Model Or Learning Means (e.g., Neural Network) Patents (Class 701/59)
  • Patent number: 8068965
    Abstract: A control apparatus for a shift-position changing mechanism that changes the shift positions of an automatic transmission mounted in a vehicle using a rotational force of an actuator based on a signal corresponding to the state of an operation member, including: a mechanism that generates a rotational force for moving the actuator toward a rotation stop positional-range corresponding to the shift position, based on a rotation stop position of the actuator; a detection unit that detects a rotation amount of the actuator; a control unit that controls the actuator based on the signal and the detected rotation amount; and a learning unit that learns the rotation stop positional-range corresponding to the shift position, based on an amount by which the actuator has been rotated since a control over the actuator executed by the control unit is stopped.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: November 29, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideki Kubonoya, Masato Kaigawa, Keiji Hoshino, Shigeru Kamio
  • Publication number: 20110276240
    Abstract: The driving output of the electric oil pump during an engine automatic stop is learnt by gradually increasing the driving output of the electric oil pump after an engine automatic stop and discriminating a state immediately before engagement on the basis of the behavior of an input shaft rotation number and a turbine rotation number. Thereby, the working oil pressure supplied by the electric oil pump during an engine automatic stop immediately after an engine automatic stop can be made suitable even if a vehicle is in a stopped state without adding an oil pressure sensor and an oil pressure switch, and a vain increase in power consumption, a deterioration of acceleration responsiveness at the time of an engine restart, generation of shock, or a soaring of the number of engine rotations can be prevented.
    Type: Application
    Filed: October 19, 2010
    Publication date: November 10, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Michitaka FUJIWARA, Tsuneo TANABE
  • Patent number: 8050833
    Abstract: A dynamic model is stored in memory that defines torque transmitted by the lockup clutch as a function of a plurality of torque converter operating parameters. A lockup clutch command is asserted to control engagement the lockup clutch, and thereafter a number of the plurality of torque converter operating parameters are monitored. A profile is selected of one of the plurality of torque converter operating parameters, and the profile is configured to result in an intersection of rotational speeds of the pump and the turbine over time when inserted into the model along with the monitored values of the number of torque converter operating parameters. The model is continually solved over time using the selected profile and the monitored operating parameters to produce transmitted torque values, and the lockup clutch command is modified based on the transmitted torque values.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: November 1, 2011
    Assignee: Allison Transmission, Inc.
    Inventors: Jeffrey K. Runde, Kevin L. Kluemper
  • Patent number: 8050826
    Abstract: The input rotation speed of an automatic transmission is fixed, and an output shaft is fixed. Oil pressure supplied to a measurement subject engagement element is then increased, and a determination is made as to whether or not rotary variation in a turbine rotation speed is equal to or greater than a set value. When the rotary variation reaches or exceeds the set value, an oil pressure controlled variable at this time is measured and stored. Then, on the basis of the measurement data, a correction amount relating to the unique characteristic variation of the automatic transmission incorporated into a vehicle body is determined and written to a TCU.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: November 1, 2011
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Yasuyuki Miyake, Keisuke Ajimoto, Satoshi Ogawa, Kazuhiko Simonaka
  • Patent number: 8050843
    Abstract: The present invention is concerned with the estimation of health parameters p(k) representing symptoms of a slowly degrading system, in particular industrial gas turbines. According to the invention, an estimation of a true health or independent parameter vector at time step k uses the estimation of the true health or parameter vector at a previous time step k?1 as a starting value for the production of a predicted health parameter vector at time step k. Based on the latter and a set of measured values of input variables of an extended model of the system, a prediction of output variables of the model is produced. This predicted model output is compared with measured values of the output variables to yield an error. From this error, a health parameter estimator in turn produces a health parameter estimate as a revision of the predicted health parameters.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: November 1, 2011
    Assignee: ABB Research Ltd
    Inventors: Thomas von Hoff, Andreas Poncet, Konrad Stadler
  • Patent number: 8032288
    Abstract: An upshift control system and method of an automatic transmission. The system includes a vehicle speed detector outputting a vehicle speed signal; a transmission control unit for receiving the signal, calculating a target hydraulic pressure based on a change of the vehicle speed, and outputting a control signal corresponding to the target hydraulic pressure; and an actuator for controlling an actual hydraulic pressure of an on-coming element based on the control signal. The method includes determining whether a vehicle speed changes during an upshift; calculating the change of the vehicle speed; calculating a target hydraulic pressure based on the change of the vehicle speed; and controlling an actual hydraulic pressure of an on-coming element based on the target hydraulic pressure. The target hydraulic pressure may be calculated by adding a modified hydraulic pressure, proportional to the rate of change of the vehicle speed, to a constant reference hydraulic pressure.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: October 4, 2011
    Assignee: Hyundai Motor Company
    Inventor: Hoegab Kim
  • Patent number: 7979184
    Abstract: An automatic transmission controller system and method are disclosed. In particular, disclosed is a system and method for controlling solenoid pressure control valves associated with an automatic transmission. The automatic transmission controller system comprises a controller which is configured to receive one or more electrical signal inputs for attributing each solenoid pressure control valve with one of a set of I-P calibration curves.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: July 12, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Michael T. Dickinson, Chris Hopp
  • Patent number: 7973505
    Abstract: When an electric vehicle outputs a torque instruction, firstly, a request torque is acquired and a judged whether the acquired request torque is positive or negative (S10) Regardless of the sign of the request torque, it is judged whether the eco-switch is ON (S12, S14) If the request torque has a positive sign and the eco-switch is OFF, a map A is selected (S20). If the eco-switch is ON, a map B which limits the maximum torque to a low value for the map A is selected (S22). If the request torque has a negative sign, a map C is selected regardless of the eco-switch ON/OFF state and the maximum torque is not limited (S24).
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: July 5, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Aisin Aw Co., Ltd.
    Inventors: Masayoshi Suhama, Hideto Hanada, Masaki Okamura, Hiroaki Kioka, Ken Iwatsuki
  • Patent number: 7957869
    Abstract: A method of operating an automatic transmission of a motor vehicle, in particular a variable-speed transmission. The automatic transmission includes at least five shift elements, at least three of which are engaged in a forward and a reverse gear to transfer torque or force. When disengaging gears for shifting the automatic transmission from a forward or reverse gear to a neutral position, at least one of the at least three shift elements that are engaged in the respective forward or reverse gear is completely disengaged.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: June 7, 2011
    Assignee: ZF Friedrichshafen AG
    Inventors: Christian Popp, Klaus Steinhauser, Peter Schiele, Bernd Allgaier, Thilo Schmidt
  • Patent number: 7957876
    Abstract: A deceleration control apparatus and method for a vehicle applies a deceleration, which is equal to or smaller than a guard value, to the vehicle based on a vehicle running environment parameter. The deceleration control apparatus determines the manner in which a driver performs an operation for decelerating the vehicle, and changes the guard value based on the manner in which the driver performs the operation for decelerating the vehicle. The manner in which the driver performs the operation for decelerating the vehicle may be determined based on at least one of the time at which the driver performs the operation for decelerating the vehicle, the time period during which the driver operates the brake, and the deceleration achieved by the brake operation.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: June 7, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuyuki Shiiba, Kunihiro Iwatuki
  • Patent number: 7953521
    Abstract: A learning controller overcomes tuning problems in vehicle simulation programs by estimating requisite vehicle-specific parameters, effectively learning from its mistakes, as the vehicle is automatically driven around a track. After a sufficient period of calibration, the learned parameters are automatically saved to a car-specific file. The file parameters may be loaded in the controller in the future to optimally control a vehicle without the need to re-run the learning procedure.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: May 31, 2011
    Assignee: Microsoft Corporation
    Inventors: Michael Tipping, Mark Andrew Hatton, Barry L. Brumitt
  • Publication number: 20110118947
    Abstract: A control system for controlling an automatic transmission that is capable of establishing a given speed stage by engaging a given frictional element. The control system comprises an actual time lag measuring section that measures an actual time lag from the time when a speed change instruction for the given speed stage is issued to the time when a gear ratio of the automatic transmission starts to change for the purpose of establishing the given speed stage, a torque detecting section that detects a torque from an engine, a time lag map that provides a suitable time lag in accordance with the detected torque from the engine, a learning correction section that corrects, by learning control, an instruction value for the hydraulic pressure led to the frictional element in a manner to cause the actual time lag to have the same value as the suitable time lag; and a time lag map correcting section that corrects the suitable time lag in accordance with an operation condition of an associated motor vehicle.
    Type: Application
    Filed: November 15, 2010
    Publication date: May 19, 2011
    Inventors: Go ENDO, Masami Suzuki
  • Patent number: 7941260
    Abstract: A method of mapping and modeling an engine during an engine development process includes testing the engine over a plurality of actual engine operating conditions and gathering actual engine data corresponding to the actual engine operating conditions. A plurality of parameter functions are determined based on the actual engine data, each of the plurality of parameter functions correspond to an engine operating parameter. A plurality of combustion parameters are generated for a plurality of engine operating conditions that include the plurality of actual engine operating conditions and a plurality of virtual engine operating conditions. An engine simulation model is calibrated based on the plurality of combustion parameters and a plurality of engine maps are generated using the simulation model.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: May 10, 2011
    Inventors: Byungho Lee, Yann G. Guezennec
  • Patent number: 7937197
    Abstract: A method of evaluating whether a vehicle under test is operating as intended. Parameters of the vehicle are sampled at a plurality of sample times to obtain a plurality of data samples. Data samples from more than one of the sample times are included in a sample set. The sample set is input to an artificial neural network (ANN). Many time-varying parameters, e.g., response times in motor vehicle systems, can be detected and evaluated.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: May 3, 2011
    Inventor: Michael R. Grimes
  • Patent number: 7920948
    Abstract: An assumption torque setting device for an engine that executes a torque reduction process during gear shifting. The device sets a torque assumed to be output by the engine and based on a target torque from which an amount corresponding to the torque reduction process is excluded as an assumption torque during the gear shifting. The device includes an assumption model torque calculation unit which calculates an assumption model torque from the target torque from which an amount corresponding to the torque reduction process is excluded based on an internal combustion engine delay model. An assumption torque calculation unit calculates before torque reduction is performed an assumption torque based on an engine operation state and calculates when the torque reduction is being performed an assumption torque based on the assumption model torque and an assumption torque calculated from the engine operation state.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 5, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Seiji Kuwahara, Masato Kaigawa
  • Patent number: 7917277
    Abstract: A control apparatus for a vehicular drive system including an electrically controlled differential portion having a differential mechanism, and an electric motor which is operatively connected to the differential mechanism and an operating state of which is controlled to control a differential state between input and output shaft speeds, and a transmission portion constituting a part of a power transmitting path between the differential portion and a vehicle drive wheel, the control apparatus including a differential-state switching portion for switching the differential portion between differential-state and non-differential states, a shifting control portion for controlling a shifting action of the transmission portion, and a learning control portion for effecting learning compensation of a control amount of a control element to be controlled during the shifting action, wherein the learning control portion includes a differential-state learning control portion operable to implement the learning compensation
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: March 29, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Tabata, Tooru Matsubara, Yuji Iwase, Hiroyuki Shibata
  • Patent number: 7912665
    Abstract: A system and method for detecting the absence of contact between the hands of a driver of a vehicle and a steering wheel of the vehicle that have particular application in ensuring the proper functioning of various components of the driver assist steering systems and maintaining driver attentiveness. The method for detecting a no-contact condition between the hands of the driver of the vehicle and the steering wheel includes generating a model of the no-contact condition using a second-order transfer function. The method further includes obtaining a set of model-generated steering dynamics by estimating a plurality of parameters of the second-order transfer function and a set of measured steering dynamics using a plurality of sensors. The set of model-generated steering dynamics and the set of measured steering dynamics are then compared and the no-contact condition is detected based on this comparison.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: March 22, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Weiwen Deng, Yong H. Lee, Haicen Zhang
  • Patent number: 7912616
    Abstract: A work machine gear shifting control device is capable of readily identifying the cause of failure in learning the clutch hydraulic pressure for operating a transmission clutch. A transmission gear shifting control section 46 is provided for each of clutches 61-65, and performs a learning process in which each of a plurality of handling processes learns the clutch hydraulic pressure for each of the clutches 61-65 and determines the clutch hydraulic pressure characteristic values for operating the individual clutches. Further, the transmission gear shifting control section 46 performs a learning monitoring process in each of the plurality of handling processes to formulate an error judgment, which indicates whether learning has failed in each of the plurality of subprocesses, and displays the result of the judgment.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: March 22, 2011
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Hidenobu Tsukada, Youichi Kowatari, Kazunori Nakamura, Masaki Yoshikawa
  • Patent number: 7898432
    Abstract: A method and system for determining right of way for a plurality of mobile units at an intersection. The method and system include collecting position and movement information about the plurality of mobile units approaching the intersection; storing a plurality of rules about right of way at the intersection; accessing information about geometry of the intersection; calculating which one or more of the plurality of the mobile units have right of way to enter the intersection, responsive to the position and movement information, the stored rules and the information about geometry of the intersection; and wirelessly transmitting right of way indication signals to one or more of the plurality of the mobile units.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 1, 2011
    Assignee: Kapsch Trafficcom AG
    Inventors: Justin Paul McNew, John Thomas Moring, Khaled I. Dessouky
  • Patent number: 7894966
    Abstract: An upshift control system for use in an automatic transmission including first and second friction elements, the upshift control system including a control unit that determines variation in an engagement capacity of the first friction element or an engagement capacity of the second friction element on the basis of combination of occurrence or non-occurrence of engine racing and compared lengths between a first time that elapses from output of a shift command to a start of an inertia phase and a second time that elapses from the out output of a shift command to a start of change in an actual gear ratio toward a target gear ratio to be achieved after the shifting, and performs a learning correction of a command pressure for the first friction element or a command pressure for the second friction element on the basis of the determination result.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 22, 2011
    Assignee: JATCO Ltd
    Inventors: Cheol Park, Osamu Sato
  • Patent number: 7885749
    Abstract: In a drive system, where power from a motor is transmitted to a drive shaft and a transmission ratio is changed by a transmission, if the absolute value of the difference between the reference torque Tm2r0, which is the drive shaft side torque Tm2r at the onset of a change in the shift speed of the transmission, and the driving shaft side torque Tm2r during the change is less than the threshold value ? until the end of the change (S280), the application state of a brake in the transmission during the change and the state of the hydraulic pressure supplied to the brake are learned (S290). During the change, and actuator of the transmission is controlled using those learned results. Accordingly, any deviations that may have occurred due to changes over time in the transmission, etc. are corrected and the shift speed of the transmission is changed more appropriately.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: February 8, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Aisin AW Co., Ltd.
    Inventors: Kensuke Kamichi, Kiyoshiro Ueoka, Masaya Yamamoto, Kazuomi Okasaka, Yoichi Tajima
  • Patent number: 7873459
    Abstract: A method of controlling a vehicle that includes determining a dynamic normal load for the vehicle wheel, modifying the requested torque signal from a traction control system in response to the dynamic normal load to form a modified requested torque and controlling the engine in response to the modified requested torque. The controlling may be performed using the ratio of the dynamic normal load and the steady state normal load to form the modified requested torque.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: January 18, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Fodor, Davor Hrovat
  • Patent number: 7869928
    Abstract: The present invention is concerned with the estimation of health parameters p(k) representing symptoms of a slowly degrading system, in particular industrial gas turbines. According to the invention, an estimation of a true health or independent parameter vector at time step k uses the estimation of the true health or parameter vector at a previous time step k?1 as a starting value for the production of a predicted health parameter vector at time step k. Based on the latter and a set of measured values of input variables of an extended model of the system, a prediction of output variables of the model is produced. This predicted model output is compared with measured values of the output variables to yield an error. From this error, a health parameter estimator in turn produces a health parameter estimate as a revision of the predicted health parameters.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: January 11, 2011
    Assignee: ABB Research Ltd
    Inventors: Thomas von Hoff, Andreas Poncet, Konrad Stadler
  • Patent number: 7853338
    Abstract: The invention comprises apparatuses and methods for providing the capability to stabilize and control a non-minimum phase, nonlinear plant with unmodeled dynamics and/or parametric uncertainty through the use of adaptive output feedback. A disclosed apparatus can comprise a reference model unit for generating a reference model output signal ym The apparatus can comprise a combining unit that combines and differences a plant output signal y of a non-minimum phase plant for which not all of the states can be sensed, and a plant output signal y, to generate an output error signal {tilde over (y)}. The apparatus can further comprise an adaptive control unit for generating an adaptive control signal uad used to control the plant.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: December 14, 2010
    Assignee: Georgia Tech Research Corporation
    Inventors: Naira Hovakimyan, Anthony J Calise, Bong-Jun Yang
  • Publication number: 20100262326
    Abstract: A method of regulating an axle disconnect device that is operable in an axle assembly of a vehicle drivetrain includes monitoring a plurality of parameters, determining whether an occurrence of at least one of a traction event and a stability event is imminent based on at least one of the parameters, the stability event being determined based on a first set parameters; and the traction event being determined based on a second set of parameters that includes less parameters than the first set of parameters, and regulating the axle disconnect device to an engaged position if the occurrence of the at least one of the traction event and the stability event is imminent.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 14, 2010
    Applicant: BorgWarner Inc.
    Inventors: John R. Buszek, Brian Ginther, Earl David Ray
  • Patent number: 7747372
    Abstract: Systems and methods for user control of vehicular transmission shift points. In one embodiment, a user may control a transmission shift point by adjusting a selector having non-discrete selectable positions. Such selector may generate a signal indicative of its position to a transmission controller. The transmission controller may receive the signal from the selector and determine at least one transmission shift point based upon the selector position. The transmission controller may thereby control the transmission to effectuate a gear change when the shift point is achieved. In some embodiments, the selector may comprise a rotary potentiometer, a rotary encoder, an inline potentiometer, an inline encoder or the like.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: June 29, 2010
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Kenneth Michael Mathis
  • Patent number: 7720585
    Abstract: An aspect of the present invention provides a passenger protection device that includes, a brake pedal sensor configured to detect the amount by which a brake pedal of a vehicle is operated, a webbing, one end of the webbing fixed to the vehicle, configured to restrain a passenger seated on a seat of the vehicle, a retractor connected to the other end of the webbing, the rector configured to retract the webbing and inhibit of the webbing extraction, and an ECU electrically coupled to the brake pedal sensor, the ECU configured to detect that the brake pedal operation amount detected by the pedal sensor exceeds a first threshold value, the ECU configured to revise the threshold value based on safety related information of the vehicle to control the inhibition of the webbing extraction of the retractor.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: May 18, 2010
    Assignee: Nisson Motor Co., Ltd.
    Inventors: Shunichi Fukuda, Kazunori Tomimatsu
  • Patent number: 7699729
    Abstract: This invention is a speed ratio change control device for a belt type continuously variable transmission that a minimum generated pressure of the primary pressure is estimated on the basis of a displacement speed of the movable sheave of the primary pulley and an opening area of a drain side passage of the speed ratio change control valve (S4), an upper limit value of a shift speed is calculated on the basis of the minimum generated pressure (S6), and the target speed ratio is set on the basis of the upper limit value of the shift speed (S10).
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: April 20, 2010
    Assignee: Jatco Ltd
    Inventors: Takuichiro Inoue, Midori Yamaguchi, Yoshihisa Kodama
  • Patent number: 7702445
    Abstract: What is described is a control system for controlling the driving-away maneuver in a motor vehicle provided with a gearbox comprising a primary input shaft which can be coupled to a drive shaft of a propulsion system of the vehicle by means of a servo-assisted friction clutch, wherein a control unit receives at its input signals indicating a command imparted by the driver of the motor vehicle by operating the accelerator pedal, and generates—on the basis of a mathematical reference model—reference torque request signals indicating the reference torques requested from the drive shaft and from the friction clutch during the driving-away manoeuvre, and also generates—by comparison between signals indicating the estimated angular velocities of the drive shaft and of the primary gear shaft, and detected signals indicating the actual angular velocities of the drive shaft and of the primary gear shaft—corresponding corrective contributions, in such a way as to construct command signals for controlling torque actuato
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: April 20, 2010
    Assignee: C.R.F. Società Consortile per Azioni
    Inventors: Renato Gianoglio, Claudia Supparo, legal representative, Dario Del Pin, Giovanni Ellena, Massimo Fossanetti, Massimo Lupo, Attilio Porta, Pandeli Borodani
  • Patent number: 7693641
    Abstract: A vehicle speed control system for controlling a vehicle on a chassis dynamometer is comprised of a controller which is arranged to receive a vehicle speed command, to obtain an anticipated vehicle speed command from the vehicle speed command taking account of a delay factor of a control system of the vehicle, to calculate a driving force a driving force command from the anticipated vehicle speed command, to obtain an accelerator opening command from a previously stored driving force characteristic map based on the driving force command and a detected vehicle speed, and to control an accelerator opening of the vehicle according to the accelerator opening command so as to adjust the detected vehicle at the vehicle speed command.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: April 6, 2010
    Assignee: Kabushiki Kaisha Meidensha
    Inventor: Toshimitsu Maruki
  • Patent number: 7693637
    Abstract: A vehicle control system is comprised of a controller which is arranged to select an optimal mode adapted to a driving point of a vehicle from an optimal mode map of defining a plurality of running modes of the vehicle, to detect a generation of a mode transition in the optimal mode map, and to hold a current running mode selected before the transition for a holding time period when the generation of the mode transition is detected.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: April 6, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Michel Mensler, Shinichiro Joe
  • Publication number: 20100063697
    Abstract: System and method for adapting an automatic mechanical transmission (AMT) on a heavy vehicle. The method includes assessing at least one driving characteristic of an operator of the vehicle. Specific examples are detailed below, but in general these will be driving traits that demonstrate the driver's proficiency at executing certain driving tasks. This is taken as a predictor of his or her ability to handle and properly use advanced vehicle features that are beneficial when used properly, but that typically also have a capacity for misuse. Based on the assessment, the operator is classified as being either entitled to enhanced transmission features or not entitled to enhanced transmission features. If the classification is positive, that is the driver is classified as being entitled to enhanced transmission features; at least one enhanced transmission feature is enabled for the operator.
    Type: Application
    Filed: September 13, 2007
    Publication date: March 11, 2010
    Applicant: Volvo Lastvagnar AB
    Inventors: Anders Lindgren, Anders Eriksson, Bo Hammerlid, Mats Henrik Tobiasson, Sixten Berglund
  • Publication number: 20100063696
    Abstract: A dynamic model is stored in memory that defines torque transmitted by the lockup clutch as a function of a plurality of torque converter operating parameters. A lockup clutch command is asserted to control engagement the lockup clutch, and thereafter a number of the plurality of torque converter operating parameters are monitored. A profile is selected of one of the plurality of torque converter operating parameters, and the profile is configured to result in an intersection of rotational speeds of the pump and the turbine over time when inserted into the model along with the monitored values of the number of torque converter operating parameters. The model is continually solved over time using the selected profile and the monitored operating parameters to produce transmitted torque values, and the lockup clutch command is modified based on the transmitted torque values.
    Type: Application
    Filed: April 9, 2009
    Publication date: March 11, 2010
    Inventors: Jeffrey K. Runde, Kevin L. Kluemper
  • Publication number: 20100049412
    Abstract: When there is a shift command for the transmission (3) during or immediately after clutch touch point learning, a shift operation value for the transmission (3) is reduced compared to what it normally is (steps ST11 and ST12). Reducing the shift operation value in this way enables the change in the rotation speed of an input rotating body at the time of a gear shift operation to be gradual if that gear shift operation is during or immediately after clutch touch point learning. As a result, inertia torque, and thus shift shock, can be suppressed.
    Type: Application
    Filed: December 19, 2005
    Publication date: February 25, 2010
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaaki Otsubo
  • Publication number: 20100004834
    Abstract: A work machine gear shifting control device is capable of readily identifying the cause of failure in learning the clutch hydraulic pressure for operating a transmission clutch. A transmission gear shifting control section 46 is provided for each of clutches 61-65, and performs a learning process in which each of a plurality of handling processes learns the clutch hydraulic pressure for each of the clutches 61-65 and determines the clutch hydraulic pressure characteristic values for operating the individual clutches. Further, the transmission gear shifting control section 46 performs a learning monitoring process in each of the plurality of handling processes to formulate an error judgment, which indicates whether learning has failed in each of the plurality of subprocesses, and displays the result of the judgment.
    Type: Application
    Filed: November 9, 2006
    Publication date: January 7, 2010
    Inventors: Hidenobu Tsukada, Youichi Kowatari, Kazunori Nakamura, Masaki Yoshikawa
  • Publication number: 20100004835
    Abstract: First target torque of an engine is set based on a driver's operation, a vehicle behavior, and a request for shifting gears of an automatic transmission. The engine is controlled such that the difference between the first target torque and the actual output torque of the engine is reduced. Detection torque is calculated from an operation state of the engine. In consideration of dead time in control of the engine, calculation torque is calculated from the first target torque. In addition, first lookahead torque with the dead time in the engine being removed is calculated by feedback-correcting the first target torque according to an error e between the detection torque and the calculation torque.
    Type: Application
    Filed: June 24, 2009
    Publication date: January 7, 2010
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Seiji Kuwahara, Toshiya Oishi, Shogo Matsumoto
  • Publication number: 20090325762
    Abstract: A method of operating a machine is disclosed. The machine may have a power system that includes a prime mover, a multiple-ratio transmission, a propulsion device, and power-system controls. The method may include propelling the machine by transmitting power from the prime mover to the propulsion device through the multiple-ratio transmission, while controlling operation of the prime mover and the multiple-ratio transmission with the power-system controls. This may include determining with the power-system controls at least one energy-efficiency estimate based at least in part on energy-efficiency characteristics of the prime mover and energy-efficiency characteristics of the multiple-ratio transmission. Controlling the prime mover and the multiple-ratio transmission may further include controlling a prime-mover operating speed of the prime mover and a transmission drive ratio of the multiple-ratio transmission based at least in part on the at least one energy-efficiency estimate.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Alan R. Coutant, Michael G. Cronin, Steven A. Daniel, Norval P. Thomson
  • Patent number: 7639159
    Abstract: A method and system for determining right of way for a plurality of mobile units at an intersection. The method and system include collecting position and movement information about the plurality of mobile units approaching the intersection; storing a plurality of rules about right of way at the intersection; accessing information about geometry of the intersection; calculating which one or more of the plurality of the mobile units have right of way to enter the intersection, responsive to the position and movement information, the stored rules and the information about geometry of the intersection; and wirelessly transmitting right of way indication signals to one or more of the plurality of the mobile units.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: December 29, 2009
    Assignee: Kapsch Trafficcom AG
    Inventors: Justin Paul McNew, John Thomas Moring, Khaled I. Dessouky
  • Publication number: 20090312926
    Abstract: A method for changing the timing of gear changes of an automatic transmission for a motor vehicle including repetitively updating a current value of a count whose value is a measure of driving behavior, performing an evaluation of driving behavior and updating the current value by a value determined from the evaluation, determining shift schedules that define the occurrence of a gear change to be produced by the transmission, and using the updated current value to establish from among the shift schedules a shift schedule that defines a gear change to be produced by the transmission.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 17, 2009
    Inventors: Kevin MacFarlane, Henry A. Rebandt, Andrew Wong, Alan Henriksen, Peter J. Bradley, Philip J. Wiethe, JR.
  • Publication number: 20090306867
    Abstract: An automatic transmission control unit determines whether or not a constantly open failure, in which a switch valve cannot switch a pressure regulating valve and a second hydraulic chamber to a non-communicative state, has occurred on the basis of a parameter (an inertia phase time, for example) representing a dynamic characteristic during a shift from a first gear position to a second gear position. The determination of the constantly open failure is begun after initial variation in the parameter representing the dynamic characteristic during the shift has been eliminated through learning control in which the dynamic characteristic during the shift is caused to approach a target dynamic characteristic.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 10, 2009
    Inventors: Fumitaka NAGASHIMA, Hajime Tasaka, Yoshihide Shinso
  • Publication number: 20090306866
    Abstract: Method, control apparatus and powertrain system controller are provided for real-time, self-learning control based on individual operating style. The method calibrates powertrain system performance in a passenger vehicle in real-time based on individual operating style. The method includes powering the vehicle with the system and generating a sequence of system operating point transitions based on an operating style of an operator of the vehicle during the step of powering. The method further includes learning a set of optimum values of controllable system variables in real-time during the steps of powering and generating based on the sequence of system operating point transitions and predetermined performance criteria for the system. The method still further includes generating control signals based on the set of optimum values to control operation of the system.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 10, 2009
    Applicant: The Regents of the University of Michigan
    Inventor: Andreas Malikopoulos
  • Publication number: 20090259376
    Abstract: A dynamic model that is configured to produce a lockup clutch command as a function of a plurality of torque converter operating parameters is continually solved and the lockup clutch command is asserted to control engagement of the lockup clutch. A profile of one of the plurality of torque converter operating parameters is selected and is configured, when inserted into the model in place of an actual value thereof, to result in an intersection of rotational speeds of the pump and the turbine over time. Deceleration of the pump is monitored after asserting the lockup clutch command and a maximum deceleration of the pump is determined therefrom. The selected profile is temporarily held constant if the monitored deceleration of the pump rises at least a threshold value above the maximum deceleration of the pump.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 15, 2009
    Inventor: Jeffrey K. Runde
  • Publication number: 20090259375
    Abstract: A dynamic model is stored in memory that defines torque transmitted by a lockup clutch in a torque converter as a function of a plurality of torque converter operating parameters. A lockup clutch command to control engagement the lockup clutch is asserted, and thereafter a number of the plurality of torque converter operating parameters are monitored. The model is continually solved using the monitored operating parameters to determine torque transmitted by the lockup clutch over time, and a lockup clutch on-coming capacity signal is produced if the torque transmitted by the lockup clutch exceeds a torque threshold.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 15, 2009
    Inventor: Jeffrey K. Runde
  • Publication number: 20090248265
    Abstract: A control device for a vehicle drive apparatus that includes a differential mechanism and an electric motor provided in the differential mechanism, which can be miniaturized in structure with improved fuel economy and enabling suppression of occurrence in switching shocks. With a provision of a switching clutch or a switching brake, a shifting mechanism is placed in either a continuously variable shifting state or a step variable shifting state. During a shifting of an automatic shifting portion, an engaging control variable control alters a method of learning an engaging pressure. This allows a rotation speed of a transmitting member to achieve a given variation during the shifting, depending on a continuously variable shifting state and a non-continuously variable shifting state, for thereby providing a balance between an improvement in a feeling and a suppressing of shifting shocks.
    Type: Application
    Filed: May 19, 2006
    Publication date: October 1, 2009
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Tabata, Yuji Inoue, Atsushi Kamada
  • Publication number: 20090248261
    Abstract: An assumption torque setting device for an engine that executes a torque reduction process during gear shifting. The device sets a torque assumed to be output by the engine and based on a target torque from which an amount corresponding to the torque reduction process is excluded as an assumption torque during the gear shifting. The device includes an assumption model torque calculation unit which calculates an assumption model torque from the target torque from which an amount corresponding to the torque reduction process is excluded based on an internal combustion engine delay model. An assumption torque calculation unit calculates before torque reduction is performed an assumption torque based on an engine operation state and calculates when the torque reduction is being performed an assumption torque based on the assumption model torque and an assumption torque calculated from the engine operation state.
    Type: Application
    Filed: March 26, 2009
    Publication date: October 1, 2009
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Seiji KUWAHARA, Masato Kaigawa
  • Publication number: 20090240410
    Abstract: When a shift lever is shifted from an N range to a D range and a predetermined learning condition is established, a learning timer tm_pulse up to a point at which a pulse signal is detected by a primary pulley rotation speed sensor is calculated, and when a deviation between the learning timer tm_pulse and a reference correction amount ?P_offset is larger than a predetermined threshold ?t_pulse_dif, a learned correction amount P_offset is updated.
    Type: Application
    Filed: February 12, 2009
    Publication date: September 24, 2009
    Inventors: Fumito Shinohara, Juhyun Nam, Katsumi Doihara, Hideaki Sasaki, Norio Asai, Hiroyasu Tanaka, Hideshi Wakayama, Takeshi Kaneda, Daisuke Aoki
  • Publication number: 20090222180
    Abstract: In a pressure control system having a solenoid-operated fluid valve that has an output hydraulic pressure which varies in accordance with a solenoid input signal, a dynamic learning block is configured to adjust the initial, default values for control points stored in a pressure-current (P-I) data table based on observed (measured) operating points that reflect the solenoid's actual transfer characteristic. A feed forward control block is configured to generate the solenoid input signal having a level based on the adjusted control points in the data table, which improves the accuracy of the solenoid input signal. An adjustment method uses a plurality of circular buffers each configured to store observed operating points falling within a respective range, and provides a mechanism to allow adjustment of the control points based on only partial data.
    Type: Application
    Filed: March 3, 2008
    Publication date: September 3, 2009
    Inventors: Jeremy J. Kraenzlein, Quan Zheng
  • Patent number: 7584040
    Abstract: The following steps are performed in the control method: determining a mode of operation from amongst a permanent mode and a transient mode, as a function of a set of variables comprising said estimated values; correcting the value of the speed of rotation of the outlet shaft in such a manner that: if the mode has been determined as being the permanent mode, then the moving average (L?) of the gear ratio (L) over a period (T) of a plurality of unit time intervals lies between a first threshold value (S1) that is negative and a second threshold value (S2) that is positive; and if the mode has been determined as being the transient mode, then said moving average (L?) of the gear ratio (L) lies outside the range of values defined by the first and second threshold value (S1, S2).
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: September 1, 2009
    Assignee: Peugeot Citroen Automobiles SA
    Inventor: Stéphane Rimaux
  • Patent number: 7544150
    Abstract: A method of regulating gear shifts of a transmission driven by an engine includes calculating a first torque error and calculating a second torque error. A compensation torque is determined based on the first torque error and the second torque error. The gear shifts are regulated based on the compensation torque.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: June 9, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Christopher J. Trush, David W. Wright, Craig M. Fazakerly, John E. Marano
  • Publication number: 20090143948
    Abstract: A continuously variable transmission is provided having a driven element. The continuously variable transmission also has a first operator input device configured to transmit a first displacement signal corresponding to a displacement of the first operator input device. The continuously variable transmission further has a second operator input device configured to transmit a second displacement signal corresponding to a displacement of the second operator input device. In addition, the continuously variable transmission has a third operator input device configured to transmit a transmission operating mode request. Furthermore, the continuously variable transmission has at least one sensor configured to sense at least one parameter indicative of an operating condition of the transmission.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 4, 2009
    Inventors: Kristofor Lee Dahl, Richard George Ingram, Michael Anthony Spielman, JR., Alberto Martinez, JR., Yaang Zhao, Ellen Jean Hoffman