Reeling Or Winding Patents (Class 65/479)
  • Patent number: 8627686
    Abstract: The automatic strand take-up installation comprises at least one gripping member (12) for taking hold of at least one strand coming from a bushing (2), the gripping member being guided by a single conveying loop (1) to the vicinity of a chopper (7). One system for maneuvering the gripping member allows the gripping member (12) to be opened and closed in such a way as to release said strand at the chopper (7).
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: January 14, 2014
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Philippe Boissonnat, Jean-Paul Boisset, Frederic Skura, Danyele Rey, Natacha Karbowski, Marie Karbowski, Sarah Karbowski, Lydia Karbowski
  • Patent number: 8393180
    Abstract: In the description and drawings a method of forming a fiberglass mat is disclosed. A drum is rotated, a molten fiberglass material is fed through at least one orifice of a furnace while rotating the drum, and the relative position of the orifice with respect to a location on the drum is altered while rotating the drum and feeding the molten fiber glass material through the orifice to build up a fiberglass matt along a traverse length.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: March 12, 2013
    Assignee: AAF-McQuay Inc.
    Inventors: Lewis Sanders, Christopher Erbe
  • Publication number: 20120104306
    Abstract: Basalt filament is manufactured such that the fiber diameter can be controlled and the filament is not severed during winding. A network former and a glass modifier are formed and maintained with respect to basalt rock ore, and the crystallization and binding of basalt fiber are inhibited, the heat-resistance property of basalt fiber is greatly improved from the conventional 750° C. to 850 or 900° C., and significant cost reduction is achieved over conventional products. The method includes: grinding basalt rock as a material; washing a resultant ground rock; melting the ground rock that has been washed; transforming a molten product into fiber; and drawing the fiber in an aligned manner, and winding it. The temperature of the molten product in the melting step is 1400 to 1650° C., and log ? is 2.15 to 2.35 dPa·s and preferably 2.2 to 2.3 dPa·s, where ? is the viscosity of the molten product.
    Type: Application
    Filed: September 16, 2011
    Publication date: May 3, 2012
    Inventors: Sumio Kamiya, Hironori Sasaki, Noriaki Nakagawa
  • Patent number: 8042363
    Abstract: The invention relates to producing continuous organic fibers by stretching from molten minerals. These fibers can be used for producing heat resistant threads, rovings, cut fibers, fabrics, composite materials and products based thereon. The inventive glass has the following chemical composition in mass percentage: 15.9-18.1 Al2O3, 0.75-1.2 TiO2, 7.51-9.53 Fe2O3+FeO, 6.41-8.95 CaO, 2.5-6.4 MgO, 1.6-2.72 K2O, 3.3-4.1 Na2O, 0.23-0.5 P2O5, 0.02-0.15 SO3, 0.12-0.21 MnO, 0.05-0.19 BaO, impurities up to 1.0, the rest being SiO2. The inventive method consists in loading a ground composition in a melting furnace, in melting said composition, in homogenizing a melt, in consequently stabilizing the melt in the melting furnace feeder, in drawing and oiling the fiber and in winding it on a spool. Prior to loading, the composition is held in an alkali solution for 15-20 minutes, and is then washed with flowing water for 20-30 minutes and dried.
    Type: Grant
    Filed: December 25, 2006
    Date of Patent: October 25, 2011
    Inventors: Viktor F. Kibol, Sunao Nakanoo, Alexandr B. Biland, Roman V. Kibol
  • Patent number: 8037719
    Abstract: Basalt filament is manufactured in such a manner that the fiber diameter can be controlled and the filament is not severed during the winding step. A network former and a glass modifier are formed and maintained with respect to basalt rock ore, and the crystallization and binding of basalt fiber are inhibited, the heat-resistance property of basalt fiber is greatly improved from the conventional 750° C. to 850 or 900° C., and significant cost reduction is achieved over conventional products. The method includes the steps of: grinding basalt rock as a material; washing a resultant ground rock; melting the ground rock that has been washed; transforming a molten product into fiber; and drawing the fiber in an aligned manner, and winding it. The temperature of the molten product in the melting step is 1400 to 1650° C., and log ? is 2.15 to 2.35 dPa·s and preferably 2.2 to 2.3 dPa·s, where ? is the viscosity of the molten product.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: October 18, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Nakagawa Sangyo Co., Ltd.
    Inventors: Sumio Kamiya, Hironori Sasaki, Noriaki Nakagawa
  • Patent number: 7832235
    Abstract: An apparatus for winding a fiber strand onto a former, wherein there is provided a separating means for fixing and separating the fiber strand at the end of an operation of winding on a finish-wound first former and for bringing the fixed fiber-strand end to a second former to be wound in order to begin a new winding operation. At least one thread buffer for temporary storage of a fiber-strand portion between the end of one winding operation and the beginning of a new winding operation is disposed upstream from the separating means in the feed direction.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: November 16, 2010
    Assignee: Eha Spezialmaschinenbau GmbH
    Inventors: Mike Neubert, Johannes Weg
  • Patent number: 7716953
    Abstract: Apparatus and methods for making a continuous fiber product by gathering a plurality of fibers into a strand in contact with a pad wheel that is driven with a low voltage, variable speed motor or drive, and controlling the RPM of the motor in response to a breakout detector. Other embodiments further include accelerating the RPM of the motor and pad wheel at a desired ramp-up rate following the resumption of desired fiberization.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: May 18, 2010
    Assignee: Johns Manville
    Inventors: Michael David Folk, Douglas J. Kempski
  • Patent number: 6620350
    Abstract: A method for making gradient refractive index optical components includes mixing a molten basic material (11) with a refractive index modifying material (21) in continuously changing proportions. The mixture is changed into a plurality of semi-molten fibers (41), and the fibers are rolled to form a continuous plate (51). The plate has a continuously changing refractive index along a lengthwise direction thereof. The plate is wound around a spindle (57) to obtain a wound preformed rod (58). The preformed rod is integrally fused by local heating, and drawn to form a draw (61) having a predetermined diameter. The draw is cut into pieces. Each piece can then be made into an optical component having a continuously changing refractive index in a radial direction. The method allows precise control of all steps, and such control is achieved with relative ease throughout.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: September 16, 2003
    Assignee: Hon Hai Precision Ind. Co., Ltd.
    Inventor: Guangji Chen
  • Patent number: 6371394
    Abstract: Method for winding a fiber element onto a support. The fiber element having at least two longitudinal portions (Pi) with different characteristics. The method including the steps of supplying the fiber element to the support and associating with each longitudinal portion a respective value of the winding pitch (pi) which is different from the values associated with the portions adjacent thereto. The winding pitch associated with each portion being modulated in accordance with a periodic function.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: April 16, 2002
    Assignee: Pirelli Cavi e Sistemi S.p.A.
    Inventor: Giacomo Stefano Roba
  • Patent number: 6125660
    Abstract: The invention relates to a process for the manufacture of, in particular, continuous mineral fibers from rock, glass-containing technical wastes, technical glass wastes, and to an apparatus. The object of the invention is to create a process which enables the said group of starting materials to be processed from a stable melt to give, in particular, continuous fibers and thus to improve fiber quality and processability. The starting products are melted in a melting bath, transferred to a forehearth, a feeder device and then fed to a bushing device and from there taken off as thread, the melt being fed to the feeder device from a take-off area of the melt in which the melt has the parameters according to the invention of temperature, processing range, viscosity, quotient of viscosity and surface tension and energy of activation of viscous flow of the melt, and the ratio of height of the melt in the forehearth to the height of the melt in the melting bath being in a defined range.
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: October 3, 2000
    Assignees: Gerhard Burger, Valentina Gorobinskaya
    Inventors: Valentina Gorobinskaya, Dirk Thamm, Irina Kravtchenko, Dalik Sojref, Alexander Medwedjew
  • Patent number: 6035667
    Abstract: When one strand, which is formed by gathering a multiplicity of glass filaments having a diameter of 9.mu. or less and formed by drawing molten glass flowed out through a multiplicity of orifices formed in the bottom portion of a bushing, is wound around a collet, the strand is wound to form a square-end cheese package by traversing the strand by a traversing device having a constant amplitude, while the strand is brought into contact with a rotative drum of a tension relaxing device to reduce the tension acting on the strand. Thus, the quality of a package of non-twisted glass yarn having a monofilament diameter of 3 to 9.mu. can be improved, a large quantity of the package can be formed, and the package can easily be transported.
    Type: Grant
    Filed: December 17, 1996
    Date of Patent: March 14, 2000
    Assignee: Nitto Glass Fiber Mfg. Co., Ltd.
    Inventors: Kenzo Watabe, Michio Kurokata