Artificial Intelligence (e.g., Fuzzy Logic) Patents (Class 701/44)
  • Patent number: 6628210
    Abstract: A method for preventing a vehicle from deviating from a lane is provided, in which precise determinations of whether a vehicle is deviating from a lane may also be made when driving on curved sections of a road. Using DSRC, which is a system enabling communications between a vehicle and roadside equipment, information of road curvature and lane width is received. This road information and setting information of a camera mounted to the vehicle are then used to determine a lane deviation determination standard angle, which is used in curved sections of the road. A difference between the standard angle and a center value of left and right lane marker angles is compared with a critical value to determine whether the vehicle is deviating from the lane.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: September 30, 2003
    Assignee: Hyundai Motor Company
    Inventor: Young-Seop Lee
  • Patent number: 6498959
    Abstract: An apparatus and method for controlling a mechanism for positioning video cameras for use in measuring vehicle wheel alignment includes optical targets for mounting to the wheels of a vehicle, at least one video camera for viewing said optical targets and producing at least one image thereof, a computer system for measuring said at least one image and for using said measurements to compute vehicle wheel alignment information, a positioning system for positioning said at least one video camera such that said optical targets are visible to said at least one video camera and such that said at least one video camera can produce said at least one image of said targets, and a controller for controlling said positioning system such that a user of said apparatus can cause said at least one video camera to be positioned in at least one desired position and such that said user can further cause said controller to remember said at least one desired position so that any user can, at a later time, cause said controller to
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: December 24, 2002
    Assignee: Hunter Engineering Company
    Inventors: Daniel B. January, Nicholas J. Colarelli, III
  • Patent number: 6463371
    Abstract: A reduced control system suitable for control of an active suspension system as a controlled plant is described. The reduced control system is configured to use a reduced sensor set for controlling the suspension without significant loss of control quality (accuracy) as compared to an optimal control system with an optimum sensor set. The control system calculates the information content provided by the reduced sensor set as compared to the information content provided by the optimum set. The control system also calculates the difference between the entropy production rate of the plant and the entropy production rate of the controller. A genetic optimizer is used to tune a fuzzy neural network in the reduced controller. A fitness function for the genetic optimizer provides optimum control accuracy in the reduced control system by minimizing the difference in entropy production while maximizing the sensor information content.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: October 8, 2002
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Sergei V. Ulyanov, Takahide Hagiwara
  • Publication number: 20020138187
    Abstract: A fuzzy steering controller for wheel-type agricultural vehicles with an electrohydraulic steering system is disclosed. The fuzzy controller was developed based on a common-sense model of agricultural vehicle steering. The controller implements steering corrections based upon the desired steering rate and the error between the desired and the actual wheel angles. The controller consists of a variable fuzzifier, an inference engine with a steering control rulebase, and a control signal defuzzifier. The controller could be used on different platforms. Tuning of the fuzzy membership functions will accommodate for physical differences between the platforms. The controller achieves prompt and accurate steering control performance on both a hardware-in-the-loop electrohydraulic steering simulator and on an agricultural tractor.
    Type: Application
    Filed: February 9, 2001
    Publication date: September 26, 2002
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Hongchu Qiu, Qin Zhang, John F. Reid
  • Patent number: 6442463
    Abstract: A fuzzy steering controller for wheel-type agricultural vehicles with an electrohydraulic steering system is disclosed. The fuzzy controller was developed based on a common-sense model of agricultural vehicle steering. The controller implements steering corrections based upon the desired steering rate and the error between the desired and the actual wheel angles. The controller consists of a variable fuzzifier, an inference engine with a steering control rulebase, and a control signal defuzzifier. The controller could be used on different platforms. Tuning of the fuzzy membership functions will accommodate for physical differences between the platforms. The controller achieves prompt and accurate steering control performance on both a hardware-in-the-loop electrohydraulic steering simulator and on an agricultural tractor.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: August 27, 2002
    Assignee: The Board Of Trustees Of The University Of Illinois
    Inventors: Hongchu Qiu, Qin Zhang, John F. Reid
  • Patent number: 6370460
    Abstract: A steer by wire control system having a steering wheel unit responsive to a steering wheel torque command and a road wheel unit responsive to a road wheel unit command is disclosed. A master control unit may be employed to perform processing as necessary. A method for steering a vehicle including receiving a tie-rod force signal, a road wheel position signal, a vehicle speed signal, a steering wheel position signal, and a feedback torque signal. Combining these signals to generate the steering wheel torque command signal and road wheel command signal to provide the operator with tactile feedback, while road wheel command signals are sent to road wheel units to provide steering direction. An Ackerman correction unit may also used to correct the left and right road wheel positions to track about a common center.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: April 9, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Timothy Wesley Kaufmann, Michael D. Byers
  • Patent number: 6363305
    Abstract: A closed loop steer by wire control system has three main components, a steering wheel unit, a roadwheel unit, and a master control unit. Signals generated by sensors in the steering wheel unit and roadwheel unit are passed back to the master control unit for processing. These signals include tie-rod force signals, and a steering wheel position signal. The master control unit uses these signals to calculate a steering wheel reaction torque signal which is sent back to the steering wheel unit to provide the operator with tactile feedback, while roadwheel command signals are sent to roadwheel units to provide steering direction. An Ackerman correction unit is also used to correct the left and right roadwheel positions to track about a common center.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: March 26, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Timothy Wesley Kaufmann, Michael D. Byers
  • Patent number: 6328128
    Abstract: An electric power steering apparatus has a torque sensor which, if the torsion of a torsion bar is within a predetermined angle, linearly outputs a detection signal converted by a first conversion ratio with respect to the torsion, and if the torsion has exceeded the predetermined angle and is within a limit angle, the torsion sensor outputs a detection signal converted by a second conversion ratio which is lower than the first conversion ratio. Further, if the detection signal has exceeded an upper threshold or dropped below a lower threshold, which thresholds being set outside the range of the detection signal outputted from the torsion sensor in its normal state in which the torsion of the torsion bar is within the limit angle, a determination is made that an abnormality has occurred in the torsion sensor.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: December 11, 2001
    Assignee: NSK Ltd.
    Inventor: Kazuo Chikaraishi
  • Patent number: 6292094
    Abstract: A method is disclosed for controlling a backing maneuver of an automotive vehicle and trailer combination in which the vehicle has operator-actuated front wheel steering and microprocessor-actuated, reversible electric motor driven rear wheel steering. For a given initial alignment of vehicle and trailer, the computer-executed method first determines whether the driver needs to pull forward before commencing the backing operation. The driver is then requested to turn the front wheels in a direction suitable for backing the vehicle without a trailer in the desired direction. The process then determines whether the driver needs to perform counter front wheel steering before backing. Then the process controls the steering of the rear wheels during the backing operation.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: September 18, 2001
    Assignee: General Motors Corporation
    Inventors: Weiwen Deng, Yuen-Kwok Chin, William Chin-Woei Lin, David S. Rule, Yong Han Lee
  • Patent number: 6198988
    Abstract: A method for detecting an erroneous travel direction or a defective yaw rate sensor 12 is disclosed. Two estimates of the vehicle yaw rate are gathered from separate criteria and are compared with one another as well as the measured vehicle yaw rate. Using these comparisons along with other information regarding vehicle travel, a conclusion of whether a travel direction signal is erroneous is made. This determination can then be used to modify the vehicle's brake control strategy.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: March 6, 2001
    Assignee: Ford Global Technologies, Inc.
    Inventor: Hongtei Eric Tseng
  • Patent number: 6092006
    Abstract: A control system for a motor vehicle has several components for carrying out different tasks to control the vehicle. The data, which are necessary from the components, are acquired independently by the components either via data interrogation or via request relationships.
    Type: Grant
    Filed: March 6, 1998
    Date of Patent: July 18, 2000
    Assignee: Robert Bosch GmbH
    Inventors: Peter Dominke, Holger Bellmann, Jens-Olaf Mueller, Torsten Bertram, Asmus Volkart, Christian Grosse, Wolfgang Hermsen
  • Patent number: 5828971
    Abstract: The automatic steering device for an electrically controllable hydraulic steering system automatically controls steered wheels (HR) of a steered vehicle, especially an agricultural machine, according to at least one electronic steering control signal (SHL,SHR).
    Type: Grant
    Filed: March 8, 1996
    Date of Patent: October 27, 1998
    Assignee: Claas KGaA
    Inventors: Norbert Diekhans, Ludger Autermann, Stefan Hagedorn, Jochen Huster