727
    Abstract: In a communication system for controlling a powered human augmentation device, a parameter of the powered device is adjusted within a gait cycle by wirelessly transmitting a control signal thereto, whereby the adjusted parameter falls within a target range corresponding to that parameter. The target range is selected and the device parameters are controlled such that the powered device can normalize or augment human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain and, in effect, provides at least a biomimetic response to the wearer of the powered device.
    Type: Application
    Filed: November 26, 2013
    Publication date: March 27, 2014
    Applicant: iWalk, Inc.
    Inventors: Zhixiu Han, Christopher Eric Barnhart, David Adams Garlow, Adrienne Bolger, Hugh Miller Herr, Gary Girzon, Richard J. Casler, JR., Jennifer T. McCarthy
  • Patent number: 8679192
    Abstract: The invention relates to a system for acquiring and processing myoelectric signals in order to control a prosthetic arm, comprising: a pair of electrodes positioned in a muscle in the residual limb of an arm that has been amputated in order to detect myoelectric signals; an electrode positioned at a distance from said pair of electrodes, which acts as an earth system; a myoelectric signal conditioning means; and a prosthesis controlling and processing means which receives conditioned signals from the conditioning means. According to the invention, the prosthesis controlling and processing means includes: a comparison means for comparing a muscle contraction time and a muscle contraction voltage with a threshold time and a threshold voltage, respectively; and an activation means for activating at least one motor which produces a predetermined movement of the prosthesis in response to an activation signal transmitted from the aforementioned comparison means.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: March 25, 2014
    Inventor: Luis Armando Bravo Castillo
  • Publication number: 20140067083
    Abstract: A controller for a prosthetic device includes a processing section, an interface section connected to the processing section, and a power supply connected to both the processing section and the interface section. A dorsal indicator and a dorsal switch are disposed in a hand portion of the prosthetic device, and are both connected to the interface section.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Douglas S. Wenstrand, Stuart D. Harshbarger
  • Patent number: 8663339
    Abstract: The invention relates to an adjusting device for a prosthetic device, having a drive (1) for adjusting at least one first component of the prosthetic device relative to a second component, wherein the drive (1) is designed as a permanent magnet electric motor and comprises a stator (4) having exciter coils (3) and a rotor (2) having at least one permanent magnet is an armature magnet (5). At least one holding magnet (6) in the form of a permanent magnet is arranged on the stator (4) to form a cogging torque for the rotor (2).
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: March 4, 2014
    Assignee: Otto Bock Healthcare Products GmbH
    Inventors: Josef Inschlag, Marcus Eder
  • Patent number: 8661893
    Abstract: A prosthetic component suitable for long-term implantation is provided. The prosthetic component measures a parameter of the muscular-skeletal system is disclosed. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone, and at least one sensor. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. The sensor couples to the support surface of the first structure. The support surface of the first structure is compliant. The first and second structure are coupled together housing the at least one sensor. In one embodiment, the first and second structure are welded together forming the hermetic seal that isolates the at least one sensor from an external environment. The at least one sensor can be a pressure sensor for measuring load and position of load.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 4, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Chase
  • Patent number: 8657883
    Abstract: Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: February 25, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Timothy E. McKnight, Anthony Johnson, Kenneth J. Moise, Jr., Milton Nance Ericson, Justin S. Baba, John B. Wilgen, Boyd McCutchen Evans, III
  • Patent number: 8657886
    Abstract: Systems and methods for sensing actuating a prosthetic ankle are disclosed. In one example, the system, such as an actuated prosthetic ankle joint, detects that the user has moved to a relaxed position, such as sitting, reclining, crawling, or leaning. In response, the actuated prosthetic ankle joint actively adjusts the angle between the members of the ankle to a relaxed state. The system may further detect when the user has moved to exit the relaxed position, and may actively adjust the angle between the members of the ankle to an exit state.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: February 25, 2014
    Assignee: Össur hf
    Inventors: Arinbjörn V Clausen, Heidrun Gigja Regnarsdottir, Helgi Jonsson
  • Patent number: 8652217
    Abstract: Prosthetic devices having vacuum components operative to evacuate the interior of a prosthetic socket thereof, and control systems for use therewith. The evacuation devices preferably include at least an electrically powered vacuum pump and associated power source, and a vacuum accumulator connected to the vacuum pump. Associated control systems may be of various designs and may employ wired or wireless communication. Control of an evacuation device may be based on vacuum level, residual limb volume, residual limb motion, user activity level or other device parameters.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: February 18, 2014
    Assignee: The Ohio Willow Wood Company
    Inventors: Michael L. Haynes, James M. Colvin, Christopher T. Kelley, Mark W. Ford, Mark W. Groves, Jeffrey A. Denune
  • Patent number: 8652218
    Abstract: A powered leg prosthesis includes powered knee joint comprising a knee joint and a knee motor unit for delivering power to the knee joint. The prosthesis also includes a prosthetic lower leg having a socket interface coupled to the knee joint and a powered ankle joint coupled to the lower leg opposite the knee joint comprising an ankle joint and an ankle motor unit to deliver power to the ankle joint. The prosthesis further includes a prosthetic foot coupled to the ankle joint, at least one sensor for measuring a real-time input, and at least one controller for controlling movement of the prosthesis based on the real-time input.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: February 18, 2014
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Huseyin Atakan Varol, Frank Charles Sup, IV, Jason Mitchell, Thomas J. Withrow
  • Publication number: 20140025182
    Abstract: A small motor controller (SMC) system includes a motor configured to control a position of a rotor, a sensor configured to detect position information of the rotor by detecting a feature on the rotor, the sensor including a detection zone having a first side and a second side, and a motor control unit. The motor control unit is configured to determine a position of the rotor corresponding to one of the first side of the detection zone and the second side of the detection zone based on whether the feature on the rotor is detected crossing the first side or the second side, respectively.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 23, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Kapil D. Katyal, Matthew P. Para, Andrew J. Harris, Harry A. Eaton
  • Patent number: 8623097
    Abstract: An implant system comprising a functional implant (5, 6) that fulfills a medical function, particularly a bone implant, which is formed at least in part of a metal material that can be degraded by the body (2) of the implant wearer, as well as a control device (7) for controlling the degradation behavior of the functional implant (5, 6). The control device (7) has a counter-electrode (10) to the functional implant (5, 6), and a voltage source (8) for making available a polarization voltage (?U) between functional implant (5, 6, 15) and counter-electrode (10), to control the degradation behavior of the functional implant (5, 6).
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: January 7, 2014
    Assignee: Biotronik VI Patent AG
    Inventors: Bodo Gerold, Bjoern Klocke, Matthias Fringes
  • Patent number: 8617254
    Abstract: A prosthetic or orthotic system including a magnetorheological (MR) damper. The MR damper may be configured to operate in shear mode. In one embodiment, the MR damper includes a rotary MR damper. A controller is configured to operate the damper. A mobile computing device may be adapted to intermittently communicate configuration parameters to the controller. A method of configuring a prosthetic or orthotic system is also disclosed.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: December 31, 2013
    Assignee: Ossur hf
    Inventors: Charles R Bisbee, III, Scott B Elliott, Magnus Oddson
  • Patent number: 8598815
    Abstract: Torsional loads can impart painful and potentially injurious shear stresses upon residual limb soft tissues in lower limb amputees. To protect the soft tissues, a controllable transverse rotation adapter (TRA) has been developed that permits rotation of the prosthetic socket relative to the prosthetic foot, relieving some of the rotational loads experienced by the residual limb, and controlling either the stiffness resisting the transverse rotational torque, or the torque. This TRA uses series elastic actuator (SEA) technology and includes a prime mover, a speed reduction device, and a torsion spring mounted in series. By measuring a displacement of the spring (e.g., using a strain gauge), motor current, and the motor shaft position, the load torque and position can be used to calculate actual stiffness or applied torque. The motor position is then adjusted relative to the load, to control the effective stiffness or torque.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: December 3, 2013
    Assignee: University of Washington Through Its Center for Commercialization
    Inventors: Brian Glaister, Glenn Klute
  • Patent number: 8597370
    Abstract: Artificial hand suitable for robotic applications or as a prosthesis, comprising a frame with a thumb and at least two fingers, and having a motor drive for adjusting the thumb and the fingers with respect to the frame, wherein the motor drive has a housing and an axle which is rotatably positioned within the housing, and wherein the housing is mounted in a first bearing supported by the frame to enable that the housing may rotate with regard to the frame, and that the thumb and fingers are drivingly connected with the housing and the axle respectively.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: December 3, 2013
    Assignee: Lacquey B.V.
    Inventors: Martijn Wisse, Freerk Wilbers, Cory Meijneke
  • Publication number: 20130317626
    Abstract: An apparatus for harvesting energy from motion of a prosthetic limb, wherein the prosthetic limb has motion in at least one degree of freedom, may include a piston configured to receive an input motion and provide an output motion when a first motion in a degree of freedom of the prosthetic limb causes pressure and motion of hydraulic fluid. The apparatus may include an electromagnetic motor for converting mechanical energy of the output motion into corresponding electrical energy delivered to an electrical load and a variable-impedance energy harvesting circuit across terminals of the motor.
    Type: Application
    Filed: May 25, 2012
    Publication date: November 28, 2013
    Applicant: KCF TECHNOLOGIES, INC.
    Inventors: Jacob J. LOVERICH, David R. Kraige, Jeremy E. Frank, Richard T. Geiger
  • Patent number: 8585775
    Abstract: The present invention provides a higher-performance assist device which is safer by using a wireless charging technique. The assist device includes a detecting portion and an assist device driving portion. The detecting portion includes a sensor, a first transmitting/receiving circuit, a first data processing circuit, a first charging circuit, and a first battery. The assist device driving portion includes a driving portion, a second data processing circuit, a second transmitting/receiving circuit, a second charging circuit, and a second battery. Electromagnetic waves are transmitted from the second transmitting/receiving circuit provided in the assist device driving portion, and the first transmitting/receiving circuit provided in the detecting portion receives the electromagnetic waves.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: November 19, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takashi Hirota, Mayumi Yamaguchi, Konami Izumi
  • Patent number: 8579991
    Abstract: A hand prosthesis includes a chassis to which at least one finger prosthesis is articulated. The finger prosthesis is swivelable about at least one swiveling axis by a drive that is connected to the finger prosthesis via a force transmission device. The force transmission device does not yield to tension and is flexible.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: November 12, 2013
    Assignee: Otto Bock Healthcare GmbH
    Inventor: Gregor Puchhammer