Comparison Of Sensor With Output Of Different Type Sensor Patents (Class 701/30.7)
  • Patent number: 11828187
    Abstract: The present disclosure provides methods and systems for determining a synthesized engine parameter of a gas turbine engine. An initial model parameter is obtained from an onboard model associated with the gas turbine engine. A correction factor for the onboard model is determined by modifying a difference between the onboard model and an aero-thermal model of the gas turbine engine using first and second engine parameters and first and second operating conditions, wherein the first and second engine parameters are independent from one another over an operating envelope of the gas turbine engine. The initial model parameter is scaled by applying the correction factor thereto to obtain a corrected model parameter. The corrected model parameter is output as the synthesized engine parameter.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: November 28, 2023
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Daryoush Mirzahekmati, Ioan Sabau, Poi Loon Tang
  • Patent number: 9002616
    Abstract: In one aspect, a digital engine control system for an aircraft engine is provided. The control system includes a selection unit, the selection unit including a monitoring module configured to determine a measurement of the speed of rotation of the engine from the output signal from one or more protection sensors and to compare the or each speed measurement determined by the selection unit with speed measurements supplied by electronic control units to determine an operating state of each electronic control unit.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: April 7, 2015
    Assignee: Thales
    Inventors: Gilles Genevrier, Claude Bresson
  • Patent number: 8886394
    Abstract: Methods and systems for producing data describing states of a plurality of targets using a processor in a system having at least one onboard sensor. The method includes obtaining data from at least one onboard sensor and performing a first data fusion process on the obtained onboard sensor data to produce onboard sensor fused data. Data is also obtained from at least one off-board sensor, and a second, different data fusion process is performed on the obtained off-board sensor data and the onboard sensor fused data to produce target state data.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 11, 2014
    Assignee: BAE Systems PLC
    Inventor: Colin Anthony Noonan
  • Patent number: 8862312
    Abstract: A device controls a person protection system of a motor vehicle having a sensor system which, for detecting an object colliding with the motor vehicle, includes a hose arranged along a body section width of the vehicle and closed-off by a pressure sensor on at least one end. In the event of an impact with an object, a pressure change is caused in the hose interior due to deformation of the hose and is detectable as a pressure signal of the pressure sensor by an evaluating unit connected with the pressure sensor. The evaluating unit detects vibrations originating from the motor vehicle during a driving and testing operation and coupled into the hose, which vibrations result in pressure fluctuations in the hose interior which are lower than a pressure fluctuation caused by an impacting object, and evaluates these vibrations for a predefined time period for diagnostic purposes.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 14, 2014
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Wolfgang Nehls
  • Patent number: 8849498
    Abstract: A method and system may detect a fail of a steering angle sensor in an electric power steering apparatus. The system may include: a steering angle sensor for generating and transmitting a steering angle signal measuring a rotation angle of a steering wheel; a motor for generating an assistant power for smooth steering and transmitting a current and a voltage based on rotation of the motor; and an Electronic Control Unit (ECU) for receiving the current and the voltage from the motor, sensing the rotation direction of the motor, receiving the steering angle signal from the steering angle sensor, sensing a first rotation direction of the steering wheel, and then, when the rotation direction of the motor is not equal to the first rotation direction of the steering wheel, determining that the steering angle signal has a fail and starting operation of a fail-safe logic.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: September 30, 2014
    Assignee: Mando Corporation
    Inventor: Jinhwan Lee
  • Patent number: 8682523
    Abstract: A first sensor outputs a signal characterizing a temperature of air being inducted by an engine of a vehicle. A second sensor outputs a signal characterizing a temperature of air surrounding an occupant cabin of the vehicle. A third sensor outputs a signal indicating presence of an adjacent object. A signal processing unit determines a distance between the third sensor and the adjacent object in accordance with a signal strength calibration as a function of the third sensor signal. The signal strength calibration is specified as a function of the first sensor signal when a first vehicle speed condition is met. The signal strength calibration is specified as a function of the second sensor signal when a second vehicle speed condition is met. The signal strength calibration is specified as a function of first sensor signal and the second sensor signal when a third vehicle speed condition is met.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: March 25, 2014
    Assignee: Ford Global Technologies
    Inventors: Wilford Trent Yopp, Wangdong Luo, Stephen Varghese Samuel
  • Patent number: 8676438
    Abstract: Temperature compensation for ultrasonic sensors can have a significant error that is highly undesirable because temperature of ultrasonic sensors and the temperature of the medium through which they sense objects affect signal strength calibrations (e.g., echo thresholds) applied when detecting an object. In order to increase the detection capabilities and reported distance of an object, ultrasonic sensors need to adjust their detection criteria and distance calculations as the temperature of air surrounding a vehicle (i.e., outside air temperature) changes and also as the temperature of the sensor changes. Embodiments of the inventive subject matter provide for a simple, effective and consistent approach for determining a temperature upon which such detection criteria and distance calculation adjustments can be based.
    Type: Grant
    Filed: December 1, 2012
    Date of Patent: March 18, 2014
    Assignee: Ford Global Technologies
    Inventors: Wilford Trent Yopp, Wangdong Luo, Stephen Varghese Samuel, Aric David Shaffer, Vern Stempnik, Michael David Kane
  • Patent number: 8666589
    Abstract: A method for determining the driving state of a vehicle in three-dimensional space comprising the steps: sensing of first signals over a specific time period, these signals being based on the first sensor signals which correspond to the three-dimensional acceleration of the vehicle; sensing of seconds signals over the specific time period, these signals being based on the second sensor signals which correspond to the three-dimensional angular rates of the vehicle; calculating the driving state variables of the three-dimensional velocity and/or three-dimensional orientation of the vehicle by integrating the first signals and or the second signals over the specific time period according to the system of equations of motion for the corresponding driving state variables; sensing of one or more third signals which are based on one or more additional third sensor signals with which one or more components of the calculated driving state variables can be determined; and correcting the first and second signals of the
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: March 4, 2014
    Assignee: Pascal Munnix
    Inventor: Pascal Munnix
  • Patent number: 8600609
    Abstract: A method for operating a longitudinal driver assist system of an automobile, in particular an ACC system, wherein environmental data of the automobile are evaluated with respect to travel in a longitudinal convoy with at least three automobiles which include the automobile and at least two additional automobiles, which are driving immediately behind one another and each have an active longitudinal driver assist system. A convoy value is formed, and at least one operating parameter of the driver assist system is adapted depending on the convoy value.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: December 3, 2013
    Assignee: Audi AG
    Inventors: Manfred Holzmann, Carmen Staudte
  • Patent number: 8554401
    Abstract: There are provided: control valves 22-24 that control flow of pressure oil from the hydraulic source 21 to the hydraulic actuators 15-17; electric lever devices 51-53 that output electrical operation signals v51-v53 in correspondence to lever operation; electromagnetic proportional valves 25-30 through which control pressures for controlling the control valves 22-24 are output; a pressure calculating unit 50 that calculates control pressures P25-P30 in correspondence to the operation signals V51-v53; a control unit 50 that controls the electromagnetic proportional valves 25-30 so that control pressures to be output from the electromagnetic proportional valves 25-30 become the control pressures P25-P30 that have been calculated; a high-pressure selection circuit 41-44 that selects a higher pressure between control pressures that have been output from the electromagnetic proportional valves 25-30; pressure detectors 45 and 46 that detect a control pressure selected by the high-pressure selection circuit 41-44;
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 8, 2013
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Hidetoshi Satake, Katsuaki Kodaka, Yuuki Gotou, Yuuji Nagashima, Kazuhiro Ichimura
  • Publication number: 20130144481
    Abstract: A system for detecting accelerator pedal failure in an accelerator pedal system including a vehicle control system, the pedal failure detecting system having an accelerator pedal; a pedal arm; a sensor configured to interpret a force applied to the accelerator pedal and further configured to transmit a signal as a sensor output to the vehicle control system, wherein the vehicle control system is configured to correlate the sensor output to an accelerator pedal position, and to indicate a failure condition when it is not feasible the to read the sensor output given the accelerator pedal position. A method for detecting accelerator pedal failure conditions in an accelerator pedal system.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Inventors: Fazal Urrahman Syed, Venkatapathi Raju Nallapa, Mathew Alan Boesch, Johannes Geir Kristinsson
  • Patent number: 8386121
    Abstract: A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: February 26, 2013
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Donald L. Simon, Sanjay Garg
  • Patent number: 8370056
    Abstract: A collision warning apparatus includes sensors, output devices, memory locations, a GPS device, and a processor. The processor may receive information from the sensors. The processor may also process the information to identify a detected object as a present potential collision object. The processor may compare present GPS coordinates of the vehicle with stored vehicle GPS coordinates saved in memory, to determine whether or not the present GPS coordinates correspond to stored vehicle GPS coordinates associated with a previously identified potential collision object. If the present GPS coordinates correspond to stored vehicle GPS coordinates associated with a previously identified potential collision object, the processor is operable to suppress a potential collision warning.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: February 5, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Roger Arnold Trombley, Thomas Edward Pilutti
  • Patent number: 8311700
    Abstract: In a microcomputer, a signal processing device computes a control signal, such as an accelerator position, a throttle position, based on a sensor output signal, such as an output signal of an accelerator position sensor, an output signal of a throttle position sensor. A torque control device executes a torque control operation to coincide an actual torque with a requested torque based on the control signal. Furthermore, a torque monitor device determines whether a torque increase abnormality exists based on the control signal. A signal abnormality diagnosis device determines whether an operational abnormality of the signal processing device exists based on a relationship between the sensor output signal and the control signal. A monitor IC monitors operational states of the torque monitor device and of the signal abnormality diagnosis device and determines whether an operational abnormality of the torque monitor device or of the signal abnormality diagnosis device exists.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: November 13, 2012
    Assignee: Denso Corporation
    Inventor: Yoshifumi Murakami
  • Patent number: 8306686
    Abstract: A vehicle monitoring system comprises a calculation module, an abnormal usage module, and memory. The calculation module calculates a vehicle usage value based on global positioning system (GPS) data and at least one data input, and calculates an expected vehicle usage value based on known vehicle characteristics and the GPS data. The abnormal usage module compares the vehicle usage value and the expected vehicle usage value. The memory stores an indicator based on the comparison.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: November 6, 2012
    Inventors: Randall B. Dlugoss, Kenneth K. Lang
  • Patent number: 8255110
    Abstract: It is an object of the present invention to provide a travel locus generating method and a travel locus generating device for generating a travel locus in consideration of a fuel consumption characteristic. The present invention is a travel locus generating device that generates a future travel locus of a vehicle and is characterized by including a restriction condition calculating means for performing a convergence calculation of restriction conditions including at least a condition of a road boundary and an evaluation function calculating means for deriving a travel locus by a convergence calculation using an evaluation function, which includes at least evaluation of a variance of speed, in a state where the restriction conditions of the restriction condition calculating means are satisfied.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: August 28, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Koji Taguchi
  • Patent number: 8244427
    Abstract: A vehicle includes a power inverter module (PIM), a motor/generator unit (MGU), vehicle components, temperature sensors, and a controller. The sensors measure temperatures of a motor winding of the MGU, and temperatures of the multiple phase outputs of the PIM. The second plurality of temperature sensors measures temperatures of the vehicle components. The controller calculates an average temperature of the components, and individually diagnoses each temperature sensor using the average temperature. A control circuit for the vehicle includes the first and second plurality of sensors and the controller. A temperature performance diagnostic method includes using the first plurality to measure a temperature of the motor winding and the phase outputs of the PIM, using the second plurality to measure a temperature of the components, calculating an average temperature of the components, and individually diagnosing the performance of each of the first plurality of sensors using the average temperature.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: August 14, 2012
    Assignees: GM Global Technology Operations LLC, Hewlett-Packard Development, L.P.
    Inventors: Robert Weiss, Thomas E Mathews, Andrew M. Zettel, Wei D. Wang
  • Patent number: 8150566
    Abstract: A system for selecting a datum among a set of data representing an air parameter, this set comprising at least two engine data obtained by measurement respectively in the zone of two engines of an aircraft and at least two reference data obtained by measurement in the zone of the fuselage of the aircraft, the system comprising: means for verifying pairwise agreement of three data of the set of data; means for selecting a reference datum among the said three data if such agreement is verified. A process and a computer program relating thereto are also proposed.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: April 3, 2012
    Assignee: Airbus Operations SAS
    Inventor: Julien Feau