By Injecting Gas Below Surface Of Molten Glass Patents (Class 65/134.5)
  • Patent number: 11820699
    Abstract: An apparatus for manufacturing glass includes a furnace. A doghouse of the furnace receives and melts solid-glass forming material using one or more submerged combustion burners. An elongated tank positioned downstream of the doghouse includes a melting chamber, a refining chamber, and a thermal conditioning. The melting chamber has in inlet through which molten glass is received from the doghouse. The refining chamber is positioned downstream of the melting chamber and receives molten glass from the melting chamber. The thermal conditioning chamber is positioned downstream of the refining chamber and receives molten glass from the refining chamber. Additionally, the thermal conditioning chamber delivers molten glass to a glass forming machine.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 21, 2023
    Assignee: Owens-Brockway Glass Container Inc.
    Inventors: Zhongming Wang, Carl Lucas Fayerweather, Kevin Xin Yu, Shivakumar S. Kadur, Dinesh Gera
  • Patent number: 10414682
    Abstract: The invention relates to a process and a device for manufacturing molten glass comprising from upstream to downstream a furnace for melting and fining glass equipped with cross-fired overhead burners, then a conditioning basin supplied with glass by the furnace, the dimensions of this manufacturing device being such that K is higher than 3.5, the factor K being determined from the dimensions of the device. The invention makes it possible to dimension a device for melting glass so that it is smaller and consumes less energy while producing high quality glass.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: September 17, 2019
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Olivier Mario, Arnaud Le Verge, Jean-Marie Combes
  • Patent number: 9016094
    Abstract: A float glass furnace includes a melting furnace which heats raw materials to form a molten glass batch, a working end where the molten glass batch is cooled, at least one regenerator which introduces heated combustion air into the melting furnace through a port neck, and at least one oxygen lance in or proximate the port neck. The oxygen lance includes a lance pipe in fluid communication with the port neck, an outer shell surrounding the lance pipe, an inlet water passageway in fluid communication with a channel(s) between an exterior surface of the lance pipe and an interior surface of the outer shell, and an outlet water passageway in fluid communication with the channel(s).
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: April 28, 2015
    Assignee: Guardian Industries Corp.
    Inventors: Kevin Siess, David Doerschug, Russell Parker
  • Patent number: 8973405
    Abstract: Apparatus including a flow channel defined by a floor, roof, and sidewall structure connecting the floor and roof. One or more combustion burners is positioned in either the roof, the sidewall structure, or both, and transfer heat to a molten mass of glass containing bubbles having a bubble atmosphere flowing through the flow channel. The burners contribute to formation of a channel atmosphere above the molten glass. Apparatus includes a device, at least a portion of which is positionable under a level of the molten glass in the flow channel, configured to emit a composition into the molten glass under the level to intimately contact the composition with the molten glass and bubbles therein. The composition diffuses into the bubbles to form modified atmosphere bubbles sufficiently different from the channel atmosphere to increase diffusion of a species in the channel atmosphere into the modified atmosphere bubbles.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: March 10, 2015
    Assignee: Johns Manville
    Inventors: Mark William Charbonneau, Kevin Patrick McHugh
  • Patent number: 8973400
    Abstract: A method comprises flowing an oxidant and a fuel into a submerged combustion burner in a glass tank furnace, the glass tank furnace receiving a feed of glass forming material and producing molten glass, the burner and furnace comprising a melting system. The melting system has a variable system vibration and/or oscillation due to the nature of submerged combustion. One method includes predicting a value of at least one property, such as viscosity, of the molten glass using the variable system vibration and/or oscillation.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: March 10, 2015
    Assignee: Johns Manville
    Inventors: Mark William Charbonneau, Bryan Keith Nesti
  • Patent number: 8875544
    Abstract: Apparatus includes a first and second conduits configured to form an annulus between them. An adjustable structure includes a body having an upper surface, a lower surface, and a circumferential surface abutting a portion of the internal surface of the second conduit. The structure is adjustable axially in relation to and removably attached to the first conduit via a hub. The hub defines a central passage for fuel or oxidant. The body has one or more non-central through passages configured such that flow of an oxidant or fuel therethrough causes the fuel or oxidant to intersect flow of fuel or oxidant exiting from the central passage in a region above the upper surface of the body.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: November 4, 2014
    Inventor: Mark William Charbonneau
  • Publication number: 20140090423
    Abstract: A submerged combustion melter includes a floor, a roof, and a sidewall structure connecting the floor and roof defining an internal space. A first portion of the internal space defines a melting zone, and a second portion defines a fining zone immediately downstream of the melting zone. One or more combustion burners in either the floor, roof, the sidewall structure, or any combination of these, are configured to emit the combustion gases from a position under a level of, and positioned to transfer heat to and produce, a turbulent molten mass of glass containing bubbles in the melting zone. The fining zone is devoid of combustion burners or other apparatus or components that would increase turbulence above that in the melting zone. The melter may include a treating zone that stabilizes or destabilizes bubbles and/or foam. Processes of using the melters are a feature of the disclosure.
    Type: Application
    Filed: October 3, 2012
    Publication date: April 3, 2014
    Applicant: Johns Manville
    Inventors: Mark William Charbonneau, Kevin Patrick McHugh, Aaron Morgan Huber
  • Patent number: 8650914
    Abstract: A method for recycling glass mat waste, wound rovings, and other products includes providing a source of glass mat, or a plurality of rovings, for example on a roll, and routing the glass mat or rovings into a submerged combustion melter. An unwind system and a pair of powered nip rolls, powered conveyors, or other arrangement may work in combination to provide a substantially consistent rate of material into the melter. The melter may operate under less than atmospheric pressure to avoid fumes escaping the melter. A slot in the melter allows ingress of the glass mat or rovings into the melter, and a glass mat former such as a folder may be used to ensure that the mat fits through the slot. Alternatively, the glass mat may be cut by a slitter prior to entering the slot.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: February 18, 2014
    Assignee: Johns Manville
    Inventor: Mark William Charbonneau
  • Patent number: 8621889
    Abstract: The invention relates to a process for manufacturing compounds based on one or more silicates of alkali metals and/or of alkaline-earth metals, optionally in the form of mixed silicates that combine at least two of these elements, said process involving: (i) preferably a conversion reaction (1) in which halides of said alkali metals and/or of said rare earths and/or of said alkaline-earth metals are converted into the corresponding sulfates; (iii) a conversion reaction (2) in which said sulfates together with silica are converted into the corresponding silicates, the heat supply needed for this conversion being provided, at least in part, by a combustion reaction (3) using a submerged burner or a plurality of submerged burners.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 7, 2014
    Assignee: Saint-Gobain Glass France
    Inventors: Pierre Jeanvoine, Arnaud Le Verge
  • Patent number: 8561430
    Abstract: The melting of glass batch materials by at least one submerged burner generating a flame within the molten batch materials. At least one gas inlet separate from the burner is close enough to the burner to interact with the flame. The separate influx interacts with the flame of the burner to regulate it, thereby reducing the risk of molten materials entering the burner.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: October 22, 2013
    Assignees: Saint-Gobain Glass France, Saint-Gobain Isover
    Inventors: Biagio Palmieri, Frederic Lopepe
  • Publication number: 20130219968
    Abstract: A method for fining a glass melt comprises providing a glass melt in a melting vessel, moving the glass melt to a fining vessel via a first channel, and physically introducing gas bubbles to the glass melt in the fining vessel to form a fined glass, wherein the melting vessel and the fining vessel are in a horizontal orientation with respect to each other.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 29, 2013
    Inventors: Gilbert De Angelis, Megan Aurora DeLamielleure, Guido Peters
  • Patent number: 8498320
    Abstract: A melting furnace includes a gas supplying unit configured to protrude inwardly of the melting furnace to supply a gas to the melting furnace, the gas supplying unit including a gas supplying pipe configured to penetrate the melting furnace to protrude inwardly of the melting furnace and configured to have a nozzle hole formed at a front end thereof; and a cooling passage pipe provided outside the gas supplying pipe to include a second cooling passage through which a cooling liquid flows, the second cooling passage being directly connected to a first cooling passage through which the cooling liquid is circulated along a wall of the melting furnace.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: July 30, 2013
    Assignee: Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: Deuk Man Kim, Hyun Je Cho, Seok Mo Choi, Cheon Woo Kim, Tae Won Hwang
  • Publication number: 20130086950
    Abstract: Submerged combustion glass manufacturing systems include a melter having a floor, a roof, a wall structure connecting the floor and roof, and an exhaust passage through the roof. One or more submerged combustion burners are mounted in the floor and/or wall structure discharging combustion products under a level of material being melted in the melter and create turbulent conditions in the material. The melter exhausts through an exhaust structure connecting the exhaust passage with an exhaust stack. The exhaust structure includes a barrier defining an exhaust chamber having an interior surface, the exhaust chamber having a cross-sectional area greater than that of the exhaust stack but less than the melter. The barrier maintains temperature and pressure in the exhaust structure at values sufficient to substantially prevent condensation of exhaust material on the interior surface.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Inventors: Aaron Morgan Huber, Marlon Keith Martin
  • Publication number: 20130072371
    Abstract: A foam and frothy glass mixture that forms on a pool of molten glass and inhibits heat transfer between the overhead flames and the pool of molten glass is decreased, if not eliminated, by spreading a glass fluxing agent, e.g. but not limiting to the invention, sodium sulfate over the foam and/or frothy glass mixture.
    Type: Application
    Filed: March 13, 2012
    Publication date: March 21, 2013
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Lawrence E. Jansen, Rodney K. Dunn, Robert E. Eakin, Gerald DiGiampaolo
  • Publication number: 20130038940
    Abstract: A soda-lime-silica glass for solar collector cover plates and solar mirrors has less than 0.010 weight percent total iron as Fe2O3, a redox ratio of less than 0.350, less than 0.0025 weight percent CeO2, and spectral properties that include a visible transmission, and a total solar infrared transmittance, of greater than 90% at a thickness of 5.5 millimeters, and reduced solarization. In one non-limiting embodiment of invention, the glass is made by heating a pool of molten soda-lime-silica with a mixture of combustion air and fuel gas having an air firing ratio of greater than 11, or an oxygen firing ratio of greater than 2.31. In another non-limiting embodiment of the invention, streams of oxygen bubbles are moved through a pool of molten glass. In both embodiments, the oxygen oxidizes ferrous iron to ferric iron to reduce the redox ratio.
    Type: Application
    Filed: October 17, 2012
    Publication date: February 14, 2013
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventor: PPG INDUSTRIES OHIO, INC.
  • Patent number: 8365555
    Abstract: In the method and system for producing glass reduction of reduction-sensitive ingredients in the glass is reduced or preferably is avoided during the melting and fining processes. The glass preferably has a high refractive index. During the process an oxidizing agent is inducted into a fining vessel and preferably also into a melt crucible made of a slit skull that is cooled by a cooling agent. The oxidizing agent is preferably oxygen. Furthermore a system for conducting the method is also described.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: February 5, 2013
    Assignee: Schott AG
    Inventors: Michael Leister, Uwe Kolberg, Simone Monika Ritter, Silke Wolff
  • Patent number: 8347655
    Abstract: In the apparatus for producing glass reduction of reduction-sensitive components in the glass melt is reduced or preferably is prevented during the melting and/or fining processes by introducing an oxidizing agent into the glass melt. The apparatus has a melt crucible, a fining vessel, and a device for conducting oxygen and/or ozone into the glass melt in the melt crucible and/or fining vessel, in order to suppress reduction of reduction-sensitive components of the glass melt. A preferred embodiment of the apparatus has a metallic skull crucible, which includes the melt crucible and/or the fining vessel. The apparatus preferably includes a homogenization unit connected to the fining vessel to receive glass melt from the fining vessel in order to further process the glass melt after refining.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: January 8, 2013
    Assignee: Schott AG
    Inventors: Michael Leister, Uwe Kolberg, Simone Monika Ritter, Silke Wolff
  • Patent number: 8196432
    Abstract: The invention relates to a furnace for the continuous melting of a composition comprising silica, the said furnace comprising at least two tanks in series, said tanks each comprising at least one burner submerged in the melt. The invention also relates to the process for manufacturing compositions comprising silica using the furnace, the silica and the fluxing agent for the silica being introduced into the first tank. The invention makes it possible to produce glass color frits, tile frits and enamel with a high productivity, low temperatures and short transition times.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: June 12, 2012
    Assignee: Saint-Gobain Glass France
    Inventors: Remi Jacques, Pierre Jeanvoine, Biagio Palmieri
  • Patent number: 8168552
    Abstract: The subject of the invention is a method of refining glass for which the temperature (T log 2) corresponding to a viscosity of 100 poise (10 Pa·s) is greater than or equal to 1480° C., characterized in that sulfides are used as a refining agent. It also relates to the glass article capable of being obtained by this method.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: May 1, 2012
    Assignee: Saint-Gobain Glass France
    Inventors: Laurent Joubaud, Dorothee Martin
  • Publication number: 20120100058
    Abstract: A process for producing silicon which comprises: bringing molten silicon containing an impurity into contact with molten salt in a vessel to react the impurity contained in the molten silicon with the molten salt; removing the impurity from the system.
    Type: Application
    Filed: January 3, 2012
    Publication date: April 26, 2012
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yoji ARITA, Takashi YONEDA
  • Patent number: 7823416
    Abstract: The glass composition of the present invention is an inorganic glass composition in which the volume ratio of helium with a mass number of 3 to helium with a mass number of 4, namely 3He/4He in the glass (0° C., 1 atm) is smaller than the volume ratio 3He/4He in the atmosphere. The method of producing a glass article of the present invention includes the steps of: melting a glass raw material by heating; homogenizing molten glass; forming the molten glass into a desired shape; and cooling the shaped glass to room temperature, in which helium with a certain mass ratio is dissolved in the glass material so that the glass article of the present invention is obtained.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: November 2, 2010
    Assignee: Nippon Electric Gas Co., Ltd.
    Inventors: Shigeaki Aoki, Hiroki Nagai, Masataka Takagi
  • Publication number: 20100175427
    Abstract: A glass melting furnace with a tank and a superstructure with a furnace crown and a total internal length (“Lg”), with a preheating zone for charging material and a combustion zone with burners. A single radiation wall is located between the preheating zone and the combustion zone such that the length of the preheating zone is between 15 and 35% of the total internal length and the length of the combustion zone is between 65 and 85% of the total internal length. The preheating zone is designed for use solely with preheating of the charging material within the furnace. The oxidation gas supply contains at least 85 volume percent oxygen and at least one outlet for the waste gases from the preheating zone is connected to the atmosphere without a heat exchanger.
    Type: Application
    Filed: April 25, 2008
    Publication date: July 15, 2010
    Inventor: Helmut Sorg
  • Patent number: 7730744
    Abstract: A process for producing a high-quality glass from highly reactive raw materials and a glass-melting apparatus for use therewith, comprising the step of charging a material for the glass to a molten glass in a heated vessel, (1) wherein an oxidizing gas is bubbled in the molten glass and a glass raw material that behaves as a reducing agent during being melted is charged into a position of the bubbling or (2) said vessel is filled with a dry ambient gas and while the ambient gas is allowed to flow to a liquid surface of the molten glass along an charging route of the glass raw material, the glass raw material is charged.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: June 8, 2010
    Assignee: Hoya Corporation
    Inventors: Kazuo Ogino, Jun Ichinose, Yasuko Katoh, Rieko Kudo
  • Patent number: 7691190
    Abstract: A method is shown for retarding the reactivity of quicklime. The quicklime is contacted with an aqueous solution of a boron-containing compound after being calcined. The boron-containing solution can be sprayed on the quicklime as it moves past on a conveyor belt. The retarded quicklime can be used for various industrial purposes and is especially useful as a reactant in a glass making operation.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: April 6, 2010
    Assignee: Chemical Lime Company
    Inventors: Kevin D. Ingram, Fred R. Huege
  • Publication number: 20090320525
    Abstract: Feed materials are melted in a furnace to form a glass melt in a first vessel, transferred through a first refractory metal connecting tube to a second vessel for conditioning, then transferred through a second refractory metal connecting tube to a third vessel where the glass melt is fined. A gas is bubbled into the glass melt through an injection tube disposed in the first connecting tube, optionally in the second connecting tube, and optionally in both connecting tubes. The gas may be used to mix the melt and/or recharge a fining agent with oxygen.
    Type: Application
    Filed: June 26, 2008
    Publication date: December 31, 2009
    Inventor: William Weston Johnson
  • Patent number: 7584632
    Abstract: Feed materials are melted in a furnace to form a glass melt at a first temperature T1, the glass melt containing at least one fining agent. The glass melt is cooled to a second temperature T2 less than T1, and an oxygen-containing gas is bubbled through the cooled melt. The glass melt is then re-heated to a third temperature T3 equal to or greater than the first temperature T1.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: September 8, 2009
    Assignee: Corning Incorporated
    Inventors: Keith Leonard House, Prantik Mazumder, Irene M Peterson, Susan Lee Schiefelbein
  • Patent number: 7497094
    Abstract: A charged glass raw material B is melted in a melting tank 10 by heating with a burner 31 and by heating with electrodes 12, to form molten glass G. Then, the molten glass G flows into a tank additionally provided as a noble gas dissolving tank 20 through a throat 40. The noble gas dissolving tank 20 is provided with a noble gas dissolving device 53, and the noble gas dissolving device 53 is provided with sixteen noble gas inlets 22 for introducing a helium or neon gas supplied to a hearth through heat resistant gas introduction tubes 21 into the noble gas dissolving tank 20. Bubbles of a helium gas A having a purity of 99% are blown out from the noble gas inlets 22 in volumes such that the bubbles have an average diameter of 80 mm or less in the molten glass G.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: March 3, 2009
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Masataka Takagi, Noriyuki Yoshida, Takamasa Akimoto, Tatuya Takaya
  • Patent number: 7451621
    Abstract: Bubbles of uniform diameter of 0.5 to 4 cm of gas such as helium are formed and pass into liquid such as molten glass by accumulating a sufficient volume of gas through a flow restriction into a space upstream of the point of injection at a controlled flow rate.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: November 18, 2008
    Assignee: Praxair Technology, Inc.
    Inventors: Nancy Newlin, legal representative, John F. Pelton
  • Patent number: 7448231
    Abstract: The invention relates to a process for manufacturing compounds based on one or more silicates of alkali metals and/or of alkaline-earth metals, optionally in the form of mixed silicates that combine at least two of these elements, said process involving: (i) preferably a conversion reaction (1) in which halides of said alkali metals and/or of said rare earths and/or of said alkaline-earth metals are converted into the corresponding sulfates; (iii) a conversion reaction (2) in which said sulfates together with silica are converted into the corresponding silicates, the heat supply needed for this conversion being provided, at least in part, by a combustion reaction (3) using a submerged burner or a plurality of submerged burners.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: November 11, 2008
    Assignee: Saint-Gobain Glass France
    Inventors: Pierre Jeanvoine, Arnaud Le Verge
  • Patent number: 7296441
    Abstract: The invention relates to an apparatus and a method for low-contamination melting of high-purity, aggressive and/or high-melting glass or glass-ceramic. According to the invention, for this purpose a melt is heated in a crucible or melting skull crucible by means of high-frequency radiation and is mixed or homogenized in the melting crucible. It is preferable for a gas nozzle, from which gas bubbles, e.g. oxygen bubbles (known as O2 bubbling), escape into the melt, to be provided at the base of the crucible. This alone makes it possible to achieve surprising multiple benefits in the melting skull crucible. Firstly, unmelted batch which drops into the melt in solid form, for example from above, is melted down more quickly as a result of more intensive mixing with the liquid fraction of the melt, secondly the temperature distribution in the melt is made more even, thirdly a uniform distribution or mixing of different glass constituents is achieved, and fourthly the redox state of the glass can be adjusted.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: November 20, 2007
    Assignee: Schott AG
    Inventors: Michael Leister, Ernst-Walter Schäfer, Leopold Eichberg, Volker Ohmstede
  • Patent number: 7225643
    Abstract: A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: June 5, 2007
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Hector Guerrero, Dennis Bickford
  • Patent number: 7191619
    Abstract: A process for producing a high-quality glass from highly reactive raw materials and a glass-melting apparatus for use therewith, comprising the step of charging a material for the glass to a molten glass in a heated vessel, (1) wherein an oxidizing gas is bubbled in the molten glass and a glass raw material that behaves as a reducing agent during being melted is charged into a position of the bubbling or (2) said vessel is filled with a dry ambient gas and while the ambient gas is allowed to flow to a liquid surface of the molten glass along an charging route of the glass raw material, the glass raw material is charged.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: March 20, 2007
    Assignee: Hoya Corporation
    Inventors: Kazuo Ogino, Jun Ichinose, Yasuko Katoh, Rieko Kudo
  • Patent number: 7024888
    Abstract: The invention relates to a method for changing glass compositions in continuously operated melting installations which has a significantly shortened melt changeover time and therefore lower costs and in which the glass quality is not adversely affected.
    Type: Grant
    Filed: March 23, 2003
    Date of Patent: April 11, 2006
    Assignee: Schott Glas
    Inventors: Guido Räke, Volker Ohmstede, Michael Leister, Sybill Nüttgens, Christoph Leuwer
  • Patent number: 7010940
    Abstract: A process for producing a high-quality glass from highly reactive raw materials and a glass-melting apparatus for use therewith, comprising the step of charging a material for the glass to a molten glass in a heated vessel, (1) wherein an oxidizing gas is bubbled in the molten glass and a glass raw material that behaves as a reducing agent during being melted is charged into a position of the bubbling or (2) said vessel is filled with a dry ambient gas and while the ambient gas is allowed to flow to a liquid surface of the molten glass along an charging route of the glass raw material, the glass raw material is charged.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: March 14, 2006
    Assignee: Hoya Corporation
    Inventors: Kazuo Ogino, Jun Ichinose, Yasuko Katoh, Rieko Kudo
  • Patent number: 6945077
    Abstract: A method is presented for the treatment of slag from electric steel plants which comprises the following steps: (a) transference of the slag into a metallurgical receptacle; (b) defoaming of the slag in this metallurgical receptacle by adding a defoaming agent, preferably silica; (c) subsequent heating of the slag to make it fluid; and (d) forced cooling of the slag, for example by an aqueous granulation.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: September 20, 2005
    Assignee: Paul Wurth S.A.
    Inventors: Jean-Luc Roth, Guy Denier
  • Patent number: 6912874
    Abstract: This invention relates to a device and a process for introducing gases into a hot medium, whereby device (1) contains a pipe (2) for introducing gas and a cooling jacket (3) that encases pipe (2).
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: July 5, 2005
    Assignee: Schott Glas
    Inventors: Christian Kunert, Werner Kiefer, Hildegard Roemer, Uwe Kolberg
  • Patent number: 6883349
    Abstract: The subject of the invention is a process for manufacturing compounds based on one or more silicates of alkali metals, such as Na and K and/or alkaline earth metals such as Ca, Mg, and/or on rare earths, such as Ce, optionally in the form of mixed silicates which combine alkaline-earth metals, such as Ca, with the alkali metal(s) and the rare earth(s), by conversion of silica and of halides, especially of one or more chlorides, or sulfate or nitrate, of the said alkali metals and/or of the said rare earths and/or of the said alkaline-earth metals, such as NaCl, KCl or CeCl4. The heat needed for the conversion is supplied, at least partly, by one or more submerged burners. The subject of the invention is also an apparatus for carrying out the process and for its use.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: April 26, 2005
    Assignee: Saint-Gobain Glass France
    Inventor: Pierre Jeanvoine
  • Patent number: 6871514
    Abstract: There is now provided a method and a device for the control and setting of the redox state of redox fining agents in a glass melt, in which method, during the melting process, essentially oxygen gas is blown through the glass melt.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: March 29, 2005
    Assignee: Schott Glas
    Inventors: Wolfgang Muschik, Hildegard Rōmer, Rainer Eichholz, Paul Kissl, Johann Collignon, Reinhard Zintl
  • Patent number: 6854291
    Abstract: A method and device for nozzle-injection of gas into molten glass is disclosed wherein a gas stream is introduced into the molten glass in a temporally pulsed throughput such that the gas stream is interrupted between two sequential pulses, the duration of each pulse amounting to less than one second.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: February 15, 2005
    Assignee: Schott Glas
    Inventors: Hildegard Romer, Nicole Surges, Paul Kissl, Thomas Kirsch
  • Publication number: 20040118161
    Abstract: The invention relates to a method for producing and/or preparing molten glass. The invention is characterised by the following: the molten glass flows in a container in a principal flow direction, the level of the molten glass being at a specific height above the base surface of the container; streams of a free-flowing medium are introduced into the molten glass in such way that said glass flows in spiral paths and that the axes of the spirals run parallel or approximately parallel to the principal flow direction; neighbouring inlet points of the streams are separated by a mutual distance, (viewed from the principal flow direction), of at least 0.5 times the height of the molten glass level.
    Type: Application
    Filed: February 12, 2004
    Publication date: June 24, 2004
    Inventors: Horst Loch, Wolfgang Muschick, Petra Illing Zimmermann, Stefan Schmitt
  • Patent number: 6722161
    Abstract: A method for melting glass forming batch material includes charging the glass forming batch material to a glass melting apparatus; impinging a flame proximate to the surface of the batch materials to form a glass melt from the batch material; and bubbling the glass melt in proximity to the impinging flame with a fluid, advantageously producing a shearing action sufficient to enhance the solution rate of the glass forming batch material relative to the same system without bubbling, but without splashing glass and without significant production of seeds or blisters in the glass melt. Melting of the glass forming batch material with bubbling proceeds more quickly, and/or at lower temperatures than occurs in a comparable conventional glass melting furnace.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: April 20, 2004
    Assignee: The BOC Group, Inc.
    Inventor: John R. LeBlanc
  • Patent number: 6588231
    Abstract: A mold has a moling surface of a material containing silicon carbide and/or silicon nitride as a main component and a carbon thin film formed on the molding surface to prevent fusion sticking. A glass substance which has a sag point not higher than 565° C. and a predetermined composition free from arsenic oxide is introduced into the mold. The glass substance is press-formed in a heated and softened condition into a glass optical element of high precision.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: July 8, 2003
    Assignee: Hoya Corporation
    Inventors: Shin-Ichiro Hirota, Yu Oogami, Kazuaki Hashimoto
  • Patent number: 6588234
    Abstract: A device and method for the plaining of glasses or glass-ceramics. The device is provided with a melting vat, at least two plaining containers serially connected after the outlet of the melting vat, and at least one of the plaining containers is built in accordance with the skull principle from a plurality of metal tubes comprising a cooling agent connection and a high-frequency device for inductively coupling high-frequency energy into the contents of the plaining container.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: July 8, 2003
    Assignee: Schott Glass
    Inventors: Werner Kiefer, Uwe Kolberg, Hildegard Römer, Stefan Schmitt, Wolfgang Schmidbauer
  • Patent number: 6576807
    Abstract: The present invention provides a method of processing organic waste (D) in divided solid and/or liquid form, the method being implemented in a single reactor (1) containing a bath of molten gas (V) surmounted by a gas phase (G), the method comprising incinerating said waste (D) in the presence of oxygen at the surface (S) of said bath of molten glass (V), and vitrifying said incinerated waste (D) in said bath of molten glass (V). In characteristic manner, in said method, said waste (D) is introduced into said reactor (1) in association with dual cooling; the device (5) for feeding said reactor (1) with said waste (D) is cooled on its side adjacent to the gas phase (G), advantageously by the circulation of at least one is cooling fluid maintained at a temperature higher than the dew point of said gas phase (G), and it is also cooled, advantageously independently, on its side adjacent to the incoming waste (D).
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: June 10, 2003
    Assignees: Société Générale pour les Techniques Nouvelles-SGN, Korea Electric Power Corporation
    Inventors: Pierre Brunelot, Jacques Lacombe, Serge Merlin, Patrice Roux, Valérie Thiebaut, Kwan-Sik Choi, Myung-Jae Song
  • Publication number: 20030010060
    Abstract: A method is presented for the treatment of slag from electric steel plants which comprises the following steps: (a) transference of the slag into a metallurgical receptacle; (b) defoaming of the slag in this metallurgical receptacle by adding a defoaming agent, preferably silica; (c) subsequent heating of the slag to make it fluid; and (d) forced cooling of the slag, for example by an aqueous granulation.
    Type: Application
    Filed: July 2, 2002
    Publication date: January 16, 2003
    Inventors: Jean-Luc Roth, Guy Denier
  • Publication number: 20020166343
    Abstract: A method for melting glass forming batch material includes charging the glass forming batch material to a glass melting apparatus; impinging a flame proximate to the surface of the batch materials to form a glass melt from the batch material; and bubbling the glass melt in proximity to the impinging flame with a fluid, advantageously producing a shearing action sufficient to enhance the solution rate of the glass forming batch material relative to the same system without bubbling, but without splashing glass and without significant production of seeds or blisters in the glass melt. Melting of the glass forming batch material with bubbling proceeds more quickly, and/or at lower temperatures than occurs in a comparable conventional glass melting furnace.
    Type: Application
    Filed: April 15, 2002
    Publication date: November 14, 2002
    Applicant: The BOC Group, Inc.
    Inventor: John R. LeBlanc
  • Publication number: 20020162358
    Abstract: The subject of the invention is a process for melting and refining vitrifiable materials, such that all or part of the thermal energy necessary for melting the said vitrifiable materials is supplied by the combustion of fossil fuel(s) with at least one oxidizer gas, the said fuel(s)/gas or the gaseous products resulting from the combustion being injected below the level of the mass of vitrifiable materials (7). The refining of the vitrifiable materials after melting takes place at least partly in the form of a “thin layer”.
    Type: Application
    Filed: March 1, 2000
    Publication date: November 7, 2002
    Inventors: PIERRE JEANVOINE, TANGUY MASSART, RAMON RODRIGUEZ CUARTAS, ARMANDO RODRIGUEZ RODRIGUEZ, JUAN-ANDRES NUNEZ HERNANDEZ
  • Patent number: 6460376
    Abstract: A process for melting and refining vitrifiable materials. In this method all or part of the thermal energy necessary for melting the vitrifiable materials is supplied by the combustion of fossil fuel with at least one oxidizer gas, the fuel, gas or the gaseous products resulting from their combustion are injected below the level of the mass of the vitrifiable materials. The refining of the vitrifiable materials after melting includes at least the step of subjecting them to subatmospheric pressure.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: October 8, 2002
    Assignee: Saint-Gobain Glass France
    Inventors: Pierre Jeanvoine, Tanguy Massart, Anne Berthereau
  • Publication number: 20020121113
    Abstract: The invention relates to a device for purifying molten glass;
    Type: Application
    Filed: August 31, 2001
    Publication date: September 5, 2002
    Inventors: Dirk Gohlke, Jorg Witte, Nicole Surges, Paul Kissl, Wolfgang Muschick, Hildegard Romer
  • Publication number: 20020092325
    Abstract: There is now provided a method and a device for the control and setting of the redox state of redox fining agents in a glass melt, in which method, during the melting process, essentially oxygen gas is blown through the glass melt.
    Type: Application
    Filed: August 30, 2001
    Publication date: July 18, 2002
    Inventors: Wolfgang Muschik, Hildegard Romer, Rainer Eichholz, Paul Kissl, Johann Collignon, Reinhard Zintl