Clutch Control Patents (Class 701/67)
  • Patent number: 10125827
    Abstract: A method of controlling a clutch for vehicle may include determining, by a controller, raised offset engine torque, when engine torque is raised to a reference torque or more in an engine idle state, and controlling, by the controller, the clutch based on the determined offset engine torque.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: November 13, 2018
    Assignee: Hyundai Motor Company
    Inventors: Sung Hyun Cho, Hwan Hur, Jin Sung Kim
  • Patent number: 10099685
    Abstract: A transmission control method that improves fuel economy when gear shift and engine clutch release are to be simultaneously performed is provided. A parallel type hybrid electric vehicle having an engine clutch mounted between an electric motor and an engine includes a first controller that executes transmission gear shift during a first control period and a second controller that operates the engine clutch and generates an engine clutch release request. A third controller permits the engine clutch release request to release the engine clutch before the second control period upon determining that a time when the release request has been generated is within a third control period, which is a period before a second control period in which actual shift is generated within the first control period, and a remaining time until a time when the second control period is started is equal to or greater than a critical time.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: October 16, 2018
    Assignee: Hyundai Motor Company
    Inventor: Sang Joon Kim
  • Patent number: 10052948
    Abstract: Embodiments of the present invention provide a motor vehicle controller comprising a computing device, the controller being configured to command a first releasable torque transmitting device of a drive-line to switch between a released condition in which a first releasable torque transmitting device substantially prevents transmission of torque from an input to an output portion thereof, and an engaged condition in which a releasable torque transmitting device allows torque transmission from an input portion to an output portion thereof. The controller may be configured to receive information indicative of: a speed of wheels of a first axle; a speed of wheels of a second axle; and a terrain over which a vehicle is driving.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: August 21, 2018
    Assignee: JAGUAR LAND ROVER LIMITED
    Inventors: Karl Richards, Simon Owen
  • Patent number: 9890822
    Abstract: A method and an apparatus for controlling a clutch of a vehicle include determining whether a vehicle is moving under a condition in which a gearshift is coupled to the clutch. A clutch torque is learned in which the clutch is maintained in a micro-slip state by decreasing a target clutch torque for a corresponding gear level when it is determined that the vehicle is moving under the condition in which the gearshift is coupled to the clutch. Learning reliability is calculated by reflecting a difference between an engine torque and clutch torque. The clutch is maintained in the micro-slip state for the clutch torque learning or converting the clutch into a lock-up state, depending on a learning reliability level.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: February 13, 2018
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventor: Ho Young Lee
  • Patent number: 9878720
    Abstract: Disclosed is a system for regulation of torque demanded from a prime mover of a vehicle, which prime mover responds to the torque demanded by delivering a dynamic torque. This dynamic torque is related by a gear ratio to a dynamic wheel torque which a power train comprising the prime mover imparts to at least one tractive wheel of the vehicle. The system regulates the torque demanded in such a way that a difference between the torque demanded and the dynamic torque is actively limited by employing feedback of the dynamic torque at an earlier time. The torque demanded at a time (t) for the regulation is limited to a maximum value which exceeds the dynamic torque at an earlier time by an offset value. The torque demanded is continuously varied according to the dynamic torque, so that power train oscillations in the vehicle are reduced in number and/or magnitude.
    Type: Grant
    Filed: March 2, 2014
    Date of Patent: January 30, 2018
    Assignee: SCANIA CV AB
    Inventors: Johan Tunhag, Niclas Lerede, Martin Evaldsson
  • Patent number: 9873484
    Abstract: A saddle-type vehicle can be configured to perform idle-stop during deceleration corresponding to a driver's demand. In some embodiments, the vehicle comprises a bar handle mounted on its opposite tip ends with a grasping grip grasped by the driver and a throttle grip for accelerator operation; two operation controls for performing braking operation, at least one of which being a first brake and a second brake mounted on tip ends of the bar handle; and an engine controller for automatically stopping an engine and making the engine an idle-stop state. In some cases, the saddle-type vehicle further comprises a judgment controller for judging whether a simultaneous operation of the first and second brakes has been achieved; and the engine controller performs the idle-stop during deceleration of the vehicle when the judgment controller judges that the simultaneous operation of the first and second brakes has been performed.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: January 23, 2018
    Assignee: KABUSHIKI KAISHA F.C.C.
    Inventors: Tatsuyuki Ohashi, Kazuyoshi Miyachi, Shouji Makita, Ryouhei Chiba, Kaoru Iida, Makoto Sato
  • Patent number: 9789867
    Abstract: The present disclosure provides a method for learning a kisspoint of an engine clutch in a hybrid vehicle, which performs kisspoint learning of an engine clutch while driving by learning hydraulic pressure at the time when motor torque varies by gradually increasing clutch hydraulic pressure in an open state of the engine clutch when a driving load of a vehicle is constant to increase a kisspoint learning frequency of the engine clutch and improve kisspoint accuracy.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: October 17, 2017
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: Sung Deok Kim, Sang Joon Kim
  • Patent number: 9694821
    Abstract: An upper limit value of an upward gradient of a road surface for starting neutral coasting is set to be larger than an upper limit of the upward gradient of the road surface for starting free-run coasting, so, when the upward gradient is relatively large and a coasting distance is short, the vehicle is caused to travel in the neutral coasting, and stop and restart of the engine are not carried out. Therefore, a decrease in drivability of the vehicle is suppressed. When the upward gradient is relatively small and the coasting distance is long, the vehicle is caused to travel in the free-run coasting, and supply of fuel to the engine is stopped, so fuel economy of the vehicle is obtained. Thus, it is possible to achieve both fuel economy and drivability of the vehicle during coasting on an upward gradient.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: July 4, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeaki Suzuki, Masaki Matsunaga, Yasunari Kido, Takayuki Kogure, Yukari Okamura, Rentaro Kuroki, Takuya Hirai, Masaki Mitsuyasu, Jonggap Kim, Akihiro Sato, Yusuke Kinoshita
  • Patent number: 9695887
    Abstract: Disclosed are dry clutch control method and apparatus for a vehicle. The method may include a reference speed generating step of generating a virtual target input shaft speed from a wheel speed, a vibration recognizing step of detecting a vibration component based on a difference between an actually measured input shaft speed and the virtual target input shaft speed, and a control input step of additionally applying an anti judder control input to a clutch control torque controlling a dry clutch connected to an input shaft. The anti judder control input may be applied to the vibration component recognized in the vibration recognizing step in a form of being continuously damped starting from an impulsive control input.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: July 4, 2017
    Assignees: Hyundai Motor Company, Kia Motors Corp.
    Inventor: Jin Sung Kim
  • Patent number: 9663109
    Abstract: A vehicle clutch control method includes an incline detecting step of detecting an incline of a road surface when the vehicle is in a creep hold state, a first determining step of determining whether the detected incline is greater than a first set value, and a first control step of opening the clutch and operating an electronic stability program (ESP) brake when the incline is greater than the first set value.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: May 30, 2017
    Assignee: HYUNDAI MOTOR COMPANY
    Inventor: Young Min Yoon
  • Patent number: 9651140
    Abstract: An arrangement for estimating the input torque of a dual-clutch transmission for a vehicle is provided. The transmission includes an inner input shaft and an outer input shaft arranged concentrically with respect to the inner input shaft. The arrangement further includes a dual-clutch assembly connecting the shafts to an output shaft of an engine. A torque sensor is arranged on the outer input shaft and connected to a transmission control unit. By torque sensor, a measured torque value is provided during operation of the outer input shaft and for providing an estimated torque value during operation of the inner input shaft.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: May 16, 2017
    Assignee: Volvo Lastvagnar AB
    Inventors: Mattias Åsbogård, Krister Fredriksson
  • Patent number: 9644724
    Abstract: A transmission includes an input shaft, an output shaft, at least five planetary gearsets, a variable-ratio unit, and at least five clutches. The at least five clutches are selectively engageable in combination with one another to select one of a plurality of operating modes including at least one reverse mode, at least five forward modes, and at least five transition modes. One of the at least five transition modes is configured to transition the transmission from the at least one reverse mode to one of the at least five forward modes. Another one of the at least five transition modes is configured to transition the transmission from the one of the at least five forward modes to another of the at least five forward modes. Each of the at least five transition modes includes a fixed speed ratio defined between the input shaft and the output shaft.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: May 9, 2017
    Assignee: Allison Transmission, Inc.
    Inventor: Brian Schoolcraft
  • Patent number: 9637131
    Abstract: A clutch control system includes a hunting determining unit that determines whether or not a hunting condition, under which hunting occurs in an engine rotational speed of an engine, is met, and a clutch position control unit. The clutch position control unit executes a first clutch position control, which is in accordance with engine rotation information, on the clutch if the hunting determining unit determines that the hunting condition is not met, and executes a second clutch position control, which is lower in response to the engine rotation information than the first clutch position control, on the clutch if the hunting determining unit determines that the hunting condition is met.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: May 2, 2017
    Assignee: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventor: Shinobu Oohata
  • Patent number: 9545926
    Abstract: A system and method for use with a vehicle to provide a vehicle launch assist (VLA) function that reduces wheel slip at lower speeds and to provide a fraction control (TC) function that reduces wheel slip at higher speeds. Each function affects operation of one or more vehicle subsystems that control at least one powertrain parameter. The VLA and TC functions operate in response to a driver accelerator request to generate a drive signal that controls torque delivered to at least one driven vehicle wheel. The VLA function generates the drive signal at a first value that limits the torque to below a requested torque value representing the driver accelerator request. The TC function generates the drive signal at a second value that limits the torque to below the requested torque value. And the control system outputs a powertrain drive signal based on the lesser of first and second values.
    Type: Grant
    Filed: September 7, 2014
    Date of Patent: January 17, 2017
    Assignee: Jaguar Land Rover Limited
    Inventors: Paul Darnell, Robert Bird
  • Patent number: 9533591
    Abstract: Contact charging is performed using a charging inlet and a charger, and non-contact charging is performed using a power transmission unit and a power reception unit. An ECU controls charging power by the contact charging and charging power by the non-contact charging such that the sum of the charging power by the contact charging and the charging power by the non-contact charging does not exceed a predetermined limitation. When the sum of electric power receivable by the contact charging and electric power receivable by the non-contact charging exceeds the predetermined limitation, the ECU controls the charging power by the contact charging and the charging power by the non-contact charging to limit one of the contact charging and the non-contact charging which is less efficient.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: January 3, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shinji Ichikawa
  • Patent number: 9415761
    Abstract: Systems and methods for improving gear shifting of a step-ratio automatic transmission in a hybrid vehicle are presented. The systems and methods may provide for adjusting torque capacity of one or more driveline clutches to reduce driveline torque disturbances that may be related to driveline inertia torque during transmission gear shifting.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: August 16, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Alexander O'Connor Gibson, John Edward Brevick, Seunghoon Lee, Matthew John Shelton, Felix Nedorezov
  • Patent number: 9382859
    Abstract: A motor vehicle to which a control device is applied includes an idling stop control section for stopping operation of an engine when a predetermined stopping condition is fulfilled while the engine is idling, and a neutral-at-idle control section for shifting a transmission of the vehicle into neutral when a predetermined shift-into-neutral condition is fulfilled. While a post-stoppage elapsed time measured by a timer is shorter than or equal to a predetermined time after the vehicle stops moving, operation of the engine is stopped by the idling stop control section if the predetermined stopping condition is fulfilled but shifting of the transmission into neutral by the neutral-at-idle control section is prohibited even if the shift-into-neutral condition is fulfilled.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: July 5, 2016
    Assignee: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Hiroshi Funakoshi, Hiroyuki Suzuki, Katsuyoshi Noda
  • Patent number: 9358982
    Abstract: A method for processing data recorded during a data acquisition, the data defining a correspondence between values representing torque transmitted by a clutch and values representing a position of a clutch control member. The processing method includes modifying the recorded data to define a modified correspondence between the values representing the torque transmitted by the clutch and the values representing the position of the clutch control member, the modified correspondence to be used in a hill start assist device of a motor vehicle including a power train connected to drive wheels by a transmission system including the clutch and a braking system, whereby the release of the braking system is automatically controlled by the assist device.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 7, 2016
    Assignee: RENAULT S.A.S.
    Inventors: Christophe Desfriches, Alessandro Monti, Richard Pothin
  • Patent number: 9296295
    Abstract: An electronic traction optimization system includes a control unit adapted to produce a corner speed estimate signal for each wheel of a machine, produce an ideal target speed signal for each wheel having a value at least partially responsive to the corner speed estimate signals, produces a practical target speed signal for each wheel, generates an actual target speed signal having a value responsive to a comparison of the ideal target speed signal and the practical target speed signal for each wheel. The control unit compares each actual target speed signal to an associated wheel speed signal to obtain a wheel speed error signal for each wheel and converts each wheel speed error signal to a clutch control signal, wherein each differential clutch actuator is responsive to an associated clutch control signal.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 29, 2016
    Assignee: Caterpillar Inc.
    Inventors: Gerry O. McCann, Yun Liu, Keith F. Harvey
  • Patent number: 9243706
    Abstract: A method for controlling a manual transmission includes using a controller to determine a desired torque transmitted through an input clutch and a desired clutch slip for the desired gear after a shift lever is moved to a desired gear position and while a clutch pedal is being released for engaging the clutch; measuring torque in the vehicle drive assembly; using measured torque to determine actual clutch torque transmitted through the clutch; and reducing torque error using the controller to adjust a clutch actuator such that a difference between the desired torque and the actual torque is reduced. Slip error may also be reduced by adjusting the clutch actuator to reduce the difference between the desired slip and measured slip.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: January 26, 2016
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Yuji Fujii, Alex O'Connor Gibson, Gregory M. Pietron, Nimrod Kapas, Joseph F. Kucharski
  • Patent number: 9212737
    Abstract: A twin clutch controlling apparatus wherein an interposition of a manual operation into an automatic control clutch can be executed smoothly. The twin clutch controlling apparatus includes an AMT controlling unit for controlling a shift actuator and a clutch actuator, and a shift pedal P for carrying out a shifting request to the AMT controlling unit. If, after driving of the shift actuator is started in response to the shifting request by the shift pedal, a clutch lever is operated in a connection direction before a next stage gear is placed into an in-gear state, then the controlling section drives one of an odd number stage side clutch and an even number stage side clutch which corresponds to the gear before the shifting in a corresponding relationship to a manual operation clutch capacity arithmetic operation value.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: December 15, 2015
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Kazuhiko Nakamura, Kazuyuki Fukaya, Hiroyuki Kojima, Yoshiaki Nedachi, Yasuyuki Mori, Satoshi Honma
  • Patent number: 9114706
    Abstract: An ECU of a four wheel drive vehicle controls a transmission torque of a driving force transmission apparatus provided between a rear differential and a left rear wheel. The ECU includes a first computation unit that computes a command torque to be transmitted to the left rear wheel by the driving force transmission apparatus, based on a traveling state of the four wheel drive vehicle; and a second computation unit that corrects the command torque computed by the first computation unit, if a difference between rotation speeds of a pair of side gears of the rear differential is larger than or equal to a predetermined value.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: August 25, 2015
    Assignee: JTEKT CORPORATION
    Inventors: Masaki Mita, Hiroshi Takuno
  • Patent number: 9062724
    Abstract: A powertrain system includes an internal combustion engine, at least one electric machine and an electro-mechanical transmission operative to transmit torque to a drive line. A method for controlling the powertrain system includes executing an engagement strategy of a one-way clutch device only having capacity in a first direction. The engagement strategy includes modeling a capacity of the one-way clutch device in accordance with a loading step change profile until a first capacity limit of the one-way clutch device is achieved. A continuous reactive load is applied to the one-way clutch device in the first direction to maintain engagement and inhibit lash of the one-way clutch device.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: June 23, 2015
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jonathan M. Bolenbaugh, Besim Demirovic, Lawrence A. Kaminsky
  • Patent number: 9050963
    Abstract: A map is provided that has an unlimited region where a take-off slip-engagement the next time is repeatedly executed indefinitely, a limited region where the take-off slip-engagement the next time is repeatedly executed only once, and a prohibited region where the take-off slip-engagement the next time is prohibited, and has a generated heat amount during the take-off slip-engagement and an elapsed time after the lock-up slip-engagement ends as variables. Therefore, a region in which the take-off slip-engagement the next time had been prohibited because the take-off slip-engagement the next time is unable to be repeatedly executed indefinitely even though it is able to be repeatedly executed only once is made the limited region, so the take-off slip-engagement the next time is allowed to be repeatedly executed only once.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: June 9, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kohei Dodo, Yoichi Nakashima, Atsushi Muto, Tsuyoshi Fujikane, Keigo Matsubara, Junichi Inoue
  • Patent number: 9046160
    Abstract: A method for controlling an operational state of a differential of a machine is disclosed. The method includes determining a transmission output speed, a transmission output torque and a degree of steering of the machine. The method further includes actuating a locking mechanism associated with the differential based on the transmission output speed, the transmission output torque, and the degree of steering.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: June 2, 2015
    Assignee: Caterpillar Inc.
    Inventors: Brian D. Hoff, Mark E. Rettig
  • Publication number: 20150149054
    Abstract: A method of controlling a differential assembly of a machine is disclosed herein. The differential assembly may be locked by use of a differential lock. The differential lock is adapted to operate in at least one of an automatic mode and a manual override mode. The differential lock is activated and/or deactivated by an automatic differential control system with a manual override mode. The method initiates with activation of the automatic differential control system. Thereafter, the automatic differential control system may be overridden by activation of the manual override mode, while the automatic differential control system continues to be activated. Thereafter, the manual override mode may be deactivated by use of the automatic differential control system based on one or more of a plurality of operational parameters.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 28, 2015
    Applicant: Caterpillar Inc.
    Inventors: Michael C. Gentle, Dustin Funk, Kevin M. Moloney, Brad R. Van de Veer
  • Publication number: 20150149053
    Abstract: A vehicle attachment and control system for a vehicle attachment are described. The attachment includes a chassis configured to be attached to a vehicle with an onboard power source. The attachment includes an attachment power source supported by the chassis and an energy storage device supported by the chassis and configured to receive power from the attachment power source. The attachment includes a control system configured to transmit a signal to, and receive a signal from, the attachment power source and/or the energy storage device. The control system, the attachment power source, and the energy storage device are configured to provide power from the attachment power source and the energy storage device, via power transfer connections between the vehicle, or an associated implement, and the attachment power source or the energy storage device.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: Deere & Company
    Inventors: Christopher D. Turner, Gary S. Keys, II
  • Patent number: 9043103
    Abstract: A dog clutch control apparatus for an automated transmission includes a rotary shaft, plural dog clutch mechanisms, each of the dog clutch mechanisms including a clutch ring, a clutch hub arranged next to the clutch ring, a sleeve fitted with the clutch hub, a dog clutch portion which is provided at the clutch ring and selectively meshes with a spline formed at the sleeve, an axial driving device for moving the sleeve, the dog clutch control apparatus includes a disengagement detecting portion for detecting disengagement before the sleeve reaches a neutral position and a control apparatus for controlling operation of the axial driving device, wherein in a case where the disengagement is detected at a time of shifting operation, the control apparatus starts a shift-related control.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: May 26, 2015
    Assignee: AISIN SEIKI KABUSHIKI KAISHA
    Inventors: Kyosuke Mori, Masahiko Komura
  • Patent number: 9037326
    Abstract: A method for disconnecting an electrical machine connected with the wheels of a vehicle's drive axle by means of a dog clutch having intermeshing couplers includes, upon receipt of a command to disengage, two successively activated steps. In the first step, a torque equal to a calibrated threshold of a target torque (d) is applied to the electrical machine so to effect a zero torque between the couplers. During this step, a dog clutch actuator is deactivated so to allow the dog clutch to disengage from the electrical machine as quickly as possible. Next, a torque having a value determined according to a slope whose value ranges from the calibrated threshold of the target torque (d) to zero is applied to the electrical machine.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: May 19, 2015
    Assignee: Peugeot Citroen Automobiles SA
    Inventors: Eric Schaeffer, Florian Galinaud
  • Patent number: 9037369
    Abstract: A method of controlling clutch transfer torque in a hybrid vehicle comprises estimating clutch characteristics from a relation between a control current for a clutch hydraulic valve and a clutch transfer torque corresponding to the control current for the clutch hydraulic valve. With the method, a clutch friction coefficient can be precisely estimated, thereby reducing/eliminating a shock that can occur in the event of the clutch going on or off.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: May 19, 2015
    Assignees: Hyundai Motor Company, Hyundai Motor Japan R&D Center Inc., Kia Motors Corporation
    Inventor: Kadota Keiji
  • Publication number: 20150134215
    Abstract: A device for controlling a start of a vehicle includes a rotation speed obtaining unit that obtains an actual engine rotation speed of the engine, a target rotation speed computing unit that computes a target rotation speed of the engine in the slip control, a control target value computing unit that computes a control target value, which is a target value for controlling the engine rotation speed to the target rotation speed based on the actual engine rotation speed and the target rotation speed, and an instruction value computing unit that computes an instruction value for the lock-up clutch necessary to control the engine rotation speed to the control target value based on the control target value.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 14, 2015
    Applicants: JATCO LTD, NISSAN MOTOR CO., LTD.
    Inventors: Takateru Kawaguchi, Akito Suzuki, Kenji Nakashima, Aki Hayakawa, Yasuhiro Endo, Hiroshi Sekiya, Akihiro Tanabe, Tetsuya Izumi, Masaaki Uchida
  • Publication number: 20150127232
    Abstract: A traction control device reducing an output of an engine unit for suppressing a spin of a driving wheel of a motorcycle, includes: a first spin detection unit detecting a spin of a rear wheel based on a vehicle speed calculated from a rotation of a front wheel being a driven wheel to which a driving force is not transmitted from the engine unit, and a vehicle speed calculated from a rotation of the rear wheel being the driving wheel to which the driving force is transmitted; and a second spin detection unit detecting the spin of the rear wheel based on a vehicle speed calculated from the rotation of the front wheel, and a vehicle speed calculated from a rotation of the engine unit.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Applicant: SUZUKI MOTOR CORPORATION
    Inventors: Masahiro HAMAMURA, Yutaro KOBAYASHI, Kazunori KAWAI
  • Patent number: 9026330
    Abstract: A twin clutch controlling apparatus includes a clutch actuator for controlling a twin clutch TCL, and a manual operation clutch capacity arithmetic operation section for converting an operation amount of a clutch lever L into an electric signal to arithmetically operate a manual operation clutch capacity arithmetic operation value (tqc1tmt) corresponding to the manual operation. The twin clutch controlling apparatus is configured so as to accept a changeover from an Auto mode to a Temp mode in response to an operation of the clutch lever L. When an operation of the clutch lever L is detected during automatic control in the Auto mode, an event that the manual operation clutch capacity arithmetic operation value (tqc1tmt) comes to have a value similar to that of the clutch capacity (tqc1at) calculated in the Auto mode is included in conditions for a changeover to the Temp mode to occur.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: May 5, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshiaki Nedachi, Hiroyuki Kojima, Kazuhiko Nakamura, Kazuyuki Fukaya, Yasuyuki Mori, Satoshi Honma
  • Patent number: 9020718
    Abstract: A torque converter (1) connecting an engine (14) and a transmission (15) of a vehicle is provided with a lockup clutch (2), and a controller (5) is programmed to increase an engagement force of a lockup clutch (2) under open loop control before shifting to feedback control of the engaging force using a target slip rotation speed. When an engine output torque rapidly decreases during open loop control (S59, S60), the controller (5) decreases the engaging force according to a variation amount of the engine output torque (S61, S65), thereby preventing an unintentional sudden engagement of the lockup clutch (2) due to decrease in the engine output torque.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: April 28, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yuji Katsumata, Satoshi Segawa
  • Patent number: 9020719
    Abstract: The clutch control system includes a motor in a liquid pressure modulator for engagement/disengagement of a clutch, a clutch control unit for controlling the operation of the motor, vehicle condition detection means which detects at least that an engine is in working and which detects the running speed of the vehicle, and neutral detection means for detecting the neutral state of a transmission. As controlled states of the clutch, there are set a first control state in which the clutch is in a partially engaged state or an engaged state, and a second control state in which the clutch is disengaged. When the engine being working and the vehicle speed being in excess of a predetermined value is detected and the neutral state is detected, in the first control state, transition to the second control state is effected and the clutch is disengaged.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: April 28, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventor: Akihiko Tomoda
  • Patent number: 9020721
    Abstract: A system and method for providing engine torque load in real time. The system includes a sensor to determine, in real time, a clutch state of an alternator clutch and a controller for determining an alternator torque value and applying the alternator torque value to the engine torque load in real time.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: April 28, 2015
    Assignee: FCA US LLC
    Inventors: Songping Yu, Abdul Alkeilani, Anwar Alkeilani
  • Patent number: 9020720
    Abstract: A vehicle includes a friction clutch located between an engine and a driving wheel; a clutch actuator arranged to disengage and engage the friction clutch; a clutch actuator control section arranged and programmed to control the clutch actuator; a slip detection section arranged to detect a slip of the driving wheel; and an engine control section arranged and programmed to decrease an output of the engine when the slip of the driving wheel is detected by the slip detection section. When the friction clutch is in a half clutch state and the slip of the driving wheel is detected at the time of starting of the vehicle, the clutch actuator control section controls the clutch actuator so as to change a pushing force of the friction clutch and thus to keep the rotation speed of the engine at a fixed level.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: April 28, 2015
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Kengo Minami
  • Patent number: 9014936
    Abstract: A method for approximately determining the torque actually transmitted by a clutch of a drive train of a vehicle, includes the steps of: setting a closed state of the clutch and transmitting a torque by way of the drive train, providing a state space model showing the drive train, particularly a Kalman filter, determining a torque which can theoretically be transmitted or is transmitted by the clutch in the closed state, and approximately determining the torque actually transmitted by the clutch, by adding the theoretically transmittable or transmitted torque and a disturbance torque determined by calculation, wherein the disturbance torque is determined on the basis of the state space model and actual rotational speeds of individual drive train components and/or of actual torques transmitted by individual drive train components.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: April 21, 2015
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Thomas Christ, Felix Lins
  • Patent number: 9010991
    Abstract: A mixer system includes a mixing chamber with a drive panel, open top, discharge opening in a side of the mixing chamber, and door configured to open and close the discharge opening. A first mixing auger is disposed inside the mixing chamber, and a first auger drive is disposed on another side of the drive panel and connected to the first auger through the drive panel and connected to a driveline. A second mixing auger is disposed inside the mixing chamber on the first side of the drive panel, and another auger drive is connected to the second auger through the drive panel. A clutch is connected between the second auger drive and the driveline and configured to mechanically connect and disconnect the second auger drive from the driveline based on an input. A method of sequentially starting different augers within a mixing chamber is provided.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: April 21, 2015
    Assignee: Kuhn North America, Inc.
    Inventors: Claude McFarlane, Chris Albright, William Bassett
  • Patent number: 9014935
    Abstract: A method for slip regulation of a friction clutch by a clutch actuator operated by an electronically commutated electric motor. Here, rotational motion of a rotor is converted into an axial advancement that sets a predetermined slip. The rotational motion is controlled by Hall sensors arranged over a circumference around a rotational axis of the rotor. Magnetizable magnet segments, which are offset from each other in the circumferential direction, communicate depending on continuously detected signals of the Hall sensors. To perform the slip regulation even for axial travels of the clutch actuator that correspond to an angular position of the rotor between two Hall sensors, the signals of the Hall sensors over the circumference are evaluated in an analog manner, and an angular position of the rotor between two sensors is determined by comparing two signals adjacent to each other in the circumferential direction with each other.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: April 21, 2015
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Georg Goeppert
  • Patent number: 9014929
    Abstract: A method for determining a need for contact point adaptation for a clutch (106) of a vehicle (100), which clutch (106) transmits driving power between a power source engine (101) and at least one powered wheel (113, 114). At a first point in time, determining a first temperature (T1) of the clutch (106), comparing the first temperature (T1) with a second temperature (T2) of said clutch (106) determined at a second point in time which precedes the first point in time, and determining a need for contact point adaptation when the first temperature (T1) differs from the second temperature (T2) by more than a first value (?T)).
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Scania CV AB
    Inventors: Karl Redbrandt, Andreas Laghamn
  • Patent number: 9014939
    Abstract: A system incorporating one or more interrogators or readers on heavy construction equipment (e.g., loaders) detect signals emanating from signal transmitters on clothing or equipment of construction workers. Responsive to the detection of a signal emanating from behind the heavy equipment, or in another position relative to the heavy equipment, the driver is notified audibly of the danger such that the driver may stop the movement of the heavy equipment or causes the brakes to be applied and transmission to be disengaged automatically without operator involvement. In another version, a wet brake system (also known as a hydraulic brake system) is triggered automatically responsive to the detection of one or more signals emanating from behind a heavy piece of equipment, or in another position relative to the piece of heavy equipment. A hydraulic cylinder is configured to depresses a de-clutch brake pedal when personnel are identified in a danger zone.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: April 21, 2015
    Inventor: Robert L. Mendenhall
  • Patent number: 9008929
    Abstract: A method for controlling a powertrain includes the following steps: (a) determining whether a vehicle is coasting to a stop based on an accelerator pedal position; (b) determining whether an automatic transmission is in first gear; (c) shifting an input clutch from an engaged state to a disengaged state in order to operatively disconnect the automatic transmission from an internal combustion engine if the vehicle is coasting to a stop and the automatic transmission is not in first gear; and (d) shifting the automatic transmission to the first gear in order to allow the internal combustion engine to be shut down while the vehicle is coasting to a stop.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Martin Gentile, Armin Mueller
  • Patent number: 9008926
    Abstract: A powertrain includes an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine adapted to selectively transmit mechanical power to an output member through selective application of a plurality of clutches. A method for controlling the powertrain includes commanding a shift from a fixed gear operating range state to a second operating range state, commanding decreased reactive torque through an off-going clutch during a torque phase of said commanded shift, and decreasing said reactive torque through said off-going clutch through control of engine input torque.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: April 14, 2015
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler Group LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Patent number: 9002600
    Abstract: An example method of operation comprises, selectively shutting down engine operation responsive to operating conditions and without receiving an engine shutdown request from the operator, maintaining the automatic transmission in gear during the shutdown, and during an engine restart from the shutdown condition, and with the transmission in gear, transmitting reduced torque to the transmission. For example, slippage of a forward clutch of the transmission may be used to enable the transmission to remain in gear, yet reduce torque transmitted to the vehicle wheels.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: April 7, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Peter John Grutter, Roger Lyle Huffmaster, Felix Nedorezov
  • Patent number: 9001516
    Abstract: Provided is an electronic circuit unit to be mounted within a casing of an automatic transmission for a vehicle. An electronic circuit body including circuit-side terminals protruding in an outward direction from a main-body, connectors to be connected to the electronic circuit body, a cover, and a base member having a placing face on which the cover, the electronic circuit body and the connectors are placed. The cover is provided with a main-body covering part, fitting-portion covering parts and which cover a fitting-portion of the circuit-side terminals and fitting parts of the wire-side terminals from a side opposing to the placing face, and a restricting part for regulating the detachment of the connectors from the fitting position to the detached position.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: April 7, 2015
    Assignees: Autonetworks Technologies Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Osamu Nakayama, Kouichi Matsumoto
  • Patent number: 8996266
    Abstract: A vehicle includes an engine, an engine control module (ECM), and a dual clutch transmission (DCT) assembly. The DCT assembly has first and second input clutches, first and second gear sets selectively connected to the engine via the respective first and second input clutches, and a transmission control module (TCM). In executing a launch control method, the TCM receives a launch request, receives an actual engine torque, and determines the inertia and acceleration of the engine. The TCM then calculates a clutch torque for the particular input clutch used for vehicle launch as a function of the actual engine torque and the product of the inertia and the acceleration, compares the calculated clutch torque to the commanded clutch torque, modifies a torque-to-position (TTP) table depending on the comparison result, and transmits a clutch position signal to the designated input clutch to command an apply position extracted from the TTP table.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: March 31, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Colin Hultengren, Craig J. Hawkins, Matthew D. Whitton, Crystal Nassouri, Jonathan P. Kish
  • Patent number: 8996215
    Abstract: A vehicle includes a torque generating device, a transmission, and a controller. The transmission has one or more clutches. The controller executes a method, which includes measuring an amount of slip across an identified offgoing clutches and determining whether the offgoing clutches have slipped prior to a modeled clutch torque capacity reaching zero. A status is assigned indicating that the offgoing clutches are released if the offgoing clutch has slipped prior to the modeled clutch capacity reaching zero. The controller induces slip across the identified offgoing clutches to a calibrated low, non-zero level after recording the value, including by enforcing the low, non-zero slip value using one or more acceleration profiles.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 31, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Pinaki Gupta, Lawrence A. Kaminsky, Sean W. McGrogan, Anthony H. Heap
  • Publication number: 20150088395
    Abstract: A method is provided for operating a powertrain in a motor vehicle, the powertrain having an internal combustion engine and components for coupling the internal combustion engine to the drive wheels of the motor vehicle in a controllable manner. The internal combustion engine is decoupled from the drive wheels if specified operating conditions are present while the motor vehicle is traveling in order to allow the vehicle to coast. Further, a rotational engine speed is set to a specified target idle speed. The target idle speed is specified in a variable manner depending on the situation.
    Type: Application
    Filed: December 3, 2014
    Publication date: March 26, 2015
    Inventor: Peter DOUBEK
  • Publication number: 20150088394
    Abstract: A system and method can control the dry dual clutch transmission (dDCT) of a vehicle. The method includes modifying a recorded torque-to-position (TTP) table based on a calculated clutch torque difference between a calculated clutch torque and a commanded clutch torque. The commanded clutch torque is provided by a transmission control module and is defined as a clutch torque sufficient to move the vehicle without applying the accelerator applier after the brake applier has been released. The calculated clutch torque is a function of the actual engine torque value, the engine inertia, and the engine acceleration.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 26, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Craig J. Hawkins, Colin Hultengren