Including Plural Widely Separated Fixed Gps Stations (e.g., Wide Area Augmentation System (waas), Etc.) Patents (Class 701/471)
  • Patent number: 11163069
    Abstract: A method comprises receiving an approximate location of a rover platform based on satellite signals for a Global Navigation Satellite System (GNSS), and receiving for the GNSS a differential correction map (DCM) representing a non-planar surface of differential corrections that varies across a geographical area represented by the DCM. The differential corrections are based on a reference station constellation of GNSS reference stations having respective locations spanning the geographical area. The method further comprises deriving DCM-based differential corrections for the satellite signals at the approximate location based on the DCM, correcting the satellite signals using the DCM-based differential corrections, and determining a location of the rover platform using the corrected satellite signals.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: November 2, 2021
    Assignee: iBiquity Digital Corporation
    Inventors: Brian Kroeger, Paul J. Peyla, Steven L. Teig
  • Patent number: 11047988
    Abstract: A method of reducing tropospheric effects in GNSS positioning includes determining a tropospheric delay by: determining zenith delays for geographical areas along a path of GNSS signal travel between a GNSS satellite and the first location of the electronic device, the zenith delays determined using current weather information of the geographical areas, the geographical areas traversed by the path represented by cells of a grid, the cells comprising a selected size; determining path delays for the geographical areas by adjusting the zenith delays based on an angle of the GNSS satellite relative to the electronic device; and summing the path delays to determine the tropospheric delay.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: June 29, 2021
    Assignee: Rx Networks Inc.
    Inventor: Muhammad Haris Afzal
  • Patent number: 10345448
    Abstract: A method of using space based augmentation system (SBAS) ephemeris data in conjunction with a ground based augmentation systems (GBAS) station is provided. The method includes integrating a space based augmentation system (SBAS) receiver in the GBAS station; receiving an industry-standard message type via the SBAS receiver at the GBAS station; consuming, at the GBAS station, the SBAS ephemeris data from the industry-standard message type associated with satellites in view of the GBAS station. The industry-standard message type includes SBAS ephemeris data associated with satellites in a global navigation satellite system (GNSS). The method further includes, based on the consuming, improving error bounds to GBAS broadcast ephemeris decorellation parameters broadcast from the GBAS station and reducing time to reintroduce a satellite in the GNSS.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: July 9, 2019
    Assignee: Honeywell International Inc.
    Inventors: James Arthur McDonald, Kim A. Class, Bruce G. Johnson
  • Patent number: 9635501
    Abstract: With the increasing usage of mobile devices for communication, the need for wireless base-stations deployed in strategic locations is becoming increasingly important. The increased bandwidths being transmitted between the base-station and the mobile device has mandated that enhanced transmission formats and techniques be deployed, and, in order to operate correctly, these techniques require a tight synchronization in both time/phase, and in frequency, between the various base-stations serving a general area. Due to the need to establish the geographic location of the mobile device with a high degree of accuracy, it is also necessary to establish the location of the serving base-stations with a high degree of accuracy.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: April 25, 2017
    Assignee: MICROSEMI FREQUENCY AND TIME CORPORATION
    Inventors: George P. Zampetti, Christopher A. Reid
  • Patent number: 9356940
    Abstract: An invention is provided for system security and access based on multi-dimensional location characteristics. The invention includes collecting contextual information characterizing a specific location during a first time period utilizing a contextual data collection device (CDCD), wherein the contextual information indicates specific characteristics of the location and is collected at the location. Then, a contextual location fingerprint (CLF) is created based on the collected contextual information. In general, the CLF is a data space of values mapped over specific period of time. In operation, new contextual information is collected at a location occupied by a device to be verified during a second time period. The new contextual information then is compared to the CLF and authenticating the device fir the new contextual information is within predefined parameters of the CLF.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: May 31, 2016
    Assignee: Digital Authentication Technologies, Inc.
    Inventors: David A. Hanna, Jr., Roger R. Dube
  • Patent number: 8954269
    Abstract: Methods and systems consistent with the present invention provide a host based positioning system. The host based positioning system includes a tracker hardware interface that connects to a dedicated hardware space vehicle tracker. The tracker hardware interface receives positioning information from the space vehicle tracker. The host based positioning system also includes a memory that includes a GPS library having a user interface, a tracker interface, and an operating system interface. A processor runs functions provided by the interfaces.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: February 10, 2015
    Assignee: CSR Technology Inc.
    Inventors: Clifford Yamamoto, Sebastian Nonis, Ashutosh Pande, Nikola Bulatovic, Stefan Witanis
  • Patent number: 8706413
    Abstract: Techniques are provided, which may be implemented in various methods, apparatuses, and/or articles of manufacture, to obtain an encoded routability graph representative of feasible paths in an indoor environment represented by an encoded map, and assign likelihoods of transition from an ingress edge in the encoded routability graph to individual egress edges through a junction connecting the ingress edge to a plurality of egress edges based, at least in part, on one or more features of the encoded map.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: April 22, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Rajarshi Gupta
  • Patent number: 8706411
    Abstract: A method and a system for dispatching vehicle are provided. The method for dispatching vehicle includes the following steps: A. obtaining the vehicle information, which includes vehicle numbers, vehicle states and relative positions; B. placing the vehicle icons corresponding to the vehicle numbers in the corresponding positions on the virtual line schedule map according to the vehicle states and the relative positions; C. displaying the virtual line schedule map refreshed via step B. The system for dispatching vehicle includes vehicle information obtaining unit, vehicle states judging and processing unit, displaying unit and dispatching unit. The system realize the visual vehicle dispatching method by utilizing the virtual line schedule map, so as to implement vehicle monitoring and dispatching.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: April 22, 2014
    Assignee: ChinaGPS Co., Ltd. (Shenzhen)
    Inventors: Jie Zhu, Jialiang Chu, Xiang He, Chuan Liang, Youwen Zhang
  • Patent number: 8635023
    Abstract: Aspects of the disclosure relate generally to localizing mobile devices. In one example, a first location method associated with a first accuracy value may be used to estimate a location of the mobile device. A confidence circle indicative of a level of confidence in the estimation of the location is calculated. The confidence circle may be displayed on a mobile device. When other location methods become available, the size of the displayed confidence circle may be expanded based on information from an accelerometer of the client device or the accuracy of the other available location methods. This may be especially useful when the mobile device is transitioning between areas which are associated with different location methods that may be more or less accurate.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: January 21, 2014
    Assignee: Google Inc.
    Inventors: Sorelle Alaina Friedler, Mohammed Waleed Kadous, Andrew Lookingbill
  • Patent number: 8620580
    Abstract: The invention relates to a navigation systems and elements. A network element (M) includes a receiver (M.2.2) for forming assistance data relating to at least one navigation system. The network element (M) inserts indication of the navigation system and a selected mode into the assistance data and constructs the assistance data according to the selected mode. The network element (M) has a transmitting element (M.3.1) for transmitting the assistance data via a communications network (P) to a device (R). The device (R) includes a positioning receiver (R.3) for performing positioning on the basis of one or more signals of the at least one satellite navigation system; a receiver (R.2.2) for receiving the assistance data from the network element (M); and an examining element (R.1.1) adapted to examine the received assistance data. The assistance data is adapted to be used by the positioning receiver for performing positioning of the device (R).
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: December 31, 2013
    Assignee: Nokia Corporation
    Inventors: Kimmo Alanen, Lauri Wirola, Jari Syrjarinne
  • Patent number: 8600661
    Abstract: A multi-function appliance for use in a satellite navigation data distribution system is described. A computer includes an input/output interface and a memory the computer is configured with a plurality of modules. The plurality of modules includes a satellite signal receiver, a packetizer, a network interface, a concentrator, and a decoder. The satellite signal receiver is configured to obtain satellite navigation data from satellite signals. The packetizer is configured to packetize satellite navigation data to produce a reference packet stream. The network interface is configured to transmit packet streams towards a network. The concentrator is configured to remove duplicate packets within reference packet streams to generate a combined packet stream. The decoder is configured to decode satellite data from packet streams. In this manner, the computer may be configured to perform a reference station function, a hub function, or a server function in the satellite navigation data distribution network.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 3, 2013
    Assignee: Global Locate, Inc.
    Inventors: Charles Abraham, Steven Malkos, Sergei Podshivalov
  • Patent number: 8566033
    Abstract: A method for determining the position of a mobile body at a given instant and for monitoring the integrity of the position of said mobile body includes a step of determining a sustained position at the given instant by adding the integral of the hybrid speed between the preceding instant and the given instant to the position of the mobile body at the preceding instant; a step of determining the sustained protection radius associated with the sustained position by adding the integral of the hybrid speed protection radius between the preceding instant and the given instant to the position protection radius of the preceding instant; a step of determining a better position at the given instant, the better position being: when information from the first positioning device is available, the position associated with a better protection radius, the better protection radius being selected by comparing the intermediate protection radius with the sustained protection radius according to a predetermined selection criteri
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 22, 2013
    Assignee: Thales
    Inventors: Pierre-Jérôme Clemenceau, Jacques Coatantiec
  • Patent number: 8386112
    Abstract: A vessel hull robot navigation subsystem and method for a robot including a drive subsystem onboard the robot for driving the robot about the hull. A sensor subsystem onboard the robot outputs data combining robot and vessel motion. A memory onboard the robot includes data concerning the configuration of the hull and a desired path of travel for the robot. A fix subsystem communicates position fix data to the robot. A navigation processor onboard the robot is responsive to the memory data, the sensor subsystem, the position fix data, and the data concerning vessel motion. The navigation processor is configured to determine the position of the robot on the hull by canceling, form the sensor subsystem output data combining both robot and vessel motion, the determined vessel motion.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: February 26, 2013
    Assignee: Raytheon Company
    Inventors: James H. Rooney, III, Stephen C. Jacobsen, Fraser Smith
  • Patent number: 8364401
    Abstract: The navigation system described here utilizes GPS and Galileo satellite signals combined with Inertial Navigation Systems (INS), where a Coupled Antenna (CAN) provides both GNSS and Inertial Measurement Unit (IMU) data to a Highly Integrated GNSS-Inertial (Hi-Gi) receiver. Such receiver makes use of a high fidelity relation between GNSS unprocessed Correlator Output (COUT) I and Q data and the user trajectory, and inertial sensor data, which in turn are combined within a Kalman Filter (KF). The KF determines the navigation solution that is also used to provide feedback to the receiver demodulation signal processing stage, thus eliminating the need of dedicated structures such as Delayed Locked Loops (DLL) and Phase Locked Loops (PLL), allowing a significant improvement in navigation performance.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: January 29, 2013
    Assignees: Deimos Engenharia S.A., Instituto de Geomatica
    Inventors: Pedro Dias Freire Da Silva, João Simões Silva, Augusto Caramagno, Antonio Fernandez Ortiz-Repiso, Jose Diez Secadas, Ismael Colomina
  • Patent number: 8352171
    Abstract: An auxiliary satellite positioning system is applied to a first satellite positioning apparatus. The auxiliary positioning system includes a detection module, a transmission interface and a positioning module. A second satellite positioning module having a satellite data can be detected by the detection module via a wireless transmission protocol. The satellite data can be transmitted by the transmission interface to the first satellite positioning module from the second satellite positioning module. The satellite data can be used by the positioning module to implement a satellite positioning action.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 8, 2013
    Assignee: MiTAC International Corp.
    Inventor: Hung-Yi Lin
  • Patent number: 8296065
    Abstract: A system vitally determines a position of a train. The system includes a plurality of diverse sensors, such as tachometers and accelerometers, structured to repetitively sense at least change in position and acceleration of the train, a global positioning system sensor, which is diverse from each of the diverse sensors, structured to repetitively sense position of the train, and a track map including a plurality of track segments which may be occupied by the train. A processor cooperates with the diverse sensors, the global positioning system sensor and the track map. The processor includes a routine structured to provide measurement uncertainty for each of the diverse sensors and the global positioning system sensor. The routine cross-checks measurements for the diverse sensors, and cross-checks the global positioning system sensor against the track map. The routine provides the vitally determined position of the train and the uncertainty of the vitally determined position.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: October 23, 2012
    Assignee: Ansaldo STS USA, Inc.
    Inventors: Michael B. Haynie, William R. Laurune
  • Patent number: 8254512
    Abstract: A receiving method and apparatus for increasing coherent integration length while receiving a positioning signal from transmitters such as GPS satellites. In order to compensate for frequency drifts that may occur in the positioning signal, a hypothesis is made as to the frequency drift, which is inserted into the receiving algorithm. Advantageously, the length of coherent integration can be increased at the expense of reducing the length of incoherent integration while keeping the total integration length the same, the net effect of which is an increase in signal detection sensitivity. The frequency drift hypothesis has any appropriate waveform; for example, approximately linear or exponential.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: August 28, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Peter Gaal, Christopher Patrick
  • Patent number: 8212711
    Abstract: A method for determining a corrected UAV trajectory for a UAV having an on-board synthetic aperture radar (SAR) and a programmed trajectory includes the SAR obtaining observed radar range profile curves associated with point scatterers; calculating an error objective function based on the observed radar range profile curves to obtain a perturbation path; and applying the perturbation path to the programmed trajectory to obtain the corrected UAV trajectory input back into the SAR. Optimal parameter values applied to the UAV motion model then constitute an improved estimate of the UAV trajectory. A system for computing the corrected UAV trajectory also includes an on-board UAV inertial navigation system and an on-board processor having a machine-readable storage media capable for storing the software instructions for applying the subject algorithm via the processor that then applies the corrected trajectory to the SAR.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: July 3, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Abraham Schultz, Feng-Ling C Lin
  • Patent number: 8165728
    Abstract: A cooperative engagement group-position determining system employs a group of at least three cooperative units, for example a group of unmanned aerial vehicles (UAV's), with each unit including a GPS system for determining a GPS-based position, an inter-distance measurement module for measuring a distance of the unit relative to at least one other unit, and a computer having a computer-readable storage medium encoded with a program algorithm for correcting the GPS-based position based on at least one relative distance between two units, providing an improved GPS-based position for the unit and for the group. The system can also include a ground controller, for example, for providing flight control for UAV's.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: April 24, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Abraham Schultz