Control Of Air/fuel Ratio Or Fuel Injection Patents (Class 701/103)
  • Publication number: 20140297163
    Abstract: A method for operating an engine system is provided. The method includes maintaining an intake volume positioned upstream of a throttle and downstream of air cleaner within a selected operating pressure range through adjustment of a balance purge valve positioned upstream of the intake volume and a gas discharge source.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Applicant: Ford Global Technologies, LLC
    Inventor: Niels Christopher Kragh
  • Patent number: 8849545
    Abstract: A system according to the principles of the present disclosure includes a fuel volatility module, a temperature generation module, and a fuel control module. The fuel volatility module estimates a volatility of fuel provided to an engine based on an engine torque and an engine speed. The temperature generation module generates a temperature of an intake valve of the engine. The fuel control module selectively increases an amount of fuel provided to the engine based on the temperature of the intake valve, the engine torque, and the fuel volatility.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: September 30, 2014
    Inventors: Brian L. O'Hear, Mark D. Carr, Layne K. Wiggins
  • Publication number: 20140288803
    Abstract: A vehicle having an internal combustion engine can be switched off automatic and can be started automatically by way of an engine start/stop device. The vehicle includes at least one electric energy store and at least one electric consumer. In the case of an internal combustion engine which has been switched off automatically, a stop current strength which is removed from the at least one electric energy store by the at least ne electric consumer can be determined. The engine start/stop device automatically starts the internal combustion engine if a predefined stop current threshold or a predefined stop discharge threshold is exceeded.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventor: Christopher DEISLER
  • Publication number: 20140288802
    Abstract: An apparatus for detecting imbalance abnormality in an air-fuel ratio between cylinders in a multi-cylinder internal combustion engine is disclosed. The apparatus includes an imbalance determining unit programmed to determine imbalance in an air-fuel ratio of a first cylinder belonging to a cylinder group based upon a difference value between an index value correlative with a crank angular speed detected in the first cylinder and an index value correlative with a crank angular speed detected in a second cylinder belonging to another cylinder group, and further a correction unit programmed to correct the difference value for the first cylinder based upon the index value detected in at least one of other cylinders belonging to the same cylinder group as that of the first cylinder.
    Type: Application
    Filed: February 21, 2014
    Publication date: September 25, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akihiro Katayama, Kazuhiro Akisada, Leuth Insixiengmai, Sei Maruta, Shinichi Nakagoshi, Masahide Okada
  • Patent number: 8843295
    Abstract: A combustion control system for a vehicle comprises a position determination module and an ethanol determination module. The position determination module determines a crankshaft angle where a predetermined percentage of a fuel was combusted within a cylinder of an engine during an engine cycle based on one of pressure within the cylinder measured by a cylinder pressure sensor during the engine cycle and torque on a crankshaft measured by a torque sensor during the engine cycle. The ethanol determination module determines an ethanol content of the fuel based on the crankshaft angle.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: September 23, 2014
    Inventors: Halim G. Santoso, Audley F. Brown
  • Patent number: 8843296
    Abstract: Methods and systems are provided for conditioning a throttle command so that, on average, a difference between an actual airflow rate and a commanded airflow rate is substantially zero. A commanded throttle position is modified with a correction factor to also reduce a throttle angle error. By reducing engine air disturbances, engine performance is improved.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: September 23, 2014
    Assignee: Ford Global Technologies, LLC
    Inventor: Ross Dykstra Pursifull
  • Patent number: 8843298
    Abstract: An engine control system which may be used in automotive vehicles includes first correlation data representing correlations between performance parameters associated with different types of performances of a combustion engine and uncorrelated common factors existing among the performance parameters and second correlation data representing correlations between the common factors and combustion parameters associated with combustion states of fuel in the combustion engine. The engine control system determines target values of the common factors using the first correlation data and also determines target values of the combustion parameters using the second correlation data. The engine control system determines command values as a function of the target values of the combustion parameter and outputs them to actuators which control combustion states of fuel in the engine for achieving desired levels of the performances of the combustion engine.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: September 23, 2014
    Assignee: Denso Corporation
    Inventors: Yuuki Nakatsuji, Sumitaka Ikeda, Kazuhiro Higuchi, Koji Ishizuka
  • Patent number: 8843297
    Abstract: Provided is an rpm control device for a general-purpose engine, which is capable of realizing droop control in a spark-ignition engine only by the adaptation of isochronous control. When the droop control is selected, a rotation decrease rate (K) (value equal to or smaller than 1) is obtained from an engine rpm and a load. The result of multiplication of a basic target rpm (Nb) requested by a driver by the rotation decrease rate (K) is obtained as a target rpm (No). By setting the rotation decrease rate to a smaller value as the load becomes higher, the target rpm (No) is set smaller than the basic target rpm (Nb). The isochronous control is performed by using an electronic throttle so as to achieve the obtained target rpm (No) to realize the droop control in a pseudo-manner.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 23, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Ryo Sakaguchi, Yasuhiko Ishida
  • Publication number: 20140278002
    Abstract: A method for controlling a hybrid electric vehicle includes selecting a first target engine speed in response to a driver power request, calculating an available engine torque at the first target engine speed, adjusting the target engine speed if the available engine torque is insufficient to satisfy the driver power request, and commanding an engine to run at the target engine speed. The first target engine speed is optimized for fuel economy. The calculated available engine torque is less than a calculated maximum engine torque at the target engine speed, such that a torque reserve is maintained for engine vacuum.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Carol Louise Okubo
  • Publication number: 20140278004
    Abstract: A method for stopping an internal combustion engine, in which an air flow supplied via an air metering device, in particular a throttle valve of the internal combustion engine, is reduced after a stopping request has been ascertained, an undershoot point in time is ascertained, at which an ascertained speed of the internal combustion engine falls below a pre-definable speed threshold value, after the undershoot point in time, the air flow supplied via the air metering device of the internal combustion engine is increased again, the predefinable speed threshold value being selected in such a way that an intake cylinder no longer enters a compression stroke after the increase of the supplied air flow until the internal combustion engine is at a standstill, a degree of opening of the air metering device to increase the supplied air flow being selected as a function of a coasting speed of the internal combustion engine.
    Type: Application
    Filed: September 21, 2012
    Publication date: September 18, 2014
    Inventors: Karthik Rai, Stefan Hoefle
  • Publication number: 20140278012
    Abstract: A vehicle includes an engine having cylinders in fluid communication with an intake air flow, a mass air flow (MAF) sensor positioned with respect to the intake air flow which outputs a pulse train signal describing the frequency of the intake air flow, and a controller. The controller includes a calibrated non-linear conversion curve recorded in memory. The controller executes a method to convert the frequency data into a corresponding mass air flow using the calibrated non-linear conversion curve, determines the instantaneous mass air flow value at each leading or trailing edge of the pulse train signal, and accumulates the instantaneous mass air flow values over a calibrated duration. A time-weighted average of the accumulated mass air flow values is then used to execute a control action. The controller includes a host computer device and memory storing the curve and instructions for executing the method.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yun Xiao, Chad E. Marlett, Joseph Zammit
  • Publication number: 20140278001
    Abstract: A system according to the principles of the present disclosure includes an engine speed module and a valve control module. The engine speed module determines a speed of an engine based on a position of a crankshaft. The valve control module selectively adjusts an operating frequency of a purge valve based on the engine speed.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Jon C. Miller, Scott Jeffrey, David Edward Prout
  • Publication number: 20140278003
    Abstract: A method is disclosed for assessing and maintaining the use of a palladium-only (i.e., platinum free) oxidation catalyst body to oxidize carbon monoxide and hydrocarbons in the exhaust stream of a diesel engine powered vehicle, which is operated at a fuel-lean air-to-fuel ratio (A/F) for much of the time it powers a vehicle. Periodically, a recent history of the temperatures of the exhaust gas at the inlet to the palladium oxidation catalyst body is prepared in a computer control module. And a recent history of the A/F of the operating engine is considered. These temperature and A/F values are then used in determining whether the engine should be temporarily operated in a fuel-rich or stoichiometric A/F mode to provide an exhaust gas composition suitable for rejuvenation of the palladium by reducing its oxide formed during lean operation of the engine.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chang H. Kim, Michelle H. Wiebenga, Eugene V. Gonze
  • Patent number: 8833348
    Abstract: A fuel injection amount control system acquires a pre-correction air-fuel ratio imbalance index value that increases as the degree of ununiformity in the air-fuel ratio among cylinders increases, based on an output value of an upstream air-fuel ratio sensor, and obtains a value (intake air amount correlation value) corresponding to the intake air amount and a value (engine speed correlation value) corresponding to the engine speed over a period in which the pre-correction air-fuel ratio imbalance index value is acquired. Also, a post-correction air-fuel ratio imbalance index value is acquired by correcting the pre-correction air-fuel ratio imbalance index value based on the intake air amount correlation value and the engine speed correlation value, and the air-fuel ratio of the engine is controlled based on the post-correction air-fuel ratio imbalance index value.
    Type: Grant
    Filed: July 30, 2011
    Date of Patent: September 16, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasushi Iwazaki, Hiroshi Miyamoto
  • Publication number: 20140257672
    Abstract: Methods and systems are provided for computing the flow rate at a suction port of an ejector arranged in series with an outlet of an engine system such as a fuel vapor purge system during certain conditions. In one example, the need for a sensor at an ejector suction port may be reduced by adjusting exhaust gas recirculation based on a flow rate at the ejector suction port, the flow rate based on a flow characteristic of the ejector and a flow characteristic of an engine system. The flow rate and a reductant concentration of gases from the engine system may then be used as a basis for compensation of a diluent concentration measurement taken by a gas constituent sensor arranged downstream of the ejector outlet in an engine intake passage, e.g. to improve adjustment of exhaust gas recirculation based on the compensated diluent concentration measurement.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Gopichandra Surnilla, Ross Dykstra Pursifull
  • Patent number: 8831803
    Abstract: A hybrid vehicle is configured to be capable of traveling with fuel and electric power serving as energy sources. A charger receives electric power from an external power supply connected to a charging port to charge a power storage device. An ECU calculates a distance traveled per unit amount of electric power supplied from the external power supply by the charger and a distance traveled per unit amount of fuel consumed by an engine. A notification unit notifies a user of each distance traveled, as calculated by the ECU.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: September 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shigeo Yamamoto
  • Patent number: 8831857
    Abstract: Methods and systems are provided for operating a fuel system configured to deliver a gaseous fuel to an engine. Following tank refilling, the fuel composition is selectively updated based on fuel tank pressure, temperature, and air content data. When the engine is subsequently restarted, the fuel rail is primed for a duration based on the updated composition.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 9, 2014
    Assignee: Ford Motor Company of Australia Limited
    Inventors: Adam Nolan, Jamie Terence Slaymaker, Andrew Paul Chee Aun Wong, Phuoc Bui Buiquang
  • Patent number: 8831858
    Abstract: Various methods and systems are provided for operating an internal combustion engine, the engine having a plurality of cylinders including one or more donor cylinders and one or more non-donor cylinders. In one example, a method includes, during an exhaust gas recirculation cooler heating mode, operating at least one of the donor cylinders at a cylinder load sufficient to increase an exhaust temperature for regenerating an exhaust gas recirculation cooler, and operating at least one of the non-donor cylinders in a low- or no-fuel mode.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: John Stephen Roth, Kyle Craig Stott, James Robert Mischler, Paul Flynn, Kirk Heywood, Daniel Allan Moser
  • Patent number: 8826885
    Abstract: A fuel injection control system provided with a throttle by wire (TBW) system detecting an operation condition of a throttle grip and controlling, via an actuator, a throttle valve. The control system detects the throttle valve opening and controls an injector. An increased quantity correction value is determined based upon of an output of a throttle valve opening sensor and an operation condition of the throttle grip. When an acceleration condition of a vehicle is detected according to the output of the throttle valve opening sensor, an increased quantity correction of fuel is performed. The increased quantity correction value is brought to an attenuation condition in which the increased quantity correction value is gradually decreased, or a stop condition in which the increased quantity correction value is made to zero, when the throttle grip is not in drive in an opening direction, even though an acceleration condition is detected.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: September 9, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yukihiro Asada, Kenichi Machida
  • Patent number: 8826888
    Abstract: The present disclosure is a method and apparatus for reducing engine emissions utilizing multiple types of fuels. Apparatus for reducing engine emissions may include a controller which may control delivery of a first fuel to be combined with a second fuel at a combustion chamber of an engine. Controller may be configured to provide a proper amount of the first fuel at the correct point in an engine cycle based upon a current engine performance data.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: September 9, 2014
    Assignee: Cleanflex Power Systems, LLC
    Inventors: Kevin F. Kenney, Ronald A. Preston, Robert Dickey
  • Patent number: 8831856
    Abstract: An apparatus for controlling an internal combustion engine that can estimate a quantity of heat generated is provided. An arithmetic processing unit 20 can calculate PV? variable according to a crank angle ? and dPV?/d? as a rate of change in PV?. For convenience' sake, a “crank angle at which dPV?/d? is a maximum while PV? is increasing” is to mean a “crank angle at a combustion proportion of 50%” and be referred to also as “?CA50”. PV? calculated for ?CA50 is to be referred to also as “PV?CA50”. In addition, for convenience' sake, a difference between PV? (which is zero in the embodiment as shown in FIGS. 3 and 4) and PV?CA50 at a start of combustion is also referred to as ?PV?CA50. A total quantity of heat generated Q is assumed to be twice as much as a value of ?PV?CA50.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: September 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiromichi Yasuda, Yusuke Suzuki, Soichiro Tanaka
  • Patent number: 8818692
    Abstract: A hybrid vehicle 1 includes as drive sources an internal combustion engine 20, to which fuel stored in a fuel tank 21 is supplied, and a second M/G 32, to which electricity stored in a battery 40 is supplied. The vehicle 1 also includes a battery charger 70 for charging the battery 40 from the outside of the vehicle 1. For each of a plurality of refuelings to the fuel tank 21, the history of the time of refueling and the amount of refueling are stored. Based on the history, the degree of deterioration of fuel in the fuel tank 21 is calculated.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: August 26, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yumi Iraha, Tomoyuki Maruyama
  • Patent number: 8818691
    Abstract: In one exemplary embodiment of the invention, an internal combustion engine includes a fuel system in fluid communication with a cylinder to direct a fuel flow to be mixed with air in the cylinder and an exhaust system in fluid communication with the cylinder to receive an exhaust gas produced by the combustion process, wherein the exhaust system includes an oxidation catalyst, a particulate filter downstream of the oxidation catalyst. The system also includes a control module that determines an amount of energy to be provided by at least one of: a post-injection process, hydrocarbon injector, and heating device, wherein the amount of energy is based on a desired temperature at a selected location in the exhaust system, an exhaust gas flow rate, a temperature of the received exhaust gas, a flow rate and temperature of the exhaust gas at the inlet of the oxidation catalyst.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 26, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Scot A. Douglas, Michael J. Paratore, Jr., Jason Daniel Mullins, Patrick Barasa
  • Patent number: 8818659
    Abstract: This disclosure provides a thermal management system and method that can recommend operational behavior to an operator of an engine system to optimize fuel economy over a period of time in which a components of the engine system is in a warm up and/or regeneration state. In one representative embodiment, the expected temperature change of the engine component at a later time is determined based on inefficient operation of the engine, such as a transmission down shift resulting in higher engine speed and lower engine torque, and the expected temperature change of the engine component resulting from operating the engine under current conditions or expected conditions at that later time is determined. A determination is made as to whether the inefficient engine operation is the optimal operation in view of fuel economy and a recommendation is generated for the operator based if optimal operation is determined.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: August 26, 2014
    Assignee: Cummins Intellectual Property, Inc.
    Inventors: Vivek A. Sujan, Phani Vajapeyazula, Kenneth Follen, An Wu, Barty L. Moffett
  • Patent number: 8818688
    Abstract: A method for operating an internal combustion engine (100), particularly of a motor vehicle, operated with a gas as fuel, a lambda value of an air/fuel mixture being regulated by means of lambda control as a function of a signal from a lambda probe (130), and, when a lean/rich jump is detected by the lambda probe (130), a mixture control factor (GRF) which controls the mixture composition being varied at least for a predeterminable time such that a shift of the lambda air ratio toward rich is caused, is characterized in that the mixture control factor (GRF) is varied in such a way that an additional defined shift of the lambda air ratio toward rich is caused.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: August 26, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Juergen Foerster, Winfried Langer
  • Patent number: 8818690
    Abstract: An air-fuel ratio control apparatus for an internal combustion engine includes an air-fuel ratio sensor having an output characteristic which is nonlinear with respect to the air-fuel ratio of exhaust gas. An output deviation converter is configured to convert an output deviation to a first predetermined value if an output value of the air-fuel ratio sensor is on a richer side of a predetermined target value and to a second predetermined value if the output value is on a leaner side of the target value. A control input calculator is configured to calculate a control input to feedback-control the output value of the air-fuel ratio sensor such that the output deviation converted by the output deviation converter is to be zero. An air-fuel ratio controller is configured to control the air-fuel ratio of exhaust gas using the control input calculated by the control input calculator.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 26, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Michinori Tani, Kenichi Maeda, Atsuhiro Miyauchi, Seiji Watanabe, Soichiro Goto
  • Patent number: 8818689
    Abstract: A cylinder intake air amount calculating apparatus for an internal combustion engine that calculates a cylinder intake air amount, which is an amount of fresh air sucked in a cylinder of the engine using an intake air pipe model equation which is obtained by modeling an intake pipe of the engine, is provided. An intake air flow rate is obtained. The cylinder intake air amount is calculated by applying the intake air flow rate and a preceding value of the cylinder intake air amount to the intake pipe model equation. A predicted intake air flow rate which is a predicted value of the intake air flow rate is calculated. A predicted cylinder intake air amount which is a predicted value of the cylinder intake air amount is calculated by applying the predicted intake air flow rate and the cylinder intake air amount to the intake pipe model equation.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: August 26, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Naoki Oie, Toshinori Tsukamoto, Todd Robert Luken
  • Patent number: 8818570
    Abstract: An electronic control unit (“ECU”) limiter is disclosed. The ECU can include a vehicle-mounted component configured to measure and interact with components of the vehicle such as the engine, the transmission, etc, and a remote component configured to communicate with the vehicle-mounted component and vice versa. The vehicle-mounted component can be programmed to permit the vehicle to operate substantially without limitation until a certain parameter threshold is met, such as the engine usage reaching a certain predetermined quantity. The vehicle-mounted component can limit the engine in a variety of ways when the parameter threshold is met. The remote component can receive information from the vehicle-mounted component regarding the monitored parameters and the limitations caused by the vehicle-mounted component.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: August 26, 2014
    Assignee: Arctic Cat Inc.
    Inventors: Daniel Johnson, Darrel Janisch
  • Publication number: 20140236456
    Abstract: The invention relates to a control apparatus for an internal combustion engine (10) including a control target (60V, 52) that controls controlled variable (Pim, Regr). The control apparatus according to the invention is capable of selectively performing single control that is control for controlling the controlled variable to a target value thereof (Pimt, Regrt) without considering a change in the controlled variable that acts as a disturbance on the control of the controlled variable, and composite control that is control for controlling the controlled variable to the target value thereof in consideration of the change in the controlled variable that acts as the disturbance on the control of the controlled variable. The controlled variable is controlled to the target value thereof through the single control when an absolute value of a controlled variable change rate (Rpim, Rregr) is equal to or smaller than a predetermined value (Rpimth, Rregrth).
    Type: Application
    Filed: October 6, 2011
    Publication date: August 21, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hayato Nakada
  • Patent number: 8812214
    Abstract: An internal combustion engine control device the present invention provides is a control device that can realize both of request torque and a request A/F for each of cylinder groups with high precision, even when the request A/F differs at each of the cylinder groups. The present control device sets a reference A/F within a range from the leanest A/F to the richest A/F out of the request A/Fs to the respective cylinder groups. The present control device calculates a target air quantity for realizing the request torque under the reference A/F, based on data that defines a relation between engine output torque and an air quantity in relation to an A/F. The present control device controls a throttle opening in accordance with the target air quantity, and controls fuel injection amounts of the respective cylinders in accordance with the request A/F s to the respective cylinder groups.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: August 19, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuntaro Okazaki, Satoshi Yoshizaki, Kaoru Shokatsu, Masashi Shibayama, Hajime Kawakami
  • Patent number: 8800530
    Abstract: An internal combustion engine includes a combustion chamber at least partially defined within a cylinder bore by a reciprocating piston having a piston crown. An intake plenum is fluidly connectable with the combustion chamber and at least one intake port is configured to fluidly connect the intake plenum with the combustion chamber. At least one intake valve is configured to selectively fluidly connect the intake plenum with the combustion chamber. The combustion chamber is configured to receive a lean air/fuel mixture therein to substantially fill the combustion chamber. The combustion chamber is further configured to receive a rich air/fuel mixture therein that yields a stratified total air/fuel mixture within the combustion chamber.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: August 12, 2014
    Assignee: Caterpillar Inc.
    Inventors: Shriram Vijayaraghavan, David Montgomery
  • Patent number: 8805607
    Abstract: The present invention provides, with reference to FIG. 1, an internal combustion engine (10) having a fuel injector which comprises a sprung piston (55) or a resilient diaphragm piston (8155) and an electrical coil (57, 8158) for displacing the piston (55, 8155). The piston draws fuel into and expels fuel from a pumping chamber (52, 8152). The number of operations of the injector per engine cycle is controlled by an electronic controller (23, 8159) to control the quality of fuel delivered per cycle to a combustion chamber. A voltage measured in the coil (52, 8158) by movement of the piston under action of the spring or due to its own resilience is used to give an indication of vapour pressure of the fuel. A device akin to the injector can be used to draw fuel from a pipeline to measure the vapour pressure of the fluid.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: August 12, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Benjamin David Smither
  • Publication number: 20140222313
    Abstract: A method includes energizing a solenoid valve of a hydraulic control system according to a predetermined timing schedule to move a valve member of the solenoid valve. The solenoid valve is operatively connected to the switching component by a fluid control passage, such as a passage in an engine block, to deliver pressurized fluid from a supply passage when the valve member moves to switch the switching component from a first mode to a second mode. An operating parameter of the control system is measured. The operating parameter may be a period of time over which the valve member moves, or a sensed operating parameter of the fluid, such as pressure or temperature. The measured parameter is then compared with a predetermined parameter. Energizing of the solenoid valve is then adjusted based on the difference.
    Type: Application
    Filed: November 16, 2012
    Publication date: August 7, 2014
    Applicant: Eaton Corporation
    Inventors: Robert D. Keller, David Turner, Mark L. Dell'Eva
  • Publication number: 20140222315
    Abstract: A system according to the principles of the present disclosure includes a stochastic pre-ignition module and a fuel control module. The stochastic pre-ignition module determines whether operating conditions of an engine satisfy predetermined criteria associated with stochastic pre-ignition. The fuel control module enriches an air/fuel ratio of the engine when the engine operating conditions satisfy the predetermined criteria.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dean R. Kwapis, Rafat F. Hattar, Kevin M. Luchansky, J. Michael Gwidt
  • Patent number: 8798892
    Abstract: A method for the dynamic monitoring of a first lambda probe arranged in an exhaust-gas duct of an internal combustion engine upstream of an exhaust-gas purification system. A period of an output signal of the first lambda probe is determined in a controller of the internal combustion engine, and a lambda regulating signal is determined from an output signal of a second lambda probe connected downstream of the exhaust-gas purification system. A first threshold value for a lengthening of the period of the output signal of the first lambda probe is predefined, in that a characteristic signal (46) is derived from the lambda regulating signal, in that a second threshold value for an inadmissible deviation of the characteristic signal (46) is predefined, and in that an inadmissible asymmetric delay of the first lambda probe is inferred if the lengthening of the period exceeds the first threshold value and the characteristic signal (46) deviates from the second threshold value outside predetermined limits.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 5, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Kersten Wehmeier, Michael Pfeil, Siyun Chu, Albrecht Clement
  • Patent number: 8798891
    Abstract: A method is provided for controlling a hybrid electric vehicle that includes an internal combustion engine having a cylinder provided with an intake valve, an exhaust valve, and a piston configured to rotate the engine's crankshaft. The method includes determining whether deceleration of the vehicle is desired and also includes ceasing supply of fuel to the cylinder when such condition is satisfied. The method additionally includes selecting a fuel-off actuation arrangement for the intake valve via a mechanism configured to provide variable valve timing and lift, such that a magnitude of compression pulses in the cylinder during deceleration is limited. A system for controlling the hybrid vehicle and a vehicle employing such a system are also provided.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: August 5, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Craig D. Marriott, Ben W. Moscherosch
  • Patent number: 8793058
    Abstract: A control device for an internal combustion engine provided by the present invention is a control device which can satisfy both a requirement relating to exhaust gas performance of the internal combustion engine and a requirement relating to operation performance by properly regulating a change speed of a required air-fuel ratio, in the internal combustion engine which uses torque and an air-fuel ratio as control variables. The control device receives the requirement relating to the exhaust gas performance of the internal combustion engine, and calculates an air-fuel ratio which satisfies the requirement as a required air-fuel ratio. When a predetermined reduction condition is not satisfied, an original required air-fuel ratio is directly determined as a final required air-fuel ratio.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: July 29, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuntaro Okazaki, Satoshi Yoshizaki, Masashi Shibayama, Kaoru Shokatsu, Hajime Kawakami
  • Patent number: 8789510
    Abstract: A throttle valve device including a throttle valve control logic may include an electronic controller that determines whether a driving state of a vehicle is an idle-driving state from electronic signals supplied from sensors, a desired air amount map unit that is electrically connected with the electronic controller and where a desired amount of air according to RPM of an engine and an amount of injected fuel for idle-driving are set; and a governor for controlling an EGR valve and a governor for controlling a throttle valve that are electrically connected with the electronic controller and the desired air amount map unit and control the driving of the EGR valve and the throttle valve, respectively, such that the desired amount of air output in accordance with the RPM of the engine of the vehicle and an amount of the injected fuel is supplied to the engine in the idle-driving.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 29, 2014
    Assignee: Hyundai Motor Company
    Inventors: Heungseok Lee, Jaemin Jin, Sukil Oh, Dongchul Lee, Insoo Jung
  • Patent number: 8783031
    Abstract: Systems and methods for supplying air to an engine are disclosed. In one example, an air inlet throttle is at least partially closed in response to a change in engine torque request. In another example, the air inlet throttle is adjusted in conjunction with adjusting an engine throttle. The approach can reduce compressor noise and may reduce the possibility of compressor surge.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 22, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Jeffrey Allen Doering, Ross Dykstra Pursifull, Donald J. Lewis
  • Publication number: 20140200793
    Abstract: A method and system for determining and displaying a rate corresponding to the distance travelled by a vehicle per an amount of fuel-equivalent energy consumption, and more particularly for determining and displaying a number of miles or kilometers travelled per a gallon or a liter of total fuel and fuel-equivalent non-fuel energy consumed. The system includes an electronic control unit, an engine, a fuel controller, a battery, a battery management and control unit and a display. The method and system determine the fuel-equivalent energy consumption sum based on a constant energy conversion factor or an energy conversion efficiency loss number or factor determined in real time. The method and system also determine and display a fuel-equivalent cost for travelling a kilometer or a mile of the distance travelled. The method and system also change an operation of the vehicle based on the determined rate and fuel-equivalent cost.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 17, 2014
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Toyota Motor Engineering & Manufacturing North America, Inc.
  • Publication number: 20140200794
    Abstract: Systems and methods for learning torque estimate errors and updating torque estimation models are presented. In one example, torque errors are learned during an engine shut-down, after a disconnect clutch coupled between an engine and an electric machine has been released. An updated torque estimation model is then used to control torque during subsequent engine operation to improve drive feel and vehicle performance.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 17, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Mark Steven Yamazaki, Jeffrey Allen Doering, Dennis Craig Reed, Adam Nathan Banker
  • Patent number: 8776762
    Abstract: A control system and method for operating an engine includes a threshold determination module that determines a plurality of combustion mode thresholds based on the engine speed and engine temperature. The control module also includes a transition module that compares the engine load and the plurality of combustion mode thresholds and changes a combustion mode of the engine in response to comparing the engine load and the plurality of combustion mode thresholds.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: July 15, 2014
    Inventors: Allen B. Rayl, Vijay Ramappan, Peter Kafarnik, Jun-Mo Kang, Hanho Yun
  • Patent number: 8781659
    Abstract: Disclosed is a technique for controlling transition between an electric vehicle (EV) mode and a hybrid electric vehicle (HEV) mode in a hybrid vehicle. More specifically, the technique includes first determining a drive mode of the hybrid vehicle by monitoring an average vehicle speed and an accelerator position sensor. Next, an engine on map value is determined for entering into the HEV mode and a hysteresis map value is determined for controlling the transition between the EV mode and the HEV mode based on a battery's state-of-charge (SOC), the average vehicle speed, and the drive mode; Based on the above steps, the technique determines whether the hybrid vehicle should transition between the EV mode or the HEV mode based on a driver's requisite torque calculated by monitoring the accelerator position sensor and a gear position sensor and on the determined engine on map value and hysteresis map value.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: July 15, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Jeong Eun Kim
  • Patent number: 8775055
    Abstract: Methods are provided for controlling an engine in response to a pre-ignition event. A pre-ignition threshold and a pre-ignition mitigating action are adjusted based on a rate of change of cylinder aircharge. As a result, pre-ignition events occurring during transient engine operating conditions are detected and addressed different from pre-ignition events occurring during steady-state engine operating conditions.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: July 8, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Chris Paul Glugla, Michael Mancini
  • Patent number: 8775049
    Abstract: A method for evaluating the state of a fuel-air mixture and/or the combustion in a combustion chamber of an internal combustion engine, with sample signals of flame light signals being stored in a database, and with flame light signals of the combustion in the combustion chamber being detected and compared with the stored sample signals, and with an evaluation of the state being output in the case of coincidence between the measured and stored signal patterns. In order to enable the monitoring of the combustion in the simplest possible way the sample signals in the database are stored with the assigned emission values and an evaluation of the state of the combustion is performed with respect to the obtained emissions in the case of coincidence between the measured and stored signal patterns for the combustion chamber of the respective cylinder.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 8, 2014
    Assignee: AVL List GmbH
    Inventors: Ernst Winklhofer, Heribert Fuchs, Alois Hirsch, Harald Philipp
  • Patent number: 8775054
    Abstract: A control system includes a starter control module, a mode setting module, a throttle control module, and a fuel control module. The starter control module initiates cranking of a spark ignition direct injection (SIDI) engine in response to user actuation of an ignition switch. The mode setting module sets a mode of operation to a coldstart mode when an engine coolant temperature is less than a predetermined temperature during the cranking. The throttle control module allows a throttle valve to be biased to a predetermined open position when the SIDI engine is off and, in response to the setting of the mode to the coldstart mode, selectively closes the throttle valve relative to the predetermined open position during the cranking. The fuel control module, in response to the setting of the mode to the coldstart mode, disables direct injection of fuel for a first combustion event during the cranking.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: July 8, 2014
    Inventors: Ricardo Vincenzi, Bruce F. Hunter, Joshua D. Cowgill, Craig D. Marriott, Claudio Engler Pinto
  • Publication number: 20140188371
    Abstract: An ECU executes a program including the steps of: when an aging completion flag is ON, determining that a predetermine value serves as an abnormality determination threshold value; when the aging completion flag is OFF, determining the abnormality determination threshold value depending on to what extent aging has progressed; and determining whether or not an air/fuel ratio sensor is abnormal using the determined threshold value.
    Type: Application
    Filed: September 13, 2011
    Publication date: July 3, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kazuya Miyaji
  • Publication number: 20140188370
    Abstract: Various methods are described for controlling engine operation for an engine having a turbocharger and direction injection. One example method includes performing at least a first and second injection during a cylinder cycle, the first injection generating a lean combustion and the second injection injected after combustion such that it exits the cylinder unburned into the exhaust upstream of a turbine of the turbocharger; and adjusting at least the first injection based on engine speed, where the at least first and second injection are performed responsive to turbocharger speed.
    Type: Application
    Filed: March 4, 2014
    Publication date: July 3, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Tobias John Pallett, Eric Matthew Storhok, Gopichandra Surnilla
  • Publication number: 20140182561
    Abstract: Embodiments described herein provide a mobile refueling solution to vehicles that run on natural gas (CNG) or other gaseous fuels (CFG) through an integrated system of onboard compression, storage, interface modules and a central control architecture.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 3, 2014
    Inventor: Eghosa Gregory Ibizugbe, JR.
  • Patent number: 8768601
    Abstract: In a control device for an internal combustion engine includes an intake valve, a variable valve mechanism capable of controlling a closing timing and an operating angle of the intake valve continuously and variably, a detection unit for detecting a possibility of pre-ignition, and a throttle for controlling an intake air amount such that when the possibility of pre-ignition is detected, the intake valve closing timing is retarded from bottom dead center by increasing the intake valve operating angle, the control device includes, an operating angle upper limit limiting value calculation unit that calculates an operating angle upper limit limiting value for limiting an upper limit value of the intake valve operating angle, and a throttle opening upper limit limiting value calculation unit that calculates a throttle opening upper limit limiting value for limiting an upper limit value of a throttle opening on the basis of the intake valve operating angle.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: July 1, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takahiro Yoshino, Masahiro Arai, Yuzo Kageyama