Solid Fibers Comminuted By Fluid Blast Patents (Class 65/462)
  • Patent number: 8387417
    Abstract: It is an object of the present invention to uniformly disperse fibrous material such as short glass fibers so as to be distributed on a collection conveyor, without using compressed air for dispersion of the fibrous material. The present invention provides a method for collecting fibrous material, wherein the fibrous material fiberized by a spinner of a fiberizing unit is dispersed by a hollow bucket disposed just under the spinner, so as to be collected on a collection conveyor disposed below the hollow bucket, comprising: forming said hollow bucket by connecting a blasting section having an oval opening at its lower end, with a waistline section as a lower end of a hopper section having a circular shape in cross section, and deforming the inner surface of the blasting section toward said oval opening, thereby dispersing the fibrous material dropped in the hollow bucket in a width direction of the collection conveyor from the blasting section, so as to be collected on the collection conveyor.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: March 5, 2013
    Assignee: Asahi Fiber Glass Company, Limited
    Inventors: Yuji Yokoo, Susumu Kubota, Kazuhiro Kitamura
  • Patent number: 8104311
    Abstract: Tubular pipe insulation is made from a glass fiber mat produced utilizing a rotary glass fiberization process. A spinner disc is rotated to centrifuge molten glass through fiberization holes in an annular sidewall of the spinner disc and form primary glass fibers. The primary glass fibers are attenuated and formed into a veil where the fibers are dispersed to reduce in length the fiber networks formed from the fibers. Binder is applied to the fibers and the fibers are collected into a mat that, when pulled apart by longitudinally directed, opposing forces, separates across the width of the mat into two mat sections having feathered edges with substantially no fibrous stringers extending beyond the feathered edges for a distance greater than about four inches. The leading mat section is then wound about a mandrel and the binder in the mat is cured to form the pipe insulation.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: January 31, 2012
    Assignee: Johns Manville
    Inventors: John Wayne Baker, Rodney Roger Smalley, Alessandro G. Borsa, Kenneth Charles Fitzpatrick
  • Patent number: 7905115
    Abstract: The invention relates to glass powder, especially a biologically active glass powder, which includes a plurality of glass particles and which is characterized by the following features: the glass particles are made up by >90% of non-spherical particles; the geometry of the individual non-spherical particle is characterized by a ratio of length to diameter of 1.1 to 105.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: March 15, 2011
    Assignee: Schott AG
    Inventors: Guido Räke, Hildegard Römer, Peter Schreckenberg, Josè Zimmer, Frank Büllesfeld, Jörg Fechner, Cevin Czisch, Udo Fritsching
  • Patent number: 7823417
    Abstract: A method of forming high strength glass fibers in a refractory lined glass melter is disclosed. The refractory lined melter is suited to the batch compositions disclosed for the formation high modulus, and high-strength glass fibers. The glass composition for use in the method of the present invention is up to about 70.5 Weight % SiO2, 24.5 weight % Al2O3, 22 weight % alkaline earth oxides and may include small amounts of alkali metal oxides and ZrO2. Oxide based refractories included alumina, chromic oxide, silica, alumina-silica, zircon, zirconia-alumina-silica and combinations thereof. By using oxide based refractory lined furnaces the cost of production of glass fibers is substantially reduced in comparison with the cost of fibers using a platinum lined melting furnace. Fibers formed by the present invention are also disclosed.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: November 2, 2010
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Douglas A. Hoffmann, Peter B. McGinnis
  • Patent number: 7802451
    Abstract: Incinerator ashes, which is obtained after treating municipal solid waste, incinerator ashes or its plasma vitrified slag is made into mineral fibers. Cullet is added during manufacturing the mineral fibers for conditioning. The mineral fibers thus obtained have a good strength and could raise value of recycled product. In addition, it could reduce impact of the incinerator ashes to the environment and environmental protection is achieved.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: September 28, 2010
    Assignee: Atomic Energy Council - Institute of Nuclear Energy Research
    Inventors: Sheng-Fu Yang, Yung-Woou Lee, To-Mai Wang, Wen-Cheng Lee, Kin-Seng Sun, Ching-Liang Chen, Chin-Ching Tzeng
  • Patent number: 6862901
    Abstract: A process and an apparatus for producing glass fibers by centrifugal force are provided. Molten glass is fed into a hollow cylinder of rotating member which rotates at high speed by means of a driving device and is heated. The molten glass is ejected to an outside of a peripheral wall by centrifugal force generated by high speed rotation of the rotating member through orifices, each of which has different diameter, and which are provided alternately in a circumferential direction of the peripheral wall. A primary steam of molten glass is ejected. The primary streams is introduced into flame flow ejecting from drawing burners located at outside of the peripheral wall to form secondary fibers. A compressed gas flow is ejected to a direction at an acute angle through an ejecting outlet of an ejecting nozzle to collide the compressed fluid with the secondary fibers to thereby produce glass fibers by continuously.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: March 8, 2005
    Assignees: Paramount Glass Manufacturing Co., Ltd., NTB Technology Co., Ltd.
    Inventors: Keiji Otaki, Yukiyoshi Shinobu, Yoshiyuki Harada
  • Patent number: 6227009
    Abstract: Relatively viscous glass is fiberized in a rotary fiberization process at relatively high disk speeds and through relatively large diameter holes to form long, fine diameter glass fibers which preferably are rapidly solubilized in biological fluids. The method of forming the long, fine diameter glass fibers includes maintaining a ratio of the velocity of the external surface of the peripheral wall of the fiberizing disk to the velocity of the glass passing through the fiberizing orifices within a specific range (the disc/glass velocity ratio); maintaining a ratio of the velocity of the air exiting the air ring to the velocity of the glass passing through the fiberizing orifices within a specific range (the air-ring/glass velocity ratio); and maintaining a ratio of the BTU content of the fuel expended forming the hot attenuating combustion gases to the BTU content of a pound of molten glass being fiberized within a specific range (the attenuating combustion gases/glass heat content ratio).
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: May 8, 2001
    Inventors: Michael John Cusick, Kenneth Andrew Clocksin
  • Patent number: 5639291
    Abstract: In a method of and an apparatus for forming composite and other fibers, individual filaments from two or more sets of continuous primary filaments of two or more heat-softenable fiberizable materials are brought together lengthwise to form pairs of continuous primary filaments. The groupings of continuous primary filaments are fed into a high energy attenuation blast where the filaments are heated, attenuated and formed into composite or other staple fibers of the heat-softenable fiberizable materials. Preferably, the individual continuous primary filaments of the groupings of continuous primary filaments are fused, adhesively bonded or otherwise joined together, prior to being introduced into the high energy attenuation blast, to prevent the individual primary filaments of the groupings of continuous primary filaments from separating in the high energy attenuation blast.
    Type: Grant
    Filed: March 31, 1995
    Date of Patent: June 17, 1997
    Assignee: Schuller International, Inc.
    Inventors: William Henry Kielmeyer, Michael Dean Peterson, Dennis Robert Larratt
  • Patent number: 5630856
    Abstract: A filter composite comprising a first layer of glass fibers having random orientation, the layer being porous to gas flow therethrough; a porous mat of sufficient stiffness as to support the glass fiber layer during use as a filter, the mat consisting of compacted glass fibers, and; an additional porous layer carried by the mat to block escape of glass fibers or particles from the filter composite during gas flow therethrough. The first layer fibers have diameters between about 0.000035 and 0.00015 inch.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: May 20, 1997
    Assignee: UPF Corporation
    Inventor: Jack R. Pfeffer
  • Patent number: 5472467
    Abstract: A filter composite comprising a first layer of glass fibers having random orientation, the layer being porous to gas flow therethrough; a porous mat of sufficient stiffness as to support the glass fiber layer during use as a filter, the mat consisting of compacted glass fibers, and; an additional porous layer carried by the mat to block escape of glass fibers or particles from the filter composite during gas flow therethrough.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: December 5, 1995
    Inventor: Jack R. Pfeffer