Sequentially Forming, Reheating, And Working Patents (Class 65/63)
  • Patent number: 8857220
    Abstract: Methods of making a stub lens element and assemblies for coherence tomography (OCT) applications are disclosed. The method of making the stub lens element includes drawing a rod of optical material and processing the drawn rod to form a lens integrally connected to a stub section. The methods also include operably supporting an optical fiber and a stub lens element in a cooperative optical relationship to form a stub lens sub-assembly. The methods also include operably supporting the stub lens sub-assembly and a light-deflecting member in a cooperative optical relationship to form a probe optical assembly that has a folded optical path.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: October 14, 2014
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, John Himmelreich
  • Patent number: 8826695
    Abstract: A method for manufacturing an optical glass element, comprising: annealing a press-molded product obtained by press molding into a lens shape a glass material comprised of a core portion comprised of an optical glass (first glass) with a transition temperature of 550° C. or higher and a covering portion comprised of a second glass covering the surface of said core portion; and then removing the covering layer from the surface of the press-molded product to obtain an optical glass element. To provide a method for manufacturing high-optical-performance mold-pressed lenses in which the defective external appearance of optical elements comprised of high-temperature glass materials with a Tg of 550° C. or higher is prevented.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: September 9, 2014
    Assignee: Hoya Corporation
    Inventors: Xuelu Zou, Yasuhiro Fujiwara
  • Patent number: 8752403
    Abstract: A method is provided for shaping a glass sheet in more than one dimension, and within the one or more dimensions forming non-uniform shapes between, for example, the leading edge and the trailing edge of the same glass sheet. Such shaping is achieved by the selective location, in first and second shaping zones, of shaping rolls having first and second shaping configurations and by varying the speed of the glass sheet as it moves through the shaping zones, thus varying the length of time that selected portions of the glass sheet are in contact with certain shaping rolls.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: June 17, 2014
    Assignee: Pilkington Group Limited
    Inventors: Robert J. Boisselle, Efrain Serrano, John Tomik
  • Patent number: 8739572
    Abstract: A system and method for providing component based glass casting are disclosed. One embodiment comprises arranging at least one metal shape to define boundaries of a casting dam, lining the boundaries with ceramic fiber paper to create a containment including the at least one metal shape and the ceramic fiber paper, inserting glass in the containment, and firing the glass and the containment in a kiln to cast a glass shape corresponding to a portion of the containment.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: June 3, 2014
    Inventor: Christopher Mini
  • Patent number: 8650907
    Abstract: The method produces a reshaped glass-ceramic article by forced reshaping of a flat green glass part during a ceramicizing process with temporarily lowered viscosity due to crystallization heat. To perform the forced reshaping economically the forced reshaping takes place in a continuous oven for ceramicizing and in an oven section in which the viscosity of the green glass part is temporarily lowered as a result of crystallization heat. An apparatus for performing the process is provided in the continuous oven including different active reshaping devices and/or a hollow mold. The method produces glass-ceramic articles with undamaged surfaces corresponding to surfaces produced during the making of the green glass part (smooth or structured, e.g. knobbed).
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: February 18, 2014
    Assignee: Schott AG
    Inventors: Martin Taplan, Herwig Scheidler, Ioannis Kosmas, Friedrich-Georg Schroeder, Wolfgang Schmidbauer, Torsten Gabelmann, Dieter Schoenig
  • Patent number: 8555674
    Abstract: A quartz glass crucible for silicon single crystal pulling operation that by a simple arrangement, attains prevention of any collapse onto the inside at a superior edge of straight trunk part; and a process for manufacturing the same. The quartz glass crucible for silicon single crystal pulling operation having a straight trunk part and a bottom part, is characterized in that at least the straight trunk part is provided with a gradient of fictive temperature so that the fictive temperature on the outermost side thereof is 25° C. or more lower than the fictive temperature on the innermost side thereof.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 15, 2013
    Assignees: Heraeus Quarzglas GmbH & Co. KG, Shin-Etsu Quartz Products Co., Ltd.
    Inventor: Yasuo Ohama
  • Patent number: 8474285
    Abstract: In the process a glass tube line is drawn from a glass tube production plant and the glass tube is severed from the glass tube line. At the same time the still heated glass tube is subjected to a selective local heat treatment of the at least one tube end section prior to cooling down completely in order to reduce the stresses in the respective tube end section. Not the entire glass tube but instead only the respective tube end section is subjected to the selective local heat treatment. The heat treatment is performed in particular in such a manner that the mechanical tensile stress in the region between 7 mm and 20 mm from the tube end or ends is reduced to below 6.0 MPa, more preferably to below 4.5 MPa.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: July 2, 2013
    Assignee: Schott AG
    Inventors: Reiner Bartsch, Jens Ahrens, Markus Pappenberger, Roland Fuchs
  • Patent number: 8291729
    Abstract: Disclosed is a method for fabricating glass bump standoff structures of precise height, the method comprising providing oversized glass bumps on a glass substrate, providing a heat source to heat the bumps, positioning a substrate to be aligned on the oversized bumps, and reducing the height of the oversized bumps by a combination of manipulations comprising (1) softening the bumps by heating the bumps and (2) applying pressure to the substrate to be aligned.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: October 23, 2012
    Assignee: Corning Incorporated
    Inventors: Richard R Grzybowski, Alexander Mikhailovich Streltsov, James Scott Sutherland
  • Patent number: 8099980
    Abstract: An I.S. Machine is provided wherein the blow molds are closed to a slightly cracked location whereby applied cooling air can not leak into and pressurize the blow mold thereby damaging the parison during reheat. When reheat is completed, the blow molds are fully closed and the parison is transformed into a bottle by applying compressed air and/or vacuum.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: January 24, 2012
    Assignee: Emhart Glass S.A.
    Inventor: Jonathan S. Simon
  • Patent number: 8065891
    Abstract: A multiple-layered hot-melt glass lampshade having a crystal-interwoven structure with a first hot-melt glass layer, a second hot-melt glass layer, a third hot-melt glass layer, a first crystal glass layer, a second crystal glass layer, and a curing gel layer. The order of arrangement is, from outside to inside, the first hot-melt glass layer, the second hot-melt glass layer, the third hot-melt glass layer, the first crystal glass layer, the curing gel layer, and the second crystal glass layer. The first hot-melt glass layer, the second hot-melt glass layer, and the third hot-melt glass layer are partially attached to each other. The third hot-melt glass layer is partially attached to the first crystal glass layer.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: November 29, 2011
    Assignee: Shenzhen Tronsin illuminating Technique Ltd.
    Inventors: Haisheng Chen, Naiqun Jiang, Chunping Zhang
  • Patent number: 8051678
    Abstract: The present invention relates to a glass substrate of which the outer periphery portion is unprocessed. The present invention also relates to a manufacturing method for a glass substrate of which the outer periphery portion is unprocessed, characterized in that a first lapping process, a second lapping process, a polishing process and a washing process are carried out after a press molding process is carried out so as to compress glass between an upper mold and a lower mold without regulating the edge surface of the outer periphery portion of the glass and, then, a crystallization process or an annealing process is carried out.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: November 8, 2011
    Assignee: Minolta Co., Ltd.
    Inventors: Shiro Nishimoto, Mitsugu Tokunaga, Hideki Kawai, Toshiharu Mori, Shinji Fukumoto
  • Patent number: 8012896
    Abstract: The present invention relates to an optical glass having optical constants in the form of a refractive index nd of 1.70 or higher and an Abbé number nud of 50 or higher, a preform for precision press molding comprised of this glass, an optical element comprised of this glass, and methods for manufacturing the preform and the optical element.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: September 6, 2011
    Assignee: Hoya Corporation
    Inventor: Yasuhiro Fujiwara
  • Patent number: 8008220
    Abstract: The present invention relates to the use of lead-free and phosphate-containing glasses, preferably colored and filter glasses which absorb light in the infrared region (IR-region), in a precision molding process. Preferably, the content of fluorine in the glass is low. Advantageously, so optical constituents can be produced without finishing, such as for example lenses for digital cameras. By the use according to the present invention, also other optical constituents can be produced which can be directly used for a corresponding technical purpose. For an advantageous use, the optical constituents produced by precision molding can be used in the fields imaging, projection, telecommunications, optical communications engineering and laser technology.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 30, 2011
    Assignee: Schott AG
    Inventors: Simone Monika Ritter, Christopher Klein, Christian Schenk, Frank-Thomas Lentes, Petra Auchter-Krummel, Rainer Jaschek, Steffen Reichel, Michael Waschulewski, Stephan Kuepper-Brennberger
  • Patent number: 7992412
    Abstract: Disclosed are a process for producing a glass shaped material having high quality and high mass accuracy and a process for producing an optical element, which includes the preparation of a glass shaped material having high quality and high mass accuracy, the heating of said glass shaped material and the precision-press-molding thereof.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: August 9, 2011
    Assignee: Hoya Corporation
    Inventors: Masahiro Yoshida, Yoshikane Shinkuma, Xuelu Zou
  • Patent number: 7994082
    Abstract: Preforms for precision press molding made of optical glass, optical elements, and methods of manufacturing the same are provided. The preforms are suited to precision press molding having a broad range of dispersion characteristics, a low glass transition temperature, a low sag point, and good resistance to devitrification while containing no PbO. The optical element is obtained by precision press molding the preform. One example of the preform has a refractive index (nd) of greater than or equal to 1.7 and an Abbé number (vd) of less than or equal to 32. The other example of the preform has an Abbé number (vd) exceeding 32.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: August 9, 2011
    Assignee: Hoya Corporation
    Inventors: Xuelu Zou, Yoshiko Kasuga, Yasuhiro Fujiwara
  • Patent number: 7947617
    Abstract: To provide a high-refractivity high-dispersion optical glass having excellent stability An optical glass which is formed of an oxide glass containing 30 to 70 cationic % of Bi3+ and has a liquidus temperature of 800° C. or lower.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: May 24, 2011
    Assignee: Hoya Corporation
    Inventors: Xuelu Zou, Yasuhiro Fujiwara, Yoshio Nojima
  • Patent number: 7854143
    Abstract: An optical fiber preform comprising a plurality of longitudinal air holes is subjected to a thermal treatment (i.e., heating), coupled with the application of a compressive force on either end of the heated preform to compress the entire preform structure a predetermined amount. The thermal compression treatment has been found to smooth any roughened glass surfaces and heal microcracks that may have formed during the preform fabrication process, essentially “knitting” the glass material back together and forming a preform of improved quality over the prior art microstructured preforms.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: December 21, 2010
    Assignee: OFS Fitel LLC
    Inventors: Ryan Bise, James W. Fleming, George J. Zydzik
  • Patent number: 7827823
    Abstract: An optical glass having high refractivity and a low sag temperature and having a low-temperature softening property that enables precision press-molding is provided, and the optical glass contains, by mol %, 5 to 50% of B2O3, 3 to 50% of SiO2, 5 to 40% of TiO2, 1 to 40% of ZnO, 5 to 20% of La2O3, 0 to 10% of Gd2O3, 0 to 15% of Nb2O5, 0 to 10% of ZrO2, 0 to 5% of Ta2O5, 0 to 10% of Bi2O3, 0 to 10% of MgO, 0 to 8% of CaO, 0 to 10% of SrO, 0 to 10% of BaO, provided that the total content of MgO, CaO, SrO and BaO is 15% or less, 0 to 20% of Li2O, and 0 to 5% of Na2O, optionally containing Sb2O3 as a refining agent, and having a refractive index (nd) of 1.8 or more and an Abbe's number (?d) of 35 or less.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: November 9, 2010
    Assignee: Hoya Corporation
    Inventors: Yoshiko Kasuga, Xuelu Zou
  • Patent number: 7770414
    Abstract: The present invention relates to a process for manufacturing flat sheets of a glass-based material and to an apparatus therefor. The process comprises providing a glass preform, heating the glass preform in a furnace, forming a gob and a pre-sheet, removing the gob and drawing the glass pre-sheet into a flat glass sheet. Also provided is an apparatus for drawing a glass preform into a glass sheet, the apparatus comprising a draw furnace, stretching arms for stretching and drawing the pre-sheet into a glass sheet, and opposing edge rollers for applying a downward force on the glass sheet. The draw furnace may include a plurality of individual heating elements, the temperature of each heating element capable of being separately controlled. The apparatus may further include an annealing furnace for annealing the glass sheet.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: August 10, 2010
    Assignee: Corning Incorporated
    Inventors: Patrick J Cimo, Michael T Murtagh, Mark L Powley
  • Patent number: 7749930
    Abstract: An ideal quartz glass for a wafer jig for use in an environment having an etching effect is distinguished by both high purity and high resistance to dry etching. To indicate a quartz glass that substantially fulfills these requirements, it is suggested according to the invention that the quartz glass is doped with nitrogen at least in a near-surface area, has a mean content of metastable hydroxyl groups of less than 30 wt ppm and that its fictive temperature is below 1250° C. and its viscosity is at least 1013 dPa·s at a temperature of 1200° C. An economic method for producing such a quartz glass comprises the following method steps: melting an SiO2 raw material to obtain a quartz glass blank, the SiO2 raw material or the quartz glass blank being subjected to a dehydration measure, heating the SiO2 raw material or the quartz glass blank to a nitriding temperature in the range between 1050° C. and 1850° C.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: July 6, 2010
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventors: Juergen Weber, Tobias Pogge, Martin Trommer, Bodo Kuehn, Ulrich Kirst, Waltraud Werdecker
  • Patent number: 7716948
    Abstract: A fused glass crucible includes a collar of doped aluminum silica that defines uppermost and outermost surfaces of the crucible. The melt line that defines the surface of molten silicon in the crucible may be substantially at the lower end of the collar or slightly above it. Crystallization of the collar makes it hard and therefore supports the remaining uncrystallized portion of the crucible above the melt line. The melt line may also be below the lower end of the collar, especially if the melt is drawn down or poured early in the process. Because there is little or no overlap or because the overlap does not last long, the doped aluminum collar is not damaged by the heat of from the melt.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: May 18, 2010
    Assignees: Heraeus Shin-Etsu America, Inc., Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Katsuhiko Kemmochi, Yasuo Ohama
  • Patent number: 7603876
    Abstract: An optical glass that has high-refractivity and high-dispersion properties, that is less colored and that is suitable for a shapable glass material for press-shaping and various optical elements, the optical glass containing, as glass components and by mass %, 10 to 32% of P2O5, 27 to 65% of Nb2O5, 10 to 30% of BaO, 0 to 12% of B2O3, more than 0% but not more than 20% of TiO2, more than 0% but not more than 10% of total of Li2O, Na2O and K2O, and more than 0% but not more than 1%, based on the total content of the said glass components, of Sb2O3, and having a light transmittance that is 50% at a wavelength of 420 nm or shorter.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: October 20, 2009
    Assignee: Hoya Corporation
    Inventor: Koichiro Shiraishi
  • Publication number: 20090190215
    Abstract: The invention is directed to a glass composition and articles made from the composition that are both polarizing and photorefractive. The glass has, for example, a composition consisting essentially of, in weight percent (“wt. %”) of 70-73 SiO2, 13-17% B2O3, 8-10% Na2O, 2-4% Al2O3, 0.005-0.1% CuO, <0.4% Cl, 0.1-0.5% Ag, 0.1-0.3% Br. In another embodiment the composition consists essentially of 70-77% SiO2, 13-18% B2O3, 8-10% Na2O, 2-4% Al2O3, 0.005-0.1% CuO, <0.4% Cl, 0.1-0.5% Ag, 0.1-0.3% Br. The glass can be used make articles or elements that can exhibits both the photorefractive effect and the polarizing effect within a single element or article, and can be used to make a variety of optical elements including Bragg gratings, filtering elements, and beam shaping elements and light collection elements for use in display, security, defense, metrology, imaging and communications applications.
    Type: Application
    Filed: December 18, 2008
    Publication date: July 30, 2009
    Inventors: Nicholas Francis Borrelli, Joseph Francis Schroeder, III, Thomas P. Seward, III
  • Patent number: 7490485
    Abstract: An optical glass whose refractive index is high and whose coloring is decreased comprising, by weight %, 2 to 45% of B2O3, 0 to 30% of SiO2 provided that the content of B2O3>the content of SiO2, 10 to 50% of La2O3, 0 to 30% of TiO2, 0 to 15% of ZnO, 0 to 15% of ZrO2, 0 to 35% of Nb2O5, 0 to 35% of BaO, 0 to 5% of SrO, 0% or more but less than 8% of CaO, 0% or more but less than 13% of MgO, provided that the total content of BaO, SrO, CaO and MgO is 0 to 40%, 0 to 20% of Gd2O3, 0 to 15% of Y2O3, 0 to 18% of Ta2O5, 0% or more but less than 0.5% of WO3, 0% or more but less than 1.5% of a total of Na2O, K2O and Li2O, 0 to 10% of GeO2, 0 to 20% of Bi2O3, 0 to 10% of Yb2O3, 0 to 10% of Al2O3, 0% or more but less than 2% of Sb2O3 and 0 to 1% of SnO2.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: February 17, 2009
    Assignee: Hoya Corporation
    Inventor: Michio Endo
  • Patent number: 7415843
    Abstract: In a method of manufacturing a glass optical element by press-forming a glass material in a chamber by using a forming mold comprising upper and lower dies at least one of which is movable, where a surrounded space is formed between the glass material and at least one of the upper and the lower dies when the upper and the lower dies come into contact with the glass material, a pressure within the chamber is reduced before the glass material placed in the forming mold is heated to a press-forming temperature. After sealing the space as formed when the glass material is in contact with at least one of forming surfaces of the upper and the lower dies, a gas is introduced into the chamber. The glass material is heated in the gas and then press-formed under a pressing load.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: August 26, 2008
    Assignee: Hoya Corporation
    Inventor: Yasuhiro Yoneda
  • Publication number: 20080148777
    Abstract: An optical fiber preform comprising a plurality of longitudinal air holes is subjected to a thermal treatment (i.e., heating), coupled with the application of a compressive force on either end of the heated preform to compress the entire preform structure a predetermined amount. The thermal compression treatment has been found to smooth any roughened glass surfaces and heal microcracks that may have formed during the preform fabrication process, essentially “knitting” the glass material back together and forming a preform of improved quality over the prior art microstructured preforms.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventors: Ryan Bise, James W. Fleming, George J. Zydzik
  • Patent number: 7155936
    Abstract: The present invention provides doped titania-doped silica glass articles having low thermal expansions and low variations in thermal expansion. According to one embodiment of the invention, a titania-doped silica glass article has a titania content of between about 5 wt % and about 9 wt %; a coefficient of thermal expansion of between about ?30 ppb/° C. and about +30 ppb/° C. at a temperature between 15° C. and 30° C.; and a variation in coefficient of thermal expansion of less than about 5 ppb/° C. at a temperature between 15° C. and 30° C.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: January 2, 2007
    Assignee: Corning Incorporated
    Inventors: Steven B. Dawes, Richard M. Fiacco, Kenneth E. Hrdina, Michael H. Wasilewski
  • Patent number: 7140205
    Abstract: Disclosed is a method of manufacturing ultraprecise lenses, including aspherical lenses, not requiring grinding or polishing after press molding. The method comprises heating a glass material to a temperature corresponding to a glass viscosity of from 105 to 109 dPaS so that the glass material is softened, and press molding the glass material with the pressing molds which are heated to a temperature corresponding to a glass viscosity of from 108 to 1012 dPaS. Provided that the glass material is not heated to a temperature as high as that corresponding to a glass viscosity of 105 dPaS when the pressing mold is heated to a temperature corresponding to a glass viscosity of 108 and that the glass material is not heated to a temperature as low as that corresponding to a glass viscosity of 109 dPaS when the pressing mold is heated to a temperature corresponding to a glass viscosity of 1012 dPaS.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: November 28, 2006
    Assignee: Hoya Corporation
    Inventors: Yasuhiro Fujiwara, Zou Xuelu, Hiroyuki Sakai, Shinichiro Hirota
  • Patent number: 6844279
    Abstract: A high-refractivity low-dispersion optical glass that gives press-molding preforms excellent in high-temperature shapability and suitable for precision press-molding, including an optical glass comprising B2O3, La2O3, Gd2O3 and ZnO as essential components, substantially containing none of lead and fluorine, having a refractive index (nd) of 1.72 to 1.83, an Abbe's number (?d) of 45 to 55 and a glass transition temperature (Tg) of 630° C. or lower and having a viscosity of at least 0.6 Pa·s at its liquidus temperature, and an optical glass comprising, by mol %, 45 to 65% of B2O3, 5 to 22% of La2O3, 1 to 20% of Gd2O3, provided that the total content of La2O3 and Gd2O3 is 14 to 30%, 5 to 30% of ZnO, 0 to 10% of SiO2, 0 to 6.5% of ZrO2 and 0 to 1% of Sb2O3, substantially containing none of lead and fluorine, and having a refractive index (nd) of 1.72 to 1.83 and an Abbe's number (?d) of 45 to 55.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: January 18, 2005
    Assignee: Hoya Corporation
    Inventors: Kazutaka Hayashi, Yasuhiro Fujiwara, Zou Xuelu
  • Patent number: 6813904
    Abstract: A process for fabricating a faceplate for a flat-panel display such as a field emission cathode type display is disclosed, the faceplate having integral spacer support structures. Also disclosed is a product made by the aforesaid process.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: November 9, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Publication number: 20040050105
    Abstract: A method of manufacturing an optical glass element for which flatness and smoothness of the surfaces of the optical glass element can be improved while securing the similarity of the cross-sectional shape of the optical glass element to that of the mother glass, and for which continuous production involving few steps can be carried out, and an optical glass element manufactured using the method. A mother glass is prepared, which has a cross-sectional shape substantially similar to a desired cross-sectional shape of the optical glass element, and the mother glass is drawn while heating to a predetermined temperature such that the mother glass has a viscosity of 105 to 109 poise.
    Type: Application
    Filed: August 28, 2003
    Publication date: March 18, 2004
    Applicant: NIPPON SHEET GLASS CO., LTD.
    Inventors: Masahiro Morishita, Katsuya Kamisaku, Toshiaki Mizuno
  • Patent number: 6641663
    Abstract: A silica glass crucible is disclosed comprising a barium-doped inner wall layer. The crucible is made by introducing into a rotating crucible mold bulk silica grain to form a bulky wall. After heating the interior of the mold to fuse the bulk silica grains, an inner silica grain, doped with barium, is introduced. The heat at least partially melts the inner silica grain, allowing it to fuse to the wall to form an inner layer. The inner layer of the crucible crystallizes when used in a CZ process, extending the operating life of the crucible.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: November 4, 2003
    Assignee: Heracus Shin-Estu America
    Inventors: Katsuhiko Kemmochi, Robert Mosier, Paul Spencer
  • Patent number: 6631627
    Abstract: A process for fabricating a face plate for a flat-panel display such as a field emission cathode type display is disclosed, the face plate having integral spacer support structures. Also disclosed is a product made by the aforesaid process.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: October 14, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6598426
    Abstract: A method of making a vehicle windshield or other window. An opaque layer (e.g., enamel or water-based) is applied to a glass sheet and then “fired” or cured. The opaque layer is preferably black or dark in color. Thereafter, the sheet with the opaque layer thereon is cut into a desired windshield shape, along a cutting line which extends through both the glass sheet and the opaque layer formed thereon. As a result, on the cut glass sheet the opaque layer extends all the way up to the peripheral edge thereof. In vehicle windshield embodiments, the cut sheet is laminated to another glass sheet via at least a polymer based interlayer in order to form the vehicle windshield.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: July 29, 2003
    Assignee: Guardian Industries Corp.
    Inventors: Robert Vandal, John Bradford
  • Patent number: 6564586
    Abstract: A process for fabricating a face plate for a flat panel display such as a field emission cathode type display is disclosed, the face plate having integral spacer support structures. Also disclosed is a product made by the aforesaid process.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: May 20, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6442973
    Abstract: A method is provided for manufacturing a synthetic silica glass. The method includes the steps of maintaining a silica glass member, which is formed using a flame hydrolysis method and having an OH group concentration of about 500 ppm to about 1300 ppm, at a predetermined holding temperature for a predetermined period of time so as to substantially relax the structure of the silica glass member. The method further includes the step of subsequently cooling the silica glass member to a first predetermined temperature at a cooling rate of about 10 K/hour or less, and thereafter, cooling the silica glass member to a second predetermined temperature at a cooling rate of about 1 K/hour or less. The method further includes the step of further cooling the silica glass member to a third predetermined temperature at a cooling rate of about 10 K/hour or less.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: September 3, 2002
    Assignee: Nikon Corporation
    Inventors: Norio Komine, Seishi Fujiwara, Akiko Yoshida, Hiroki Jinbo
  • Patent number: 6393869
    Abstract: A process for fabricating a face plate for a flat panel display such as a field emission cathode type display, the face plate having integral spacer support structures is disclosed. Also disclosed is a product made by the aforesaid process. The support structures are designed to be load bearing so as to prevent implosion of a planar, transparent face plate toward a parallel spaced-apart base plate when the space between the face plate and the base plate is sealed at the edges of the display to form a chamber, and the chamber is evacuated in the presence of atmospheric pressure outside the chamber. Unlike most spacer support structures proposed for such flat panel displays, the support structures are made from the same material as the substrate from which the face plate is fabricated. For a preferred embodiment of the process, a perforated laminar template is sealably sandwiched between a laminar silicate glass substrate and a manifold block to form a temporary sandwich assembly.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: May 28, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6385997
    Abstract: A method for fabricating a mold tool for molding optical elements is taught which comprises heating a mold tool blank made from a vitreous material to a temperature above the glass transition temperature of the vitreous material; generating an axial viscosity gradient in the mold tool blank; pressing a punch into an optical quality mold surface of the mold tool blank, the punch including a pressing surface with a predetermined geometry for forming an optical feature; cooling the mold tool blank to a temperature below the glass transition temperature of the material; and removing the punch from the mold tool blank thereby creating the optical feature in the optical quality mold surface. The axial viscosity gradient is achieved by creating an axial thermal gradient.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: May 14, 2002
    Assignee: Eastman Kodak Company
    Inventors: Jayson J. Nelson, Eugene G. Hill, Paul O. McLaughlin, John C. Pulver, Michael K. Budinski
  • Patent number: 6375737
    Abstract: A method of self-assembling silicon quantum dots comprises the steps of providing a substrate, forming a thin amorphous Si film, and forming a plurality of Si quantum dots by controlling the energy and the shooting numbers of an excimer laser during an annealing process, wherein the excimer laser emits light on the thin amorphous Si film.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: April 23, 2002
    Assignee: National Science Council
    Inventors: An Shih, Chao-Yu Meng, Si-Chen Lee
  • Publication number: 20020014092
    Abstract: There are provided a method of manufacturing an optical glass element, for which flatness and smoothness of the surfaces of the optical glass element can be improved while securing the similarity of the cross-sectional shape of the optical glass element to that of the mother glass, and for which continuous production involving few steps can be carried out, and an optical glass element manufactured using the method. A mother glass is prepared, which has a cross-sectional shape substantially similar to a desired cross-sectional shape of the optical glass element, and the mother glass is drawn while heating to a predetermined temperature such that the mother glass has a viscosity of 105 to 109 poise.
    Type: Application
    Filed: June 5, 2001
    Publication date: February 7, 2002
    Applicant: NIPPON SHEET GLASS CO., LTD
    Inventors: Masahiro Morishita, Katsuya Kamisaku, Toshiaki Mizuno
  • Patent number: 6321571
    Abstract: An assembly of rib structures sandwiched between a dielectric glass layer and a glass substrate for use in a flat panel display, such as plasma addressed liquid crystal (PALC) displays, is formed by a number of methods. One method includes molding thermoplastic glass frit containing paste into rib structures, transferring the rib structures to a thin transparent layer of a thermoplastic dielectric glass frit containing composition on a drum, and transferring the rib structures with the thin transparent dielectric glass layer to a glass substrate having metallic electrodes already formed thereon.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: November 27, 2001
    Assignee: Corning Incorporated
    Inventors: Jean-Pierre Themont, Jean-Jacques B. Theron
  • Publication number: 20010035028
    Abstract: Method of heating glass contacting surfaces, comprising heating the glass contacting surfaces to a predetermined operating temperature by combustion of a hydrocarbon fuel gas mixture which includes 90% by volume of MAPP gas and 10 percent by volume of propane. Another method blends the MAPP with air and/or natural gas. A novel hydrocarbon fuel gas mixture which includes 90% by volume of MAPP gas and 10% by volume of propane.
    Type: Application
    Filed: May 2, 2001
    Publication date: November 1, 2001
    Inventors: Thomas A. Seeman, Peter T. Eagle
  • Patent number: 6289695
    Abstract: An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: September 18, 2001
    Assignee: The Regents of the University of California
    Inventors: Steve P. Swierkowski, James C. Davidson, Joseph W. Balch
  • Patent number: 6279348
    Abstract: A process for fabricating a face plate for a flat panel display such as a field emission cathode type display, the face plate having integral spacer support structures is disclosed. Also disclosed is a product made by the aforesaid process. The support structures are designed to be load bearing so as to prevent implosion of a planar, transparent face plate toward a parallel spaced-apart base plate when the space between the face plate and the base plate is sealed at the edges of the display to form a chamber, and the chamber is evacuated in the presence of atmospheric pressure outside the chamber. Unlike most spacer support structures proposed for such flat panel displays, the support structures are made from the same material as the substrate from which the face plate is fabricated. For a preferred embodiment of the process, a perforated laminar template is sealably sandwiched between a laminar silicate glass substrate and a manifold block to form a temporary sandwich assembly.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: August 28, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6230520
    Abstract: A method disclosed can mold glass optical elements having a good surface precision with a relatively short cycle time even where glass optical elements are manufactured in largely transforming a glass material. This method is, for example, a molding method for glass optical elements including the step of pressing a glass molding material softened by heat until the center thickness of the glass molded article becomes 70% of the center thickness of the glass molding material to produce the glass molded article. The preheat temperature of the mold is set to a temperature that the average of the temperatures around molding surfaces of upper and lower molds constituting the mold is a temperature that the glass molding material indicates a viscosity of X poises; the heating temperature of the glass molding material is set to a temperature that the glass molding material indicates a viscosity of Y poises; the viscosity X and the viscosity Y satisfy the following formulas. log X<10 log Y≧6.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: May 15, 2001
    Assignee: Hoya Corporation
    Inventors: Shinichiro Hirota, Ken Uno
  • Patent number: 6224662
    Abstract: The present invention relates to the use of novel glass compositions in preparing dental glass pillars and support pillars, and method for producing the glass pillars. The glass material comprises a high percent of boron trioxide which makes possible a reduced alkali oxide content. The dental glass pillars thus obtained are bio-compatible and can be used in the preparation of dental bridgework, most preferably when posterior teeth serving for support of the said bridgework are missing.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: May 1, 2001
    Inventor: Laszlo Nemeth
  • Patent number: 6205819
    Abstract: An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: March 27, 2001
    Assignee: The Regents of the University of California
    Inventors: Harold D. Ackler, Stefan P. Swierkowski, Lisa A. Tarte, Randall K. Hicks
  • Patent number: 6131410
    Abstract: An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn.
    Type: Grant
    Filed: March 16, 1998
    Date of Patent: October 17, 2000
    Assignee: The Regents of the University of California
    Inventors: Steve P. Swierkowski, James C. Davidson, Joseph W. Balch
  • Patent number: 6101846
    Abstract: A process for fabricating a face plate for a flat panel display such as a field emission cathode type display, the face plate having integral spacer support structures is disclosed. Also disclosed is a product made by the aforesaid process. The support structures are designed to be load bearing so as to prevent implosion of a planar, transparent face plate toward a parallel spaced-apart base plate when the space between the face plate and the base plate is sealed at the edges of the display to form a chamber, and the chamber is evacuated in the presence of atmospheric pressure outside the chamber. Unlike most spacer support structures proposed for such flat panel displays, the support structures are made from the same material as the substrate from which the face plate is fabricated. For a preferred embodiment of the process, a perforated laminar template is sealably sandwiched between a laminar silicate glass substrate and a manifold block to form a temporary sandwich assembly.
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: August 15, 2000
    Assignee: Micron Technology, Inc.
    Inventor: Jason B. Elledge
  • Patent number: 6082140
    Abstract: An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: July 4, 2000
    Assignee: The Regents of the University of California
    Inventors: Harold D. Ackler, Stefan P. Swierkowski, Lisa A. Tarte, Randall K. Hicks