Elemental Carbon Containing (e.g., Graphite, Charcoal, Etc.) Patents (Class 65/374.15)
  • Patent number: 11198636
    Abstract: A furnace system includes a muffle defining a furnace cavity. A lower heater is coupled to the muffle and is configured to create a hot zone within the furnace cavity having a temperature of about 1900° C. or greater. An upper muffle extension is positioned above the muffle and defines a handle cavity. A downfeed handle is positioned within the handle cavity such that a gap is defined between an outer surface of the downfeed handle and an inner surface of the upper muffle extension. An upper heater is thermally coupled to the upper muffle extension and configured to heat the gap. A gas screen is positioned in the upper muffle extension and is configured to inject a process gas into the handle cavity.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: December 14, 2021
    Assignee: Corning Incorporated
    Inventors: Erling Richard Anderson, Tammy M Hoffmann, John Michael Jewell, Nikolaos Pantelis Kladias, Robert Clark Moore
  • Patent number: 9240362
    Abstract: The invention relates to a layer arrangement and a wafer level package comprising the layer arrangement, and in particular, the layer arrangement comprises a getter layer and further comprises a sacrificial layer. The wafer level package may be used in microelectromechanical systems (MEMS) packaging at a vacuum level of about 10 mTorr or less such as close to 1 mTorr (i.e. MEMS vacuum packaging).
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: January 19, 2016
    Assignee: Agency for Science, Technology and Research
    Inventors: Vivek Chidambaram, Ling Xie, Ranganathan Nagarajan, Bangtao Chen, Beng Yeung Ho
  • Patent number: 8657252
    Abstract: A surface-treated mold that includes a mold, a metal layer that is provided on a surface of the mold and contains at least one metal selected from nickel, chromium, tungsten and brass, and a carbon film that is provided on a surface of the metal layer, wherein the metal layer contains carbon, and the carbon concentration in the metal layer is higher between the boundary with the carbon film and the center of the metal layer than that between the boundary with the mold and the center of the metal layer.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: February 25, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuichi Furukawa, Jun Yaokawa, Yasushi Iwata
  • Patent number: 8646745
    Abstract: A mold includes: a base; and a contact surface which is provided on the base and which comes into contact with a molten material. The contact surface is provided with a first surface portion that includes a first fiber layer in which first carbon fibers are raised, and a second surface portion having different surface characteristics from the first surface portion.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: February 11, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Jun Yaokawa, Yasushi Iwata, Yoshio Sugiyama, Hiroaki Iwahori, Shuxin Dong, Yuichi Furukawa
  • Patent number: 8549886
    Abstract: A gas supplying unit supplies a nitrogen gas into a furnace body of a graphite heating furnace in which at least a part of the furnace body is formed with a graphite. An exhausting unit exhausts a gas inside the furnace body to outside the furnace body. A dew-point temperature of the nitrogen gas supplied into the furnace body is equal to or lower than ?80° C. A pressure inside the furnace body is equal to or higher than 140 Pa with respect to an atmospheric pressure outside the furnace body.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: October 8, 2013
    Assignee: The Furukawa Electric Co., Ltd.
    Inventor: Tadashi Takahashi
  • Publication number: 20130067959
    Abstract: The present disclosure provides a graphite crucible induction-based silicon melting. The graphite crucible comprises a cylindrical body having a plurality of slits which is formed through an outer wall and an inner wall of the cylindrical body and a bottom part connected with an edge of the cylindrical body to seal an end of the cylindrical body.
    Type: Application
    Filed: November 15, 2012
    Publication date: March 21, 2013
    Applicant: Korea Institute of Energy Research
    Inventors: Jin Seok Lee, Young Soo Ahn, Bo Yun Jang, Joon Soo Kim
  • Patent number: 8286449
    Abstract: A neck ring for a glass container forming machine includes two neck ring sections each consisting essentially of a neck ring body and an insert on the body. The inserts have opposed surfaces for forming closure attachment features on a container neck finish molded in the neck ring. Each neck ring body is of die-formed powder metal construction and is set around the associated insert. The inserts preferably form the entire glass-contacting portion of the neck ring. The neck ring bodies preferably are of sintered bronze or steel construction, and the inserts preferably are of nickel, bronze or steel construction. The body and insert preferably are sintered together for a metallurgical bond.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: October 16, 2012
    Assignee: Owens-Brockway Glass Container Inc.
    Inventors: William E. Bosken, Jr., Mark P. Dodd, Ronald T. Myers
  • Patent number: 8240169
    Abstract: A vitreous silica crucible manufacturing apparatus includes a plurality of carbon electrodes configured to heat and melt raw material powder by arc discharge, and a value of a ratio R2/R1 of a diameter R2 of a front end of each of the carbon electrodes to a diameter R1 of a base end is set in a range of 0.6 to 0.8. Each carbon electrode has a diameter reduction portion formed at a front end position and reduced in diameter from a diameter R3 of a base end side to the diameter R2 of the front end. When a length of the diameter reduction portion is L1, the diameter of the front end is R2, the diameter of the base end is R1, an angle between the axis lines of the carbon electrodes is ?1, and X=(R1?R2)/2, a value of L1?(X/tan(?1/2)) is set in a range of 50 to 150 mm.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: August 14, 2012
    Assignee: Japan Super Quartz Corporation
    Inventors: Masanori Fukui, Hiroshi Kishi, Masaki Morikawa
  • Patent number: 7647791
    Abstract: A composite mold includes a mold base, a protective film provided on the mold base, and a water-cooling heat dissipation system disposed within the mold base. Wherein, the protective film is comprised of with a plurality of RexIry layers and a plurality of SiC layers, the RexIry layers and the SiC layers are alternatively stacked one on another, x is in the range from 0.25 to 0.55, and y is in the range from 0.45 to 0.75. Alternatively, the protective film is comprised of an RexIry layer, a catalyst layer and a carbon nanotube layer in that order, x is in the range from 0.25 to 0.55, and y is in the range from 0.45 to 0.75.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: January 19, 2010
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Charles Leu
  • Patent number: 7591151
    Abstract: A glass molding die and renewing method thereof. The molding die for molding glass includes a substrate, a first noble metal layer overlying the substrate, a second noble metal layer overlying the first noble metal layer, a carbon-containing third noble metal layer overlying the second noble metal layer, and a DLC passivation film overlying the third noble metal layer. In addition, the carbon-containing third noble metal layer and the DLC passivation film can be easily renewed.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: September 22, 2009
    Assignee: Asia Optical Co., Inc.
    Inventor: Jui-Fen Pai
  • Patent number: 7472565
    Abstract: A takeout holder including a takeout jaw formed of plastic.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: January 6, 2009
    Inventor: Fred Lawrence Heldoorn
  • Patent number: 7377477
    Abstract: Product forming molds have surfaces conformally coated with a coating composite comprising superabrasive particles. In one embodiment, the mold surface is plated (electrolessly or electrolytically) or coated with a metal having superabrasive particles dispersed therein. In another embodiment, the composite is a SiC composite having superabrasive particles dispersed therein.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: May 27, 2008
    Assignee: Diamond Innovations, Inc.
    Inventors: John William Lucek, Marc Gary Davidson, Timothy F. Dumm
  • Patent number: 7275397
    Abstract: Disclosed are high temperature free-flow mold for the production of near net-shape silica articles and method for the production of near net-shape silica articles. The mold is preferably made of graphite, preferably coated with SiC on the surfaces of the mold cavity. The mold and the process use no or less refractory elastic materials than that disclosed in the prior art, and does not alter or contaminate the glass composition. The mold the process are particularly suitable for the production of high purity silica articles for use in VUV and EUV lithographic devices.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: October 2, 2007
    Assignee: Corning Incorporated
    Inventors: Terry L. Taft, Gary W. Wise
  • Publication number: 20070180862
    Abstract: A gas supplying unit supplies a nitrogen gas into a furnace body of a graphite heating furnace in which at least a part of the furnace body is formed with a graphite. An exhausting unit exhausts a gas inside the furnace body to outside the furnace body. A dew-point temperature of the nitrogen gas supplied into the furnace body is equal to or lower than ?80° C. A pressure inside the furnace body is equal to or higher than 140 Pa with respect to an atmospheric pressure outside the furnace body.
    Type: Application
    Filed: February 1, 2007
    Publication date: August 9, 2007
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventor: Tadashi TAKAHASHI
  • Patent number: 7195668
    Abstract: A crucible for the growth of single crystals by the Czochralski method which can enhance the productivity, yield and quality of crystal and a single crystal growing method, wherein the crucible has an inner bottom surface, the profile of which has at least one raised portion symmetrical about the rotary axis of the crucible wherein the periphery of the raised portion is positioned at a distance of from 0.4 to 1.2 times the radius of crystal to be grown from the rotary axis and the height of the raised portion is generally not smaller than 7% and greater than 100% of the radius of crystal to be grown.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: March 27, 2007
    Assignee: Siltronic AG
    Inventors: Yutaka Kishida, Teruyuki Tamaki
  • Patent number: 6941774
    Abstract: The present invention provides an optical fiber preform-heating furnace that is simple in its structure and excellent in uniformity of the temperature distribution in a circumferential direction of an optical fiber preform. The optical fiber preform-heating furnace includes a furnace core tube into which an optical fiber preform is supplied; a heater that surrounds the furnace core tube; a pair of electrode connection portions with which the heater is provided and has a face opposing to an outer periphery surface of the furnace core tube; and electrode portions that are disposed to each of the electrode connection portions and connected to a power supply. When a cylindrical heat insulator is disposed between the furnace core tube and the opposing faces, since an outward heat transfer amount from the furnace core tube side through the electrode portion can be reduced, the temperature distribution in a circumferential direction of the optical fiber preform can be improved in its uniformity.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: September 13, 2005
    Assignee: Kobe Steel, Ltd.
    Inventors: Takehiko Iwazono, Hideki Yutaka, Kazuhisa Fukutani
  • Patent number: 6928838
    Abstract: The forming apparatus has top and bottom die assemblies which form a heated silica glass material by press forming. These top and bottom die assemblies include, respectively, mold dies, which are made of isotropic carbon, and core molds, which are made of vitrified carbon. The heating and pressing time of a silica glass element, which requires a high forming temperature, is shortened by pinching the silica glass material between top and bottom core molds by controlling a torque so as to produce a close contact condition which permits heat transfer from the top and bottom core molds to the silica glass material between the top and bottom core molds.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: August 16, 2005
    Assignee: Toshiba Machine Co., Ltd.
    Inventors: Hiroshi Murakoshi, Shusaku Matsumura
  • Patent number: 6848274
    Abstract: Provided is an apparatus for forming glass elements, which includes top and bottom die assemblies, each of the die assemblies comprising a core mold, a mold die which supports the core mold, and a die plate, and a glass material being interposed between the top and bottom core molds, a first fastening member, which fastens the mold die and bottom die plate of the bottom die assembly together, a second fastening member, which fastens the die plate of the bottom die assembly and the heat insulating cylinder together, a third fastening member, which fastens the mold die and die plate of the top die assembly together, and a fourth fastening member, which fastens the die plate of the top die assembly and the heat insulating cylinder together. Each of the first to fourth fastening members is made of a material selected from the group consisting of carbon and molybdenum.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: February 1, 2005
    Assignee: Toshiba Machine Co., Ltd.
    Inventors: Hiroshi Murakoshi, Shusaku Matsumura
  • Patent number: 6845636
    Abstract: A dehydration and consolidation furnace and a dehydration and consolidation method in which gas in a chamber does not leak to a furnace body room and gas in a furnace body room does not leak into a chamber is provided. A furnace of one embodiment of this invention has first muffle tube 3 and second muffle tube 4. The second muffle tube 4 is arranged coaxially around the first muffle tube 3. An optical fiber preform is arranged in this furnace. During the dehydration and consolidation process the pressure of the intermediate room 10 is set lower than a pressure inside the first muffle tube and outside the second muffle tube, and a gas supply and exhaust of the intermediate room 10 are performed independent of the gas supply and exhaust of the first muffle tube and a furnace body room.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: January 25, 2005
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Yamazaki, Takashi Kogo, Yuichi Ohga, Tadashi Enomoto
  • Publication number: 20040206119
    Abstract: A system and method for preparing chalcogenide glass are provided that allow for larger quantities of glass to be produced with lower production costs and less risks of environmental hazards. The system includes a reaction container operable to hold chalcogenide glass constituents during a glass formation reaction, a stirring rod operable to mix the contents of the reaction container, a thermocouple operable to measure the temperature inside the reaction container, and a reaction chamber operable to hold the reaction container. The method includes placing chalcogenide glass constituents in a reaction container, heating the chalcogenide glass constituents above the melting point of at least one of the constituents, promoting dissolving or reaction of the other constituents, stirring the reaction melt, maintaining an overpressure of at least one atmosphere over the reaction melt, and cooling the reaction melt to below the chalcogenide glass transition temperature.
    Type: Application
    Filed: April 15, 2003
    Publication date: October 21, 2004
    Applicant: RAYTHEON COMPANY
    Inventors: Athanasios John Syllaios, William David Autery, Gregory Stewart Tyber, Marissa Marie Barnard, Donald Bryan Christian, Allan Leroy Buehler, Andre Deon Walker
  • Publication number: 20040206125
    Abstract: An apparatus for manufacturing glass using a feeding device, via which liquid glass can be supplied to a hot-shaping device. For precise setting of the operational parameters, such as glass temperature and viscosity, a glass flow treating apparatus, which has a flow path with a gradient that is inclined in a direction towards the hot-shaping device, is disposed in a region between the feeding device and the hot-shaping device.
    Type: Application
    Filed: January 7, 2004
    Publication date: October 21, 2004
    Inventors: Christian Schenk, Hatto Schafer
  • Publication number: 20040206117
    Abstract: A mold (1) for press-molding glass optical articles with high precision includes a mold base (2) having a press surface, and a thin film (3) of diamond like carbon material deposited on the press surface. A thickness of the thin film is in the range from 50 to 200 angstroms. The mold base is made of a hard metallic alloy or a ceramic material. The mold does not adhere to glass material, and is resistant to oxidization. A method for making the mold is also disclosed.
    Type: Application
    Filed: April 19, 2004
    Publication date: October 21, 2004
    Inventor: Ga-lane Chen
  • Publication number: 20040163413
    Abstract: The method of making globular or spherical bodies of optical quality includes filling receptacles (2) in a heat-resistant support (3) made of a porous material with glass gobs (1); conducting gas through the heat-resistant support so that a gas flow (4) passes through the support in a direction (14) opposite to a direction in which gravity acts; heating the heat-resistant support (3) to a temperature at which the glass gobs (1) have a viscosity of up to about 106 poise; maintaining the support (3) at this temperature for a predetermined time interval; and then cooling the support (3) to ambient temperature while continuing to provide the gas flow (4) through the support (3).
    Type: Application
    Filed: February 2, 2004
    Publication date: August 26, 2004
    Inventors: Andreas Langsdorf, Frank Buellesfeld
  • Patent number: 6776007
    Abstract: A mold has a moling surface of a material containing silicon carbide and/or silicon nitride as a main component and a carbon thin film formed on the molding surface to prevent fusion sticking. A glass substance which has a sag point not higher than 565° C. and a predetermined composition free from arsenic oxide is introduced into the mold. The glass substance is press-formed in a heated and softened condition into a glass optical element of high precision.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: August 17, 2004
    Assignee: Hoya Corporation
    Inventors: Shin-Ichiro Hirota, Yu Oogami, Kazuaki Hashimoto
  • Publication number: 20040129027
    Abstract: To provide a method and apparatus for parting a glass rod without causing a crack or rupture at a grasped root portion of the glass rod in parting the glass rod for producing a glass preform.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 8, 2004
    Inventors: Takashi Sugiyama, Toshimi Habasaki
  • Patent number: 6742362
    Abstract: The invention relates to a coating for tools that are used to process heat treated glass, e.g., molten glass or the like, to reduce the adhesion of said glass. The coating consists at least partially of a system of carbon-based layers and/or hard materials containing carbon.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: June 1, 2004
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Rainer Gadow, Jochen Brand, Andreas Killinger
  • Publication number: 20040099014
    Abstract: A mandrel for producing quartz glass, comprising at least two columnar or cylindrical, carbon fiberreinforced carbon composite material made members joined in series by screw thread parts. The mandrel is carbon-impregnated and/or carbon-coated on the screw thread parts, and, in addition, may be provided with reinforcing members on the outer sides of the screw thread parts. Quartz glass fine particles obtained by flame-hydrolyzing a volatile silicon compound are deposited, using this mandrel, on the surface of a heat-resisting substratum or on a starting rod at the end of the mandrel to easily form a large porous quartz glass mother material, the porous quartz glass mother material is dehydrated and transparently vitrified to produce a large optical fiber mother material, and further the optical fiber mother material is drawn to produce a low-cost, high-precision optical fiber.
    Type: Application
    Filed: January 27, 2003
    Publication date: May 27, 2004
    Inventors: Yoshihisa Kusano, Atsuyuki Shimada, Toshiharu Hiraoka
  • Patent number: 6668592
    Abstract: A furnace for drawing an optical fiber provided with a muffle tube (10) and inner tubes (5,5′) connected to the upper end of the core tube, wherein a preform (1) supported by a dummy rod (2) at the upper part thereof is disposed inside the muffle tube (10) and inner tubes (5,5′) so as to be movable downward together with dummy rod (2), the preform (1) is heated and melted by a heater (11) from the outside of the muffle tube (10) and an optical fiber (1a) is pulled out from the lower end of the preform (1); the furnace is further provided with one or a plurality of sets of separating plates (4, 17) adapted to partition a space in the inner tubes (5, 5′) above the preform (1) into a plurality of portions in the advance direction of the preform and disposed in the space, and with gas blowing inlets (8) disposed in the parts of wall surfaces of the inner tubes (5, 5′) which are below the separating plates (4,17) and adapted to blow an inert gas into the inner tubes (5,5′) and the muf
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: December 30, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toshiki Taru, Katsuya Nagayama, Kazuya Kuwahara, Ichiro Tsuchiya
  • Patent number: 6658895
    Abstract: The disclosure is for a film coating which yields increased life for optical media molds and the method and apparatus for making such a film. The film is a carbon nitride layer of 0.5 to 5.0 microns thickness with 2% to 45% nitrogen coated on an underlayer. One method of making the carbon nitride film is by the use of a pulsed carbon arc to generate a carbon plasma while injecting nitrogen into the vacuum chamber in which the arc is created. Another method is to generate a radio frequency plasma in a vacuum chamber into which acetylene and nitrogen gas are injected. The carbon nitride is formed by the combination of nitrogen with the carbon from the acetylene.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: December 9, 2003
    Assignee: Richter Precision, Inc.
    Inventors: Val L. Lieberman, J. Hans Richter, Yasuo Yamazaki
  • Publication number: 20030209037
    Abstract: An apparatus for forming a product by a pressing process, has
    Type: Application
    Filed: May 7, 2003
    Publication date: November 13, 2003
    Applicant: KONICA CORPORATION
    Inventor: Shigeru Hosoe
  • Publication number: 20030205068
    Abstract: A furnace for drawing an optical fiber provided with a muffle tube (10) and inner tubes (5, 5′) connected to the upper end of the core tube, wherein a preform (1) supported by a dummy rod (2) at the upper part thereof is disposed inside the muffle tube (10) and inner tubes (5, 5′) so as to be movable downward together with dummy rod (2), the preform (1) is heated and melted by a heater (11) from the outside of the muffle tube (10) and an optical fiber (1a) is pulled out from the lower end of the preform (1); the furnace is further provided with one or a plurality of sets of separating plates (4, 17) adapted to partition a space in the inner tubes (5, 5′) above the preform (1) into a plurality of portions in the advance direction of the preform and disposed in the space, and with gas blowing inlets (8) disposed in the parts of wall surfaces of the inner tubes (5, 5′) which are below the separating plates (4, 17) and adapted to blow an inert gas into the inner tubes (5, 5′) and the
    Type: Application
    Filed: May 28, 2003
    Publication date: November 6, 2003
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Toshiki Taru, Katsuya Nagayama, Kazuya Kuwahara, Ichiro Tsuchiya
  • Publication number: 20030159467
    Abstract: Disclosed is a method of manufacturing glass optical elements such as optical lenses by press molding. Glass optical elements of high surface precision are manufactured while preventing fusion between the pressing mold and the glass material and deterioration of the pressing mold. The method comprises supplying a glass material to a pressing mold, and press molding the glass material with the pressing mold in a non-oxidizing atmosphere and the pressing mold comprises a carbon film formed by sputtering on at least a molding surface, and the glass material comprises a carbon layer on a surface thereof. The method further comprises feeding of the glass material by dropping it onto the molding surface of a lower mold while preventing variation in the thickness of the glass optical elements.
    Type: Application
    Filed: February 19, 2003
    Publication date: August 28, 2003
    Applicant: HOYA CORPORATION
    Inventors: Shinichiro Hirota, Hiroyuki Sakai, Takeshi Takahashi
  • Publication number: 20030107146
    Abstract: A method of producing an optical element forming die to form an optical element by pressing a glass material softened with heat, including a first process of producing a primary processed product having a volume resistance value Z (0<Z≦1 (&OHgr;·cm) by sintering ceramic powders; and a second process of forming the optical element forming die by processing the primary processed product.
    Type: Application
    Filed: November 21, 2002
    Publication date: June 12, 2003
    Applicant: KONICA CORPORATION
    Inventors: Shigeru Hosoe, Hiroshi Nagoya
  • Patent number: 6564584
    Abstract: Processes for manufacturing glass optical elements by press molding a heated and softened glass material in preheated molds. In the process, the glass material is heated while it is floated by a gas blow and the heated and softened glass material is transferred to the preheated molds and then subjected to press molding. Alternatively, the process comprises: heating a glass material at a temperature at which the glass material has a viscosity of lower than 109 poises, preheating molds at a temperature at which the glass material has a viscosity of from 109 to 1012 poises, subjecting the heated and softened glass material to initial press in the preheated molds for 3 to 60 seconds, starting to cool the vicinity of molding surfaces of the molds at a rate of 20° C.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: May 20, 2003
    Assignee: Hoya Corporation
    Inventors: Shin-ichiro Hirota, Ken Uno, Hiroaki Takahara, Tadayuki Fujimoto, Hiroshi Enomoto
  • Patent number: 6560994
    Abstract: Disclosed is a mold including upper and lower molds for obtaining glass optical elements by press molding a glass molding material softened by heat, in which either one of the upper and lower molds is made of a ceramic matrix and the matrix has no surface hole having a diameter of 300 microns or more on the molding surface, and a method for manufacturing glass optical elements using the mold. For example, on the upper mold 21 and the lower mold 22, formed is a &bgr; type silicon carbide having a thickness that a molding surface can be reproduced by grinding and a density of 3.20 g/cm3 or more so as to include at least the molding surface facing a surface of the glass molding material G. The mold according to the invention can be reused even where pullouts occur from repetitive use.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: May 13, 2003
    Assignee: Hoya Corporation
    Inventor: Shinichiro Hirota
  • Patent number: 6558308
    Abstract: The Advanced Vitrification System (AVS) Melting Process is a process for vitrification of waste in a disposable canister. In the process, waste is dropped into the disposable canister from the top. While the waste is being dropped into the disposable canister, radiant energy is added to the space above the waste in the canister, such that the temperature of the gaseous atmosphere above the waste is higher than the melting point of the waste. Since only the space above the waste in the canister is heated, the temperature of the melt decreases with increasing depth of the waste in the canister. The decreasing temperature permits a small surface melt volume to be maintained and solidified product to form with increasing depth. The process continues until the disposable canister is filled, then all heating is stopped and the disposable canister allowed to cool to ambient temperature.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: May 6, 2003
    Assignee: Radioactive Isolation Consortium, LLC
    Inventors: James R. Powell, Morris Reich
  • Patent number: 6546760
    Abstract: There is provided an optical fiber drawing furnace capable of drawing an optical fiber having small non circularity, which drawing furnace includes a muffle tube, in which an optical fiber preform is supplied, a heater surrounding the muffle tube, a plurality of electrode connecting portion extending from the heater, a plurality of electrodes connected to electrode connecting portions, and in conjunction therewith to an electric power source, and unifying means for unifying the temperature distribution along the circumferential direction.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: April 15, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Ichiro Tsuchiya, Kohei Kobayashi, Hiroaki Ohta, Kazuya Kuwahara, Katsuyuki Tsuneishi, Hideo Miyaki, Yasuo Matsuda
  • Publication number: 20030056542
    Abstract: The forming apparatus has top and bottom die assemblies which form a heated silica glass material by press forming. These top and bottom die assemblies include, respectively, mold dies, which are made of isotropic carbon, and core molds, which are made of vitrified carbon. The heating and pressing time of a silica glass element, which requires a high forming temperature, is shortened by pinching the silica glass material between top and bottom core molds by controlling a torque so as to produce a close contact condition which permits heat transfer from the top and bottom core molds to the silica glass material between the top and bottom core molds.
    Type: Application
    Filed: September 16, 2002
    Publication date: March 27, 2003
    Inventors: Hiroshi Murakoshi, Shusaku Matsumura
  • Patent number: 6505484
    Abstract: A silica glass forming method is a method of pressing a synthetic silica bulk having at least a set of opposed surfaces, on the surfaces under a high temperature condition by a presser, wherein an elastic member with permeability is placed between the presser and the surfaces of the synthetic silica bulk pressed by the presser and wherein the synthetic silica bulk is pressed through the elastic member by the presser. This method is able to reduce bubbles remaining inside the synthetic glass formed product after the forming to a sufficiently small amount. Therefore, it becomes feasible to provide the method that permits high-yield production of silica glasses with excellent optical characteristics.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: January 14, 2003
    Assignee: Nikon Corporation
    Inventors: Seishi Fujiwara, Norio Komine, Hiroki Jinbo
  • Patent number: 6485404
    Abstract: A process of making vitrified waste in a crucible and inserting the crucible and vitrified waste into an outer container after vitrification. The outer container is then sealed.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: November 26, 2002
    Assignee: Radioactive Isolation Consortium, LLC
    Inventors: James R. Powell, Morris Reich
  • Publication number: 20020129620
    Abstract: Disclosed are processes for manufacturing glass optical elements by press molding a heated and softened glass material in preheated molds. In the process, the glass material is heated while it is floated by a gas blow and the heated and softened glass material is transferred to the preheated molds and then subjected to press molding. Alternatively, the process comprises: heating a glass material at a temperature at which the glass material has a viscosity of lower than 109 poises, preheating molds at a temperature at which the glass material has a viscosity of from 109 to 1012 poises, subjecting the heated and softened glass material to initial press in the preheated molds for 3 to 60 seconds, starting to cool the vicinity of molding surfaces of the molds at a rate of 20° C.
    Type: Application
    Filed: November 2, 1999
    Publication date: September 19, 2002
    Inventors: SHIN-ICHIRO HIROTA, KEN UNO, HIROAKI TAKAHARA, TADAYUKI FUJIMOTO, HIROSHI ENOMOTO
  • Patent number: 6446933
    Abstract: A film is provided on a mold used during semiconductor device fabrication through surface modifications to the mold to provide non-stick characteristics and a mold surface that is resistant to abrasion or wear. Such surface modifications are particularly useful in a mold having a quartz planar surface adapted to contact a photocurable polymer material applied to a semiconductor wafer surface during a fabrication process. The planar surface of the mold is capable of allowing transmission of ultraviolet light therethrough to cure the polymer material. A non-stick film is formed on the planar surface of the mold by a coating or deposition process in order to modify the mold surface. The non-stick film can be formed of a fluoroalkylsilane compound, or a hard material such as diamond or diamond-like carbon. The non-stick film of diamond or diamond-like carbon provides protection against abrasion or wear on the planar surface of the mold.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: September 10, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Donald L. Westmoreland
  • Publication number: 20020050152
    Abstract: A method is provided for molding a synthetic silica glass member. The method includes accommodating a synthetic silica glass bulk inside a molding vessel; interposing an elastic member having a ventilating property between a pressing member and the synthetic silica glass bulk; providing a fastener for fastening at least peripheral edge portions of the elastic member to the pressing member; and pressing the synthetic silica glass bulk against the molding vessel by the pressing member in a high-temperature condition to mold the synthetic silica glass bulk into a synthetic silica glass member having a shape conforming to a shape of the space defined by the pressing member and the molding vessel, the synthetic silica glass bulk being pressed in such a manner that the pressing member and the elastic member tightly fasten to each other through the fastener.
    Type: Application
    Filed: August 8, 2001
    Publication date: May 2, 2002
    Inventors: Seishi Fujiwara, Hiroki Jinbo, Norio Komine
  • Patent number: 6357262
    Abstract: A roller assembly for use in a glass bending machine comprises a base bracket, a bending roller rotatably mounted on said base bracket, the bending roller having a three-piece construction comprises a central hub having an annular outer surface, opposed side surfaces, and a central axis of rotation; a collar fixed to each side surface of said central hub, the collars having an annular outer surface, inner and outer side surfaces, and a central axis of rotation; the collars comprising a material and shape which resists scratching glass, the collars being spaced apart with a center section of the hub between them to allow the roller to be driven individually by a friction member whereby the friction member is adapted to run on the center section of the roller to rotate the roller, and a glass sheet is adapted to run on the larger collars and not be scratched by the center section.
    Type: Grant
    Filed: April 26, 1999
    Date of Patent: March 19, 2002
    Assignee: Tamglass Ltd. Oy
    Inventors: Kenneth Friedel, Clifford Matukonis, Eric L. Tyira
  • Patent number: 6314763
    Abstract: A method of manufacturing a 2-5 inch diameter glass substrate for a magnetic disc in which a plate glass is press molded using a mold formed of a super-hard material and having a surface of a prescribed roughness. Ion implantation using nitrogen ions is performed on the surface of the mold, after which ion implantation using palladium ions, platinum ions, and carbon ions is performed in the order given. Finally, the surface of the mold is coated with a graphite or amorphous diamond-like carbon coating.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: November 13, 2001
    Assignee: Saatec Engineering Corporation
    Inventor: Yasuaki Sakamoto
  • Patent number: 6314764
    Abstract: A method of manufacturing a 1-inch diameter glass substrate for a magnetic disc in which a plate glass is press molded using a mold formed of a super-hard material and having a surface of a prescribed roughness. Ion implantation using nitrogen ions is performed on the surface of the mold, after which ion implantation using palladium ions, platinum ions, and carbon ions is performed in the order given. Finally, the surface of the mold is coated with a graphite or amorphous diamond-like carbon coating.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: November 13, 2001
    Assignee: Saatec Engineering Corporation
    Inventor: Yasuaki Sakamoto
  • Patent number: 6311523
    Abstract: A process for forming a glass sheet, which is a process for continuously forming a glass sheet, and which comprises a step of introducing a vapor film-forming agent, which is not vapor at least around room temperature and which is vapor at a temperature above the glass transition point of the glass, into a support composed of a structure or a material capable of internally containing liquid, and a step of sliding the support and the glass of which temperature is above the glass transition point against each other via a thin layer of a vaporized vapor film-forming agent.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: November 6, 2001
    Assignee: Asahi Glass Company Ltd.
    Inventors: Gen Kojima, Tsutomu Koyama, Akira Takada, Masao Unoki, Kiyoshi Matsumoto
  • Patent number: 6257023
    Abstract: The present invention provides an improvement to a fiber optic draw furnace having a heating element (22) arranged inside a furnace shell (20) for drawing an optical fiber (F) from a preform (P). The fiber optic draw furnace (10) has one or more pieces of fiber draw furnace insulation (14, 16, 18) to separate the heating element (22) from the furnace shell (20) for reducing the thermal transfer therebetween. At least one of the pieces of fiber draw furnace insulation (14, 16, 18) is made from rigidified high purity graphite felt that provides highly efficient thermal insulation between the heating element (22) and the outer furnace shell (20). The rigidified high purity graphite felt insulation (14), (16, 18) includes either a bottom insulation ring (14), a cylindrical insulation insert (16) or a cylindrical insulation canister (18).
    Type: Grant
    Filed: March 25, 1998
    Date of Patent: July 10, 2001
    Assignee: Alcatel
    Inventors: Daniel D. Uhm, Robert A. Spencer
  • Patent number: 6238197
    Abstract: An injection mould for manufacturing plastic objects generally includes: two mould parts mutually movable between a closed position and an open position, which mould parts bound in closed position a mould cavity into which in the closed position heated plasticized plastic can be injected by means of supply means, wherein one flat end surface of the mould cavity carries a mechanical pattern, which pattern corresponds with the information for arranging on an information carrier to be manufactured, wherein at least a part of the surfaces is provided with a coating not containing TiN and which reduces a coefficient of friction of the relevant surface to a value which amounts to a maximum of 60% of the value obtainable a coating of TiN; wherein at least one of the cylindrical inner surface and the cylindrical outer surface is provided with the coating.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: May 29, 2001
    Assignee: Axxicon Moulds Eindhoven B.V.
    Inventors: Petrus Johannes Frederik Joseph Van Hout, Martinus Henricus Joseph Voets, Jozef Smeets
  • Patent number: 6205819
    Abstract: An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: March 27, 2001
    Assignee: The Regents of the University of California
    Inventors: Harold D. Ackler, Stefan P. Swierkowski, Lisa A. Tarte, Randall K. Hicks