Method Of Teaching Use Of Artificial Heart Or Part Thereof Patents (Class 623/3.3)
  • Patent number: 11460030
    Abstract: A connection system for an implantable blood pump including a pump housing having an impeller disposed therein and a motor housing including a motor disposed therein, the motor housing spaced a distance from the pump housing. A flexible outer sheath couples the pump housing to the motor housing, the outer sheath defining a maximum total length between 7 and 10 centimeters. An inner shaft is coaxial with the outer sheath and couples the motor to the impeller.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: October 4, 2022
    Assignee: Heartware Inc.
    Inventors: Charles R. Shambaugh, Jeffrey A. LaRose, Mustafa E. Taskin
  • Patent number: 8864644
    Abstract: A ventricular assist device incorporating a rotary pump such as a rotary impeller pump implantable in fluid communication with a ventricle and an artery to assist blood flow from the ventricle to the artery. The device includes a pump drive circuit supplying power to the pump, one or more sensors for sensing one or more electrophysiological signals such as electrogram signals in and a signal processing circuit connected to the sensors and to the pump drive circuit. The signal processing circuit is operative to detect the sensor signals and control power supplied to the pump from the pump drive circuit so that the pump runs in a pulsatile mode, with a varying speed synchronized with the cardiac cycle. When an arrhythmia is detected, the pump drive circuit may also run the pump in an atrial arrhythmia mode or a ventricular arrhythmia mode different from the normal pulsatile mode.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: October 21, 2014
    Assignee: HeartWare, Inc.
    Inventor: Barry Yomtov
  • Patent number: 8834343
    Abstract: A heart support device for pulsatile delivery of blood comprising a first and a second ventricle and a pump. Both ventricles comprises a fluid chamber and a blood-conveying chamber, wherein each fluid chamber can be filled with a fluid or emptied by way of the pump in such a way that an expansion or contraction of the fluid chamber occurs. In an expansion of the fluid chamber of a ventricle, a compression of the blood-conveying chamber of the same ventricle takes place, wherein a rigid pressure plate is disposed between a fluid chamber and the respective blood-conveying chamber, said pressure plate being able to move in the direction of the respective blood-conveying chamber.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: September 16, 2014
    Assignee: Deutsches Zentrum Fur Luft-Und
    Inventors: Bernhard Vodermayer, Harald Wagner, Wolfgang Schiller, Thomas Schmid
  • Patent number: 8649853
    Abstract: Systems and methods to monitor cardiac function using information indicative of lead motion are described. In an example, a system including an implantable medical device can include a receiver circuit configured to be electrically coupled to conductor comprising a portion of an implantable lead and be configured to obtain information indicative of a movement of the implantable lead due at least in part to a motion of a heart. The system can include a sensing circuit configured to obtain information indicative of cardiac electrical activity. The system can include a processor circuit configured to construct a template representative of a contraction of the heart, where the template can be constructed using the information indicative of the movement of the implantable lead due at least in part to the motion of the heart during the contraction, and using the information indicative of the cardiac electrical activity sensed during the contraction.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: February 11, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert J. Sweeney, Allan C. Shuros, Krzysztof Z. Siejko, David C. Olson, Frank Ingle
  • Patent number: 8641594
    Abstract: One aspect of an intravascular ventricular assist device is an implantable blood pump where the pump includes a housing defining a bore having an axis, one or more rotors disposed within the bore, each rotor including a plurality of magnetic poles, and one or more stators surrounding the bore for providing a magnetic field within the bore to induce rotation of each of the one or more rotors. Another aspect of the invention includes methods of providing cardiac assistance to a mammalian subject as, for example, a human. Further aspects of the invention include rotor bodies having helical channels formed longitudinally along the length of the body of the rotor where each helical channel is formed between peripheral support surface areas facing radially outwardly and extending generally in circumferential directions around the rotational axis of the rotor.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: February 4, 2014
    Assignee: Heartware, Inc.
    Inventors: Jeffrey A. LaRose, Charles R. Shambaugh, Jr., Daniel G. White, Richard A. Marquis, Steven A. White, Palanivelu Thyagarajan
  • Patent number: 8303482
    Abstract: A physiologic control system and method for controlling a blood pump system such as a VAD system. The pump system includes, for example, a blood pump and a controller for controlling the pump. The system may further include a flow measurement device. A desired peak to peak flow amplitude is determined, and then adjusted in response to various system parameters either manually or automatically by the system.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: November 6, 2012
    Assignee: Micromed
    Inventors: Heinrich Schima, Michael Vollkron, Gino Morello, Robert Benkowski
  • Patent number: 7650179
    Abstract: In a computerized workflow method for stent planning and conducting a stenting procedure, characteristics of a lesion to be stented are determined from a 3D planning image of the region and selection of an actual stent for stenting the lesion is made with computer-assisted analysis of the lesion based on the characteristics. A virtual stent is electronically generated based on the actual stent, and, using the virtual stent, a best position for the actual stent, for effectively stenting the lesion, is determined. A real time 2D image of the lesion-containing region is displayed during the stenting procedure, with the virtual stent included therein at the aforementioned best position. A physician manually guides the actual stent relative to the lesion during the stenting procedure until the position of the actual stent, as seen in the displayed real time 2D image, coincides with the virtual stent in that image.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 19, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Redel, Estelle Camus
  • Patent number: 6450171
    Abstract: The symptoms of congenital heart failure are addressed in this surgical procedure for mounting a patch in the ventricle of the heart to reduce ventricular volume. Placement of the patch is facilitated by palpating a beating heart to identify akinetic, although normal appearing, tissue. An apical patch having an oval configuration facilitates return of the heart to a normal apical shape which enhances muscle fiber efficiency and a normal writhing pumping action. An inferior patch having a triangular configuration can also be used. The patches include a semi-rigid ring, and a circumferential rim to address bleeding. Patch placement is further enhanced by creating a Fontan-type neck and use of pledged sutures. Intraoperative vascularization and valve replacement is easily accommodated. Increased injection fraction, reduced muscle stress, improved myocardial protection, and ease of accurate patch placement are all achieved with this procedure.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: September 17, 2002
    Assignee: CorRestore, Inc.
    Inventors: Gerald D. Buckberg, Constantine L. Athanasuleas