Plural Processors Patents (Class 700/249)
  • Patent number: 8005571
    Abstract: A robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector. Each end effector including optical force sensors for detecting forces applied to the tool by engagement with the part of the patient. A microscope is located at a position for viewing the part of the patient. The position of the tool tip can be digitized relative to fiducial markers visible in an MRI experiment. The workstation and control system has a pair of hand-controllers simultaneously manipulated by an operator to control movement of a respective one or both of the arms. The image from the microscope is displayed on a monitor in 2D and stereoscopically on a microscope viewer. A second MRI display shows an image of the part of the patient the real-time location of the tool.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: August 23, 2011
    Assignee: NeuroArm Surgical Ltd.
    Inventors: Garnette Roy Sutherland, Deon Francois Louw, Paul Bradley McBeth, Tim Fielding, Dennis John Gregoris
  • Patent number: 7996111
    Abstract: A robotic device in accordance with a plurality of embodiments is provided. The robotic device generally includes a plurality of groups of sensing devices for sensing environmental events; a plurality of controllers for recognizing the environmental events and generating corresponding commands; a plurality of driving devices for driving the robotic device to respond to the environmental events under control of the commands; at least one communication line for communication between the controllers; at least one power line for transmitting power to the sensing devices, the controllers and the driving devices; a plurality of ground lines; a plurality of branches extending out from the communication line, the power line and the ground lines; and a plurality of connectors for connecting the controllers to the branches.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: August 9, 2011
    Assignees: Ensky Technology (Shenzhen) Co., Ltd., Ensky Technology Co., Ltd.
    Inventors: Hua-Dong Cheng, Han-Che Wang, Xiao-Guang Li, Tsu-Li Chiang, Kuan-Hong Hsieh
  • Patent number: 7988522
    Abstract: An exemplary electronic dinosaur toy includes a body, a neck, four legs, a tail, a head, four first actuators, and four pressure sensors. The neck, the legs and the tail are connected to the body. The head is connected to a distal end of the neck. The four first actuators are arranged inside the respective legs and configured for driving the corresponding leg to move. The four pressure sensors are arranged at distal ends of the respective legs, and configured for sensing a variation of a pressure applied to the leg and outputting a feedback signal. Thereby, the first actuator adjusts a movement of the leg based on the feedback signal.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: August 2, 2011
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ga-Lane Chen
  • Publication number: 20110184556
    Abstract: A mobile brain-based device BBD includes a mobile base equipped with sensors and effectors (Neurally Organized Mobile Adaptive Device or NOMAD), which is guided by a simulated nervous system that is an analogue of cortical and sub-cortical areas of the brain required for visual processing, decision-making, reward, and motor responses. These simulated cortical and sub-cortical areas are reentrantly connected and each area contains neuronal units representing both the mean activity level and the relative timing of the activity of groups of neurons. The brain-based device BBD learns to discriminate among multiple objects with shared visual features, and associated “target” objects with innately preferred auditory cues. Globally distributed neuronal circuits that correspond to distinct objects in the visual field of NOMAD 10 are activated. These circuits, which are constrained by a reentrant neuroanatomy and modulated by behavior and synaptic plasticity, result in successful discrimination of objects.
    Type: Application
    Filed: April 10, 2009
    Publication date: July 28, 2011
    Applicant: Neurosciences Research Foundation, Inc.
    Inventors: Anil K. Seth, Jeffrey L. McKinstry, Gerald M. Edelman, Jeffrey L. Krichmar
  • Patent number: 7979157
    Abstract: A dynamically configurable robotic system and method for performing surgical operations using a plurality of robotic arms remotely controlled by at least one operator console. The system comprises a track system configured for mounting to a patient support table, such that the track system provides a stable operating platform for the robotic arms and for facilitating placement of a proximal end of each of the arms at a selected position about a periphery of the patient support table.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: July 12, 2011
    Assignee: McMaster University
    Inventor: Mehran Anvari
  • Patent number: 7965055
    Abstract: A control device of a work positioning apparatus includes an operating limit line storage unit for storing position coordinates of an operating limit line, a speed reduction zone storage unit for storing a width of a speed reduction zone ranging from a reduction start position to the operating limit line, a check point storage unit for storing position coordinates of check points set in the work, a check point updating unit for determining position coordinates of the check points moved in accordance with an operation of the work positioning apparatus by calculation, an in-speed-reduction-zone determining unit for determining whether the check points enter the speed reduction zone in accordance with the updated position coordinates of the check points, and a work positioning apparatus control unit for instructing a work positioning apparatus motor to reduce a speed if the check points are determined to enter the speed reduction zone.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: June 21, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Takeshi Koike, Masayuki Shigeyoshi, Masaki Shibaike
  • Patent number: 7953516
    Abstract: An actuator and a robot are capable of properly adjusting the compliance of the motions of links in response to external forces according to an environment or application. The actuator sets a drive command angular velocity on the basis of a desired motor angular velocity, which is the resultant angular velocity of a desired link angular velocity and a desired driven angular velocity. The component of the desired link angular velocity included in a resultant desired velocity imparts stiffness to the motion of a link, while the component of the desired driven angular velocity included in the resultant desired velocity imparts flexibility to the motion of the link. Thus, the balance between the stiffness and the flexibility of the motion of the link is adjusted by adjusting the resultant ratio between the desired link angular velocity and the desired driven angular velocity.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: May 31, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yuichi Uebayashi
  • Patent number: 7949428
    Abstract: A robot apparatus having a plurality of movable sections includes a motion control section that generates a control signal for the periodic motion of at least part of the movable sections according to the output of an oscillator showing self-oscillation and entrainment characteristics, an environment measuring section that measures the motion according to the control signal for the movable sections or the physical environment at the time of the motion of the movable sections, a periodic oscillator control section that inputs a periodic signal to the oscillator as feedback according to the outcome of the measurement by the environment measuring section and generates an entrainment phenomenon and a non-periodic oscillator control section that inputs a non-periodic or temporary feedback signal to the oscillator.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: May 24, 2011
    Assignees: Sony Corporation, Japan Science and Technology Agency, Advanced Telecommunications Research Institute International
    Inventors: Gen Endo, Jun Morimoto, Jun Nakanishi, Gordon Chang
  • Patent number: 7937185
    Abstract: The motion of a robot is switched from a first motion, which the robot is currently performing, to a second motion. Postures of the robot in both the motions are pre-defined with a plurality of frames at a plurality of different time points. When switching from the first motion to the second motion, information is acquired on the frames corresponding to the second motion, and the posture of the robot is after the switching is controlled based on the acquired information.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: May 3, 2011
    Assignee: Fujitsu Limited
    Inventor: Riadh Zaier
  • Patent number: 7925360
    Abstract: A method may include and/or involve a mote network receiving a signal to reset and applying the signal to reset to place the mote network into a reset condition.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 12, 2011
    Assignee: The Invention Science Fund I, LLC
    Inventors: Robert W. Lord, Alexander J. Cohen, John D. Rinaldo, Jr., Edward K. Y. Jung, Mark A. Malamud, Royce A. Levien
  • Publication number: 20110066282
    Abstract: A robotic system implements a collision avoidance scheme and includes a first robotic manipulator and a first controller configured to control the first robotic manipulator for movement along a first pre-planned actual path. A second controller is configured to control movement of a second robotic manipulator for movement along a second pre-planned intended path and deviating therefrom to move in a dodging path away from the first pre-planned actual path based upon determining a potential collision with the first robotic manipulator without prior knowledge of the first pre-planned actual path.
    Type: Application
    Filed: September 15, 2009
    Publication date: March 17, 2011
    Applicant: Harris Corporation, Corporation of the State of Delaware
    Inventors: Paul Michael Bosscher, Daniel Ryan Hedman
  • Patent number: 7885727
    Abstract: A robot apparatus, an information processing method and a program therefore are capable of notifying a user of the state of communication with an access point. A humanoid robot 5, which independently determines an action in accordance with an instruction from a user or a surrounding environment, communicates with an access point 2 based on IEEE 802.11b. For example, the robot 5 controls a household electrical appliance 4-1 through a network 3 and receives a command from a personal computer 4-2 over the network 3 to execute a predetermined process. The robot 5 measures the quality of communication with the access point 2 at regular intervals. When the communication quality of a predetermined level or lower is continued for a predetermined period, the robot 5 generates speech, e.g., “I cannot see the access point. What should I do?” and waits for an instruction from the user. When receiving an instruction from the user, the robot 5 takes an action according to the instruction.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: February 8, 2011
    Assignee: Sony Corporation
    Inventor: Masanori Omote
  • Patent number: 7860611
    Abstract: On the basis of at least a difference between a desired state amount related to a posture of a robot 1 about a vertical axis or a floor surface normal line axis and an actual state amount of the robot 1 and a permissible range of a restriction object amount, namely, a vertical component of a floor reaction force moment or a component of the floor reaction force moment in a floor surface normal line direction to be applied to the robot 1, instantaneous values of a desired motion and a desired floor reaction force are determined such that a difference between a floor reaction force moment balancing with the desired motion on a dynamic model and a floor reaction force moment of the desired floor reaction force approximates the aforesaid difference to zero, while having the restriction object amount, which is associated with the desired floor reaction force, fall within the permissible range.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: December 28, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike
  • Patent number: 7853356
    Abstract: An apparatus and a method for optimizing robot performance includes a computer connected to the robot controller for receiving performance data of the robot as the controller executes a path program. The computer uses the performance data, user specified optimization objectives and constraints and a kinematic/dynamic simulator to generate a new set of control system parameters to replace the default set in the controller. The computer repeats the process until the new set of control system parameters is optimized.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: December 14, 2010
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Jason Tsai, Yi Sun, Sai-Kai Cheng, Min Ren Jean, Hadi Akeel
  • Patent number: 7848848
    Abstract: A robotic system with a common software and hardware platform for integration of a variety of modular components is provided that can be set up for a given application and reconfigured to address changing needs. Modules attach to the robotic platform with standard interfaces in order to maximize the platform's flexibility. Robotic arms also have interchangeability such as variable pitched Z-racks, powder handling or other technologies. The standard interfaces allow third party developers to develop and integrate their own custom modules. One module included with the robotic platform in accord with this invention is a module that both weighs and images a sample.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: December 7, 2010
    Assignee: Freeslate, Inc.
    Inventors: Robert S. Busacca, Jeff Maag, William H. Chandler, Jr., Eric D. Carlson
  • Patent number: 7808198
    Abstract: A mechanism for empirically deriving the values of the damping ratio and frequency of the mechanism driven by a servo-controlled control system is disclosed. In accordance with the illustrative embodiment, the values of the damping ratio and frequency are continually re-generated based on empirical data derived from sensor feedback of the maximum-amplitude switch and the linear second-order servo. Because the values of the damping ratio and frequency are generated from empirical data, it is not necessary that they be known, and because the values of the damping ratio and frequency are continually re-generated, variances in their values are continually noticed and compensated for.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: October 5, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Jyun-Horng Fu
  • Patent number: 7805214
    Abstract: A grasp state judging system capable of satisfactorily judging the grasp state in which an object to be grasped is held by grasping means. The grasp state judging system is characterized in comprising a plurality of RFID tags that are mounted on an object to be grasped and that transmit the corresponding position ID; a plurality of RFID antennas (14) that are mounted on a glove (10) and that receive the position IDs; a grabbing pattern storage unit (48) for storing a condition for the position IDs received by the RFID antennas (14) with respect to the grasp states in which the object to be grasped is held by the glove (10); and a grasp state judging unit (44) for judging the grasp state in which the object to be grasped is held by the grasping means on the basis of the position IDs received by the RFID antennas (14) and the conditions stored in the grabbing pattern storage unit (48).
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: September 28, 2010
    Assignee: Benesse Corporation
    Inventors: Yuhei Yamauchi, Nobutaka Hida, Akira Kuwano, Mai Yoritaka
  • Patent number: 7801644
    Abstract: The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: September 21, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: David J. Bruemmer, Douglas A. Few
  • Patent number: 7765029
    Abstract: A brain-based device (BBD) for moving in a real-world environment has sensors that provide data about the environment, actuators to move the BBD, and a hybrid controller which includes a neural controller having a simulated nervous system being a model of selected areas of the human brain and a non-neural controller based on a computational algorithmic network. The neural controller and non-neural controller interact with one another to control movement of the BBD.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: July 27, 2010
    Assignee: Neurosciences Research Foundation, Inc.
    Inventors: Jason G. Fleischer, Botond Szatmary, Donald B. Hutson, Douglas A. Moore, James A. Snook, Gerald M. Edelman, Jeffrey L. Krichmar
  • Patent number: 7742839
    Abstract: A robot controller capable of automatically preparing a job program for a workpiece configured of a plurality of job elements is disclosed. A plurality of teaching programs for teaching the job for each job element making up the workpiece are stored in advance. Each teaching program has registered therein attribute information including the item number (identification information) and the sequence of application of the teaching program to each workpiece. The robot controller retrieves teaching programs having registered therein, as attribute information, the same item number as the input item number of the workpiece and prepares a main program such that the retrieved teaching programs are called sequentially as subprograms in accordance with the application sequence specified by the attribute information. Further, commands for moving to the job starting position and the job end position are added before and after the main program thereby to complete the main program.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: June 22, 2010
    Assignee: Fanuc Ltd
    Inventors: Yoshiharu Nagatsuka, Hirohiko Kobayashi
  • Patent number: 7742838
    Abstract: A process is provided for controlling a robotal device, such as a multiaxial industrial robot, by a control unit, with a control core for executing control processes for the robotal device. An interface function checks whether models and/or procedures optionally contained in the control core or additional models and/or transformation procedures and/or special algorithms of kinematic structures, which can be preset at the interface are used as model modules for motion-relevant variables of the robotal device. Special and third-party kinematics can thus also be operated with a control device suitable for executing the process without the control itself having to be modified.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: June 22, 2010
    Assignee: Kuka Roboter GmbH
    Inventor: Martin Weiβ
  • Patent number: 7720572
    Abstract: A robot system includes a base station and a robot. The base station includes a wireless transceiver configured to communicate TCP/IP transmissions over a local wireless protocol, a wired Ethernet connector for communicating TCP/IP transmissions over a local wired Ethernet accessing the Internet, and an access point circuit for transferring TCP/IP transmissions between the local wired Ethernet and local wireless protocol. The access point circuit is limited to a predetermined IP address locked to the robot, a predetermined shell level encryption locked to the robot, and predetermined ports to the Internet open only to the robot. The robot includes a wireless transceiver configured to communicate TCP/IP transmissions over a local wireless protocol and a client circuit for transferring TCP/IP transmissions over the local wireless protocol.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: May 18, 2010
    Assignee: iRobot Corporation
    Inventors: Andrew Ziegler, Andrew Jones, Clara Vu, Matthew Cross, Ken Sinclair, Tony L. Campbell
  • Publication number: 20100114370
    Abstract: A conveyance apparatus includes conveyance robots provided for sequential assembly processes. Each of the robots conveys, based on a tact system, work pieces for the respective assembly processes, by simultaneously reciprocating the work pieces with a single mechanism. The work pieces are sequentially assembled on an assembly line after placed at the most upstream side thereof. The apparatus further includes control units respectively provided for the conveyance robots and control time sequences for reciprocating motions of the respective conveyance robots in a linked manner. The control unit for controlling a first conveyance robot receives, from the control unit for controlling a second conveyance robot, position information of the second conveyance robot positioned frontward in a moving direction of the first conveyance robot, thereby detecting presence of a risk of a collision with the second conveyance robot, and causing the first conveyance robot to avoid the collision when the risk exists.
    Type: Application
    Filed: December 18, 2009
    Publication date: May 6, 2010
    Applicant: FUJITSU LIMITED
    Inventor: Tsutomu Sasaki
  • Patent number: 7706922
    Abstract: First of all, in a first step S1, each actuator command value for position command value and posture command value of an end-effector is determined. Next, in a second step S2, rotational resistance values of a first and a second universal joints are obtained, and in a third step S3, the force and the moment exerted to each of the second universal joints are computed using this, and in a fourth step S4, the resultant force and the resultant moment exerted to the end-effector are determined from these. Then, in the fifth step, the elastic deformation amount of a mechanism is computed using these, and a compensation amount of the actuator command value is computed using these values. And then, in the sixth step, the actuator command values determined in the first step are updated with the compensation amount determined in the fifth step taken into account.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: April 27, 2010
    Assignee: Okuma Corporation
    Inventors: Hiroshi Ueno, Tetsuya Matsushita
  • Patent number: 7664569
    Abstract: A ZMP equilibrium equation stating the relationship of various moments applied to a robot body of a robot, based on desirable motion data made up by trajectories of respective parts, imaginarily divided from the robot body, is generated, and moment errors in a ZMP equilibrium equation are calculated. A priority sequence of the parts, the target trajectories of which are corrected to cancel out the moment errors, is set. The target trajectories are corrected from one part to another, in a sequence corresponding to the priority sequence, to compensate the moment errors.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: February 16, 2010
    Assignees: Sony Corporation
    Inventors: Satoru Shimizu, Jinichi Yamaguchi, Yoshihiro Kuroki
  • Patent number: 7657345
    Abstract: The motion of the movable sections of the robot is taken for a periodic motion so that the attitude of the robot can be stably controlled in a broad sense of the word by regulating the transfer of the movable sections. More specifically, one or more than one phase generators are used for the robot system and one of the plurality of controllers is selected depending on the generated phase. Then, the controller controls the drive of the movable sections according to continuous phase information. Additionally, the actual phase is estimated from the physical system and the frequency and the phase of the phase generator are regulated by using the estimated value, while the physical phase and the phase generator of the robot system are subjected to mutual entrainment so that consequently, it is possible to control the motion of the robot by effectively using the dynamics of the robot.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: February 2, 2010
    Assignees: Sony Corporation, Advanced Telecommunications Research Institute International
    Inventors: Gen Endo, Mitsuo Kawato, Gordon Cheng, Jun Nakanishi, Jun Morimoto
  • Patent number: 7643905
    Abstract: A robot program correcting apparatus, which displays three-dimensional models of a robot and a workpiece simultaneously on the screen of a display apparatus, and corrects an operation program for the robot, includes: a unit retrieving a robot operation program and a working position based on at least either a line or a surface computed from touchup points and on a touchup position or points representing a working position specified on the screen; a difference computing unit computing a difference between at least either the line or surface computed from the touchup points and at least either a line or a surface computed from the plurality of points as position information representing the retrieved working position; and a correcting unit correcting the robot operation program by computing the amount of correction based on the difference, thereby reducing the number of steps required when correcting the robot operation program.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: January 5, 2010
    Assignee: Fanuc Ltd
    Inventors: Atsushi Watanabe, Yoshiharu Nagatsuka
  • Patent number: 7627396
    Abstract: There is provided an industrial robot which comprises a manipulator having a tool at the tip end, a robot control unit for controlling the manipulator, and a primary teaching device and subsidiary teaching device for controlling the manipulator through the robot control unit, wherein operation capable of being conducted by the subsidiary teaching device is restricted as compared with operation capable of being conducted by the primary teaching device. By realizing the industrial robot, it is possible to prevent a production line worker from executing a function of the robot which is originally to be executed by a supervisor.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: December 1, 2009
    Assignee: Panasonic Corporation
    Inventors: Tatsuya Ikeda, Kunitoshi Morita, Toshiyuki Mishima
  • Patent number: 7620476
    Abstract: An autonomous floor cleaning robot includes a transport drive and control system arranged for autonomous movement of the robot over a floor for performing cleaning operations. The robot chassis carries a first cleaning zone comprising cleaning elements arranged to suction loose particulates up from the cleaning surface and a second cleaning zone comprising cleaning elements arraigned to apply a cleaning fluid onto the surface and to thereafter collect the cleaning fluid up from the surface after it has been used to clean the surface. The robot chassis carries a supply of cleaning fluid and a waste container for storing waste materials collected up from the cleaning surface.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 17, 2009
    Assignee: iRobot Corporation
    Inventors: Christopher John Morse, Andrew Ziegler, Duane Gilbert, Jr., Andrew Jones
  • Patent number: 7615956
    Abstract: A robot, wherein the operating amounts of the first and second actuators are adjusted according to a torque necessary for maintaining a body member and an end member at specified angles in a mechanism in which the body member (361) and the end member (363) are rotatably connected to each other and first and second wires (366) connected to the end member are advanced and retreated by the first and second actuator (368).
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: November 10, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuji Tsusaka
  • Patent number: 7606633
    Abstract: A robot simulation device is provided. It includes a virtual robot working environment in which a virtual robot has a task of transferring a virtual object from a start point to a goal point, the simulation device determining the path of travel. A task simulation is executed in response to the virtual robot working environment and the path of travel. The task simulation determines a robot activity region where the virtual robot can operate and an interference region where the virtual robot encounters obstacles. Thereafter the device creates a desired executed simulation in which the virtual robot can operate without encountering obstacles.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: October 20, 2009
    Assignee: Rorze Corporation
    Inventors: Hirofumi Hosokawa, Seiichi Fujii
  • Patent number: 7603181
    Abstract: A method may include and/or involve a mote network receiving a signal to reset and applying the signal to reset to place the mote network into a reset condition.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: October 13, 2009
    Assignee: Searete, LLC
    Inventors: Robert W. Lord, John D. Rinaldo, Jr., Mark A. Malamud, Edward K. Y. Jung, Alexander J. Cohen, Royce A. Levien
  • Patent number: 7593779
    Abstract: A control device with two processors includes: a circuit substrate; a first central processing unit disposed on the circuit substrate to receive a control signal for controlling the operation of a first device; a second central processing unit disposed on the circuit substrate to receive a control signal for controlling the operation of a second device; and a first communication circuit disposed between the first central processing unit and the second central processing unit for providing communications between them. The first central processing unit further processes the kernel control software and peripheral software of the first device and the peripheral software of an air conditioner. The second central processing unit further processes the peripheral software of the first device and the peripheral software of the first device in order to respectively control the operations of the first and second devices.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: September 22, 2009
    Assignee: Delta Electronics, Inc.
    Inventors: Tony Hsieh, David Chen
  • Patent number: 7590468
    Abstract: A robot system can grasp and take out one of a plurality of workpieces placed in a basket-like container by a hand mounted at the forward end of a robot arm. The workpiece is detected by a visual sensor, and the robot is controlled depending on a position and an orientation of the workpiece. When a problem such as interference or the like occurs, information relating to the problem is stored in a robot control unit or a visual sensor control unit. Information relating to the problem includes a predetermined amount of the latest data retrospectively traced from the time point of problem occurrence, a position which the robot has reached, the target position data, the content of the process executed by the visual sensor, and the detection result. When the problem is reproduced, these data are used to simulate the situation at the time of problem occurrence by using simulation unit. The situation at the time of problem occurrence can also be reproduced by using the actual robot without using the simulation unit.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: September 15, 2009
    Assignee: Fanuc Ltd
    Inventors: Atsushi Watanabe, Kazunori Ban, Ichiro Kanno
  • Patent number: 7571027
    Abstract: Kinematic singular points in a process system are handled. In one embodiment, a numerically controlled (NC) processing system includes materials processing installation having a multi-axis kinematic linkage operable to position a tip portion of the linkage along a predetermined process path. The system also includes a processor having a compensation system operable to detect a singular point in the process path and to improve the accuracy tip portion positioning near the singular point.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 4, 2009
    Assignee: The Boeing Company
    Inventor: Philip L. Freeman
  • Patent number: 7558646
    Abstract: The present invention has a communication connection means (21) which mutually connects communicatably control units (Ca, Cb) for individually controlling operations of robots (Ra, Rb) to constitute a network, input means (37a, 37b) which are respectively installed in the control units and input operation instructions of the robots, and timing signal generation means (69a, 69b). The control units are selectively set to any one of an independent function execution mode, a master function execution mode, and a slave function execution mode, and among the control units, the control unit (Ca) to perform a master operation is set to the master function execution mode, and the residual control unit (Cb) is set to the slave function execution mode, and by correcting a minimum interruption period (Ts(b)) of the slave side control unit (Cb), a control time (ta11, ta12, ta13) to the master robot (Ra) of the master side control unit (Ca) is delayed by a predetermined time (T) to perform the cooperative operation.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: July 7, 2009
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Naoyuki Matsumoto, Masatoshi Sano, Tsuyoshi Maehara, Nobuyasu Shimomura, Takahiro Ueno
  • Patent number: 7519452
    Abstract: A mobile brain-based device BBD includes a mobile base equipped with sensors and effectors (Neurally Organized Mobile Adaptive Device or NOMAD), which is guided by a simulated nervous system that is an analogue of cortical and sub-cortical areas of the brain required for visual processing, decision-making, reward, and motor responses. These simulated cortical and sub-cortical areas are reentrantly connected and each area contains neuronal units representing both the mean activity level and the relative timing of the activity of groups of neurons. The brain-based device BBD learns to discriminate among multiple objects with shared visual features, and associated “target” objects with innately preferred auditory cues. Globally distributed neuronal circuits that correspond to distinct objects in the visual field of NOMAD 10 are activated. These circuits, which are constrained by a reentrant neuroanatomy and modulated by behavior and synaptic plasticity, result in successful discrimination of objects.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: April 14, 2009
    Assignee: Neurosciences Research Foundation, Inc.
    Inventors: Anil K. Seth, Jeffrey L. McKinstry, Gerald M. Edelman, Jeffrey L. Krichmar
  • Publication number: 20090055019
    Abstract: An interactive system for interacting with a sentient being. The system includes a robotic companion of which the sentient being may be a user and an entity which employs the robot as a participant in an activity involving the user. The robotic companion responds to inputs from an environment that includes the user during the activity. The robotic companion is capable of social and affective behavior either under control of the entity or in response to the environment. The entity may provide an interface by which an operator may control the robotic companion. Example applications for the interactive system include as a system for communicating with patients that have difficulties communicating verbally, a system for teaching remotely-located students or students with communication difficulties, a system for facilitating social interaction between a remotely-located relative and a child, and systems in which the user and the robot interact with an entity such as a smart book.
    Type: Application
    Filed: May 8, 2008
    Publication date: February 26, 2009
    Applicant: Massachusetts Institute of Technology
    Inventors: Walter Dan Stiehl, Cynthia Breazeal, Jun Ki Lee, Allan Z. Maymin, Heather Knight, Robert L. Toscano, Iris M. Cheung
  • Patent number: 7493191
    Abstract: An auxiliary control apparatus mechanically couples forces exerted on a manually operable auxiliary hand control knob to an input member of a micro-manipulator of the type used to move a point of an object such as an ultrasonic bonding tool tip relative to a workpiece in scaled ratios of motions at an end of the micro-manipulator input member. The apparatus includes a 4-bar parallelogram linkage which is mounted to a structural support member of a micro-manipulator, and which includes a rear laterally disposed lateral linkage bar pivotably connected to inner and outer parallel longitudinally disposed linkage bars which are pivotably coupled at front ends thereof to a front laterally disposed linkage bar.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: February 17, 2009
    Inventor: Charles F. Miller
  • Publication number: 20080312769
    Abstract: A fitting apparatus includes a robot arm having, at the forward end thereof, a gripper for holding a workpiece, a force detector for detecting a force and moment received by the workpiece held by the gripper, and a controller for controlling an operation of the robot arm. The controller includes a motion command generating unit for generating an operation command to fit two workpieces to each other, and an operation command correcting unit for correcting the operation command so as to correct the position of the gripper in a direction perpendicular to the fitting direction and the orientation of the gripper around an axis perpendicular to the fitting direction until the detected force and moment become less than or equal to a threshold value, based on either maximum values of the force and moment detected by the force detector while the two workpieces are in contact with each other or the force and moment detected by the force detector when the two workpieces first come into contact with each other.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 18, 2008
    Applicant: FANUC LTD
    Inventors: Takashi SATO, Nobuaki YAMAOKA
  • Patent number: 7466099
    Abstract: The present invention relates to a manipulator arm and drive system that can be operated in multiple modes, including an on or off mode, referred to herein as a “rate mode” or a spatially correspondent (“SC”) mode. The multi-mode manipulator arm and drive system of the present invention can be hydraulically operated subsea.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: December 16, 2008
    Assignee: Oceaneering International, Inc.
    Inventor: Richard W. McCoy, Jr.
  • Patent number: 7457686
    Abstract: A method for aligning the position of a movable arm includes: providing an alignment element on the apparatus projecting a distance above the apparatus in the z-direction and having a surface lying in a plane formed by an x and y axis; providing a movable arm having a tool at the free end; positioning the object such that the surface of the element faces the tool; moving the tool in a direction towards the surface of the element; sensing when the tool reaches a predetermined point on or above the surface of the element, whereby the position of the tool in the z-direction is determined based on the relationship between the measured response of the tool and the height of the tool above the surface of the alignment element; placing the tool on or at a distance in the z-direction from the surface; moving the tool in the x-direction while sensing the surface of the element; moving the tool in the x-direction until an edge of the element is sensed; determining the center in the x-direction based on the known distan
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: November 25, 2008
    Assignee: Ortho—Clinical Diagnostics, Inc.
    Inventors: Zhong Ding, Ed Graham
  • Patent number: 7421314
    Abstract: A method for controlling a robot during an interpolation of a trajectory or motion to any prescribed position, comprises the steps of a) ignoring at least one of the three originally prescribed or interpolated tool center point orientation values; b) finding new tool center point orientation values that place the wrist center point of the robot closest to its base while c) maintaining the originally prescribed or interpolated tool center point location values and d) maintaining the original prescribed or interpolated tool center point orientation values not ignored. Said method can preferably be used for carrying a load with a plurality of robots. Its main advantage is an increase of the available working volume.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: September 2, 2008
    Assignee: KUKA Roboter GmbH
    Inventors: Kenneth A. Stoddard, David Martin
  • Patent number: 7409267
    Abstract: A predictive robot includes a prediction-related item storage to store terms related to prediction performance, a first communicator which transmits stored prediction-related terms and receives a search result of information search with regard to the prediction-related terms, a search controller to control information search of the prediction-related terms stored in the prediction-related item storage via the first communicator, a media converter to convert the search result into a notification medium, and a notification section to provide the search result by the notification medium. Preferably, predictive information is provided spontaneously.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: August 5, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miwako Doi, Shun Egusa
  • Patent number: 7403836
    Abstract: The automatic work apparatus extracts the target image of which photos are taken by the left and right CCD cameras, specifies the spatial position of the target and executes an operation to the target by the arm. Two regions, the central region and the peripheral ones, allocated to the image taken by the CCD camera so that if the target image stays in the peripheral region of the image then the cameras are rotated to take the target image in the central portion and the position determining module determines the spatial position of the target and then tasks are done for the targets. The relative distance from the target is adjusted by transfer equipment. This invention is applicable to an automatic work apparatus that can operate a predetermined operation for moving target and an automatic operation control program to carry out such operation.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: July 22, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventor: Chiaki Aoyama
  • Publication number: 20080167751
    Abstract: A robotic device in accordance with a plurality of embodiments is provided. The robotic device generally includes a plurality of groups of sensing devices for sensing environmental events; a plurality of controllers for recognizing the environmental events and generating corresponding commands; a plurality of driving devices for driving the robotic device to respond to the environmental events under control of the commands; at least one communication line for communication between the controllers; at least one power line for transmitting power to the sensing devices, the controllers and the driving devices; a plurality of ground lines; a plurality of branches extending out from the communication line, the power line and the ground lines; and a plurality of connectors for connecting the controllers to the branches.
    Type: Application
    Filed: January 8, 2008
    Publication date: July 10, 2008
    Applicants: ENSKY TECHNOLOGY (SHENZHEN) CO., LTD., ENSKY TECHNOLOGY CO., LTD.
    Inventors: Hua-Dong Cheng, Han-Che Wang, Xiao-Guang Li, Tsu-Li Chiang, Kuan-Hong Hsieh
  • Patent number: 7389156
    Abstract: An autonomous floor cleaning robot includes a transport drive and control system arranged for autonomous movement of the robot over a floor for performing cleaning operations. The robot chassis carries a first cleaning zone comprising cleaning elements arranged to suction loose particulates up from the cleaning surface and a second cleaning zone comprising cleaning elements arraigned to apply a cleaning fluid onto the surface and to thereafter collect the cleaning fluid up from the surface after it has been used to clean the surface. The robot chassis carries a supply of cleaning fluid and a waste container for storing waste materials collected up from the cleaning surface.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: June 17, 2008
    Assignee: iRobot Corporation
    Inventors: Andrew Ziegler, Duane Gilbert, Christopher John Morse, Scott Pratt, Paul Sandin, Nancy Dussault, Andrew Jones
  • Patent number: 7386364
    Abstract: A legged mobile robot gives up a normal walking motion and starts a tumbling motion when an excessively high external force or external moment is applied thereto and a behavior plan of a foot part thereof is disabled. At this time, the variation amount ?S/?t of the area S of a support polygon of the body per time t is minimized and the support polygon when the body drops onto a floor is maximized to distribute an impact which acts upon the body from the floor when the body drops onto the floor to the whole body to suppress the damage to the body to the minimum. Further, the legged mobile robot autonomously restores a standing up posture from an on-floor posture thereof such as a supine posture or a prone posture.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: June 10, 2008
    Assignees: Sony Corporation, Yamaguchi, Jinichi
    Inventors: Tatsuo Mikami, Jinichi Yamaguchi, Atsushi Miyamoto
  • Patent number: 7383100
    Abstract: An extensible task engine framework for humanoid robots. Robot instructions are stored as tasks and skills. Tasks are designed so that they can be executed by a variety of robots with differing configurations. A task can refer to zero or more skills. A skill can be designed for a particular configuration of robot. A task can be transferred from robot to robot. When executed on a particular robot, the task makes calls to one or more skills that can take advantage of the capabilities of that robot.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: June 3, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventors: Victor Ng-Thow-Hing, Evan Drumwright
  • Publication number: 20080114493
    Abstract: Disclosed herein is a motion control data transmission and motion playing method for an audio device-compatible robot terminal.
    Type: Application
    Filed: March 20, 2007
    Publication date: May 15, 2008
    Inventor: Kyoung Jin Kim