Control Of Power Distribution Between Vehicle Axis Or Wheels (e.g., Four Wheel Drive Vehicle) Patents (Class 701/69)
  • Patent number: 8838311
    Abstract: A self-propelled vehicle includes a maneuvering unit, a drive unit including first and second drive sections, which are driven and controlled by drive wheel control commands, a drive wheel unit including left and right drive wheels driven by the first and second drive sections, respectively, at least one caster wheel which is controlled by a caster wheel control command, a bank detector for detecting a degree of bank of the vehicle and a control unit including a drive wheel control section for generating the drive wheel control commands. The control unit further includes a caster wheel control section which generates the caster wheel control command for controlling the steering angle of the caster wheel during a bank traversing travel, based on the bank degree so as to resolve a difference between a target travel and the actual travel which occurs during the bank traversing travel.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: September 16, 2014
    Assignee: Kubota Corporation
    Inventors: Kazuo Koike, Hirokazu Ito, Yoshikazu Togoshi
  • Patent number: 8818667
    Abstract: In a method for generating a differential torque in a vehicle, in the case in which the vehicle is in a load change state and simultaneously in an extreme driving situation, in which wheel torques of different magnitudes are present at the vehicle wheels, the torque distribution between the vehicle wheels is changed.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: August 26, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Peter van Vliet
  • Publication number: 20140236443
    Abstract: A method for controlling a vehicle driveline uses sensors to estimate a need for powering secondary wheels for each of a plurality of conditions. The estimates are scaled and the scaled estimates summed. Only primary wheels are powered when the summed estimates are less than a reference value. Both the primary and secondary wheels are powered when the summed estimates exceed the reference value.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 21, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Ashok E. Rodrigues, Andreas E. Perakes, Richard D. Bruns, Derek K. Ward, Jim Koppenol, Nicholas E. McCubbin, Peter J. Grutter
  • Patent number: 8812191
    Abstract: A control device for an adjustable chassis system includes a connection to at least one sensor arrangement which provides at least one vehicle condition parameter of a vehicle. The measured vehicle condition parameter is spatially related to a position outside of the control device. The sensor arrangement is arranged inside the control device and forms a virtual miniature measurement plane which is extrapolated to an actual measurement plane.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 19, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Wolfgang Frankenberger, Stefan Rappelt, Toni Schuck, Stefan Kissner
  • Patent number: 8798849
    Abstract: A method and device for dual-channel transmission of safety-relevant sensor signals. In the method, two sensor signals to be monitored are generated parallel to one another by two sensors and the generated sensor signals are transmitted to a common evaluation unit via two separate, input-side transmission channels. Within the evaluation unit, the permissibility of the transmitted sensor signals is checked using prescribed calculation specifications that correspond to one another and an evaluation unit output signal representing permissibility or impermissibility is generated for each sensor signal. The individual processing steps of the two calculation specifications are decoupled by the evaluation unit for the two sensor signals and performed diversified within the evaluation unit. The generated output signals are output via two separate, output-side transmission channels.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: August 5, 2014
    Assignee: MAGNA Powertrain AG & Co. KG
    Inventors: Thomas Eggert, Heinz Langbauer
  • Patent number: 8783390
    Abstract: A vehicle drive apparatus independently controls drive forces for a front-right drive wheel, a front-left drive wheel, a rear-right drive wheel, and a rear-left drive wheel using a front-right electric motor, a front-left electric motor, a rear-right electric motor, and a rear-left electric motor, respectively. The drive forces for the drive wheels of a vehicle incorporating the vehicle drive apparatus are determined based on the target moments in the yaw and roll directions of the vehicle, the total drive for the drive wheels, and the drive reaction forces at the drive wheels. Thus, the performance desired by the driver can be achieved, and the drivability therefore improves accordingly.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: July 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Maeda, Akihiro Hosokawa, Yousuke Suzuki, Michitaka Tsuchida, Kazuya Okumura, Tadahiro Oshiumi, Kensuke Yoshizue, Koji Sugiyama
  • Patent number: 8788170
    Abstract: When a rear wheel total drive force is smaller than a rear wheel drive force difference and the rear wheel drive force difference cannot be accomplished by dividing the rear wheel total drive force between the left and right rear wheels, an inside wheel target drive force is not set to 0 and an outside wheel target drive force is not set to. Instead, the inside wheel target drive force is set to a default drive force that is a minimum value required to prevent a three-wheel drive state from occurring, and the outside wheel target drive force is set a value equal to the sum of the default drive force and the rear wheel drive force difference, which is a value with which the rear wheel drive force difference can be achieved under the condition of the inside wheel target drive force being equal to the default drive force.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: July 22, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Yohei Tsushima
  • Patent number: 8771140
    Abstract: An electronic traction optimization system includes a control unit adapted to produce a corner speed estimate signal for each wheel of a machine, produce an ideal target speed signal for each wheel having a value at least partially responsive to the corner speed estimate signals, produces a practical target speed signal for each wheel, generates an actual target speed signal having a value responsive to a comparison of the ideal target speed signal and the practical target speed signal for each wheel. The control unit compares each actual target speed signal to an associated wheel speed signal to obtain a wheel speed error signal for each wheel and converts each wheel speed error signal to a clutch control signal, wherein each differential clutch actuator is responsive to an associated clutch control signal.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 8, 2014
    Assignee: Caterpillar Inc.
    Inventors: Gerry O. McCann, Yun Liu, Keith F. Harvey
  • Patent number: 8775046
    Abstract: Systems and methods for detecting unintended acceleration of a vehicle. One system includes a first sensor that provides information on a brake booster vacuum. The vacuum is provided by the vehicle's engine and the brake booster multiplies a braking force initiated by a driver. A second sensor provides information on the vehicle's speed, and a third sensor provides information on the braking force initiated by the driver. The system also includes a controller configured to receive the information from the first sensor, second sensor, and third sensor and initiate corrective action if the brake booster vacuum is less than a predetermined threshold, the vehicle's speed is greater than a predetermined threshold, and the braking force initiated by the driver is greater than a predetermined threshold.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: July 8, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Robert M. Kaster, Francis Henry Kasperski, III, Carlos H. Atoche, Hideo Takada
  • Patent number: 8775045
    Abstract: A rear wheel drive force difference setting gain is multiplied by a basic left-right rear wheel drive force difference steady-state control computation value for achieving a vehicle turning behavior steadily requested by a driver in order to calculate a final left-right rear wheel drive force difference steady-state control amount. The final left-right rear wheel drive force difference steady-state control amount is added to a left-right rear wheel drive force difference transient control amount to obtain left-right rear wheel rear wheel drive force difference. This difference is multiplied by feedback control coefficient to obtain a final rear wheel drive force difference. During an initial stage of turning in which a lateral acceleration is smaller than a turn initial stage determining value, the rear wheel drive force difference setting gain is set to A, which is larger than 1 and increases as the lateral acceleration decreases.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: July 8, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Yohei Tsushima
  • Patent number: 8768535
    Abstract: A method and device for the recognition of a trailer (2) of a motor vehicle (1), wherein the trailer (2) is connected to the motor vehicle (1) via a coupling device (3), wherein a control device (4) collects and stores data relating to the currently connected trailer (2) during an operating phase of the motor vehicle, and a device for identification (5) of the trailer (2) is able to ascertain, by means of a test signal, a separation of the connected trailer (2) from the motor vehicle (1) during the shutdown phase of the motor vehicle (1).
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 1, 2014
    Assignee: AUDI AG
    Inventors: Christoph Kossira, Andreas Baudisch
  • Patent number: 8762019
    Abstract: A method of operating a transmission device comprising at least one input shaft and at least two output shafts. Torque that is present at the input shaft can be distributed between the two output shafts with a variable degree of distribution which can be changed according to the operating state depending on a transmission capability of at least one shift element. When a request to set a predefined degree of distribution is received, a mechanical self-locking torque of the transmission device—which influences the degree of distribution between the output shafts and is dependent upon the torque present at the input shaft—is determined, and a difference between the mechanical self-locking torque and a target overall locking torque of the transmission device that is equivalent to the required degree of distribution is determined. The transmission capability of the at least one shift element is set depending on this difference.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: June 24, 2014
    Assignee: ZF Friedrichshafen AG
    Inventors: Gerhard Hermann Martin, Wilfrid Eberhard
  • Patent number: 8762038
    Abstract: A vehicle has a drive unit driving wheels of a vehicle axle and braking the vehicle via a drive train in drag mode, an electronic control unit measuring actual wheel rotational speeds of the wheels, and a brake booster for reducing the actuating force at the brake pedal. A test unit is assigned to the electronic control unit and performs a plausibility check of the actual wheel rotational speeds in drag mode, wherein the test unit activates during the plausibility check the vehicle brake of one of the vehicle wheels and detects, from the rotational speed behavior of the wheel with a non-activated vehicle brake, whether the measured actual wheel rotational speeds correlate with the actual vehicle speed. A brake booster can be actuated by the test unit during the plausibility check in order to activate the vehicle brake.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: June 24, 2014
    Assignee: Audi AG
    Inventor: Thomas Theel
  • Publication number: 20140172258
    Abstract: An ECU of a four wheel drive vehicle controls a transmission torque of a driving force transmission apparatus provided between a rear differential and a left rear wheel. The ECU includes a first computation unit that computes a command torque to be transmitted to the left rear wheel by the driving force transmission apparatus, based on a traveling state of the four wheel drive vehicle; and a second computation unit that corrects the command torque computed by the first computation unit, if a difference between rotation speeds of a pair of side gears of the rear differential is larger than or equal to a predetermined value.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: JTEKT Corporation
    Inventors: Masaki MITA, Hiroshi Takuno
  • Patent number: 8751110
    Abstract: An inverted pendulum type vehicle having a tiltable rider mounting section includes a first travel operation unit and a second travel operation unit, which are disposed with an interval provided therebetween in the longitudinal direction and which are capable of traveling in all directions. In a situation wherein a predetermined representative point of the vehicle or the first travel operation unit is to be moved rightward or leftward, the traveling operations of the first travel operation unit and the second travel operation unit are controlled such that the travel velocity of the first travel operation unit and the travel velocity of the second travel operation unit in the lateral direction are different from each other so as to cause the vehicle to turn about a turn center at the rear of a ground contact point of the first travel operation unit.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: June 10, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Shinya Shirokura, Makoto Araki
  • Patent number: 8744710
    Abstract: A control device for controlling a front wheel drive force and a rear wheel drive force of a vehicle that includes a transmission comprises: a first controller for controlling a drive force of a main drive wheel and a drive force of an auxiliary drive wheel, the drive force of the main drive wheel being one of the front-wheel drive force and the rear-wheel drive force, and the drive force of the auxiliary drive wheel being another of the front-wheel drive force and the rear-wheel drive force; and a second controller for detecting whether a speed-change ratio of the transmission has changed. In a case that the second controller has detected that the speed-change ratio has changed, the first controller increases the drive force of the auxiliary drive wheel and reduces the drive force of the main drive wheel.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: June 3, 2014
    Assignee: Nissin Kogyo Co., Ltd.
    Inventor: Manabu Hiroya
  • Publication number: 20140145498
    Abstract: Vehicular motion control system comprising controller that independently controls driving force and/or braking force of each of four wheels and a turning direction sensor that senses a turning direction, and with an acceleration/deceleration command generator that generates an acceleration/deceleration command based upon a sensed steering angle and sensed vehicle speed and a driving force/braking force distributor that determines the distribution of driving force or driving torque and/or braking force or braking torque of each wheel, and driving force/braking force distributor determines based upon the acceleration/deceleration command and the turning direction so that more driving force or more driving torque and/or more braking force or more braking torque are/is distributed to the inside front wheel in turning than the outside front wheel in turning and more driving force or more driving torque and/or more braking force or more braking torque are/is distributed to the outside rear wheel.
    Type: Application
    Filed: September 28, 2011
    Publication date: May 29, 2014
    Inventors: Makoto Yamakado, Junya Takahashi, Shinjiro Saito, Toshiya Oosawa
  • Patent number: 8738278
    Abstract: A two-wheel, self-balancing personal vehicle having independently movable foot placement sections. The foot placement sections have an associated wheel, sensor and motor and are independently self-balancing which gives the user independent control over the movement of each platform section by the magnitude and direction of tilt a user induces in a given platform section. Various embodiments are disclosed including those with a continuous housing, discrete platform sections and/or tapering platform sections.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: May 27, 2014
    Inventor: Shane Chen
  • Patent number: 8731794
    Abstract: In a control system for a four-wheel drive vehicle, when the four-wheel drive vehicle is four-wheel driven full time (that is, at all times), the difference in rotation of each wheel occurring due to the difference in air pressure within each tire, is differentiated from the difference in rotation of each wheel occurring due to cornering or the state of the road surface, and is correspondingly corrected so as to distribute the driving force to the four wheels. Thus, even if the difference in rotation of each wheel occurs due to the air pressure within each tire, the malfunction in which four-wheel driving is controlled based on the erroneous determination that the difference in rotation of each wheel is due to cornering or the state of the road surface can be prevented from occurring.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: May 20, 2014
    Assignee: Continental Automotive GmbH
    Inventor: Gyu Tak Kim
  • Patent number: 8731778
    Abstract: An electronic control unit determines the steering direction of rear wheels on the basis of the turning operation direction of a steering wheel when a detected vehicle speed is “0”, i.e. when the vehicle is stopped. If the steering direction of the rear wheels is a return-side steering direction to obtain a neutral steering position, the unit operates a rear wheel-side steering mechanism by driving and controlling an electric motor, whereby allowing return-side stationary steering for the rear wheels.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: May 20, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiromitsu Kageyama
  • Patent number: 8731759
    Abstract: When two (in particular electric) drives operate on wheels decoupled from each other in a motor vehicle, the drives should have an identical construction and the same properties. However, if one drive is stronger than the other, distribution factors other than 0.5 must define the target torque for the two drives, i.e. the fraction of a total torque, in order to provide a correction. The distribution factors are determined while the motor vehicle is in operation. For this purpose, a steering angle and an additional quantity such as the lateral acceleration or the yaw rate are determined and a check is performed to determine if the additional quantity has the correct functional dependency on the steering angle.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: May 20, 2014
    Assignee: Audi AG
    Inventors: Michael Wein, Tim Meissner
  • Patent number: 8731736
    Abstract: A system for preventing driving skill atrophy comprises a trainer module that determines the driver's current skill level, disables certain automated features based on the determined skill level, and forces the driver to use and hone her driving skills. The system collects data to determine through on-board vehicle sensors how a driver is driving the vehicle. The system then compares the driver's current driving skills with the driver's historical driving skills or the general population's driving skills. Based on the comparison, the system determines whether the driver's skill level is stagnant, improving or deteriorating. If the skill level is improving, for example, the system disables certain automated driving features to give driver more control of the vehicle.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: May 20, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Hsuan Chang
  • Patent number: 8725359
    Abstract: A traction control device includes: rotation speed detectors provided to wheels; a control-start determiner that determines whether or not to control a braking mechanism and a differential adjusting mechanism based on rotation speeds; a braking mechanism controller that controls the braking mechanism based on a result of the determination of the control-start determiner; and a differential adjusting mechanism controller that controls the differential adjusting mechanism based on the result of the determination of the control-start determiner, in which the control-start determiner includes: a right-left-wheel rotation speed difference calculating section; a front-rear-wheel rotation speed difference calculating section; and a control-start determining section that determines whether or not to start controlling at least one of the braking mechanism and the differential adjusting mechanism when one of rotation speed differences reaches or exceeds a predetermined threshold.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: May 13, 2014
    Assignee: Komatsu Ltd.
    Inventors: Koji Uematsu, Kazuhiro Hatake, Yuya Kusumoto
  • Patent number: 8725376
    Abstract: A vehicle can be operated in a first drive mode in which a front differential is set to a non-driven state and a rear differential is set to a differential state, a second drive mode in which the front differential is set to a non-driven state and the rear differential is set to a differential locked state, a third drive mode in which the front differential is set to a differential state and the rear differential is set to a differential locked state, and a fourth drive mode in which the front differential is set to a differential locked state and the rear differential is set to a differential locked state. Transition is allowed only between adjacent drive modes.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: May 13, 2014
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Naoki Murota, Hiroyuki Fujimoto, Hiroshi Kawamura
  • Publication number: 20140129106
    Abstract: A drive control system for a work vehicle is provided with a power transmission device that drives front wheels and rear wheels, a request determination unit, and a drive mode control unit. The power transmission device has a drive mode switching mechanism that performs drive mode switching between a four-wheel drive mode in which drive power is transmitted to front wheels and rear wheels and a two-wheel drive mode in which drive power is transmitted to only the rear wheels. The request determination unit determines a necessity for an increase in drive power on a contact area of the work vehicle, and outputs an increase request based on the determination result. The drive mode control unit outputs a drive mode switching request for switching to the four-wheel drive mode to the drive mode switching mechanism, in response to output of the increase request.
    Type: Application
    Filed: September 11, 2013
    Publication date: May 8, 2014
    Applicant: Kubota Corporation
    Inventors: Akihiro Matsuzaki, Satoshi Yoshikawa, Michita Kono
  • Publication number: 20140129105
    Abstract: A driving force distribution controller comprises: a control device determining the value of torque which must be transmitted to a rear wheel; and a driving force transmission device transmitting torque corresponding to the torque value determined by the control device to the rear wheel. The control device reduces a torque value calculated based on an opening degree of an accelerator and a rotational speed difference when the rotational speed of an engine is lower than a first threshold value but higher than a second threshold value.
    Type: Application
    Filed: March 19, 2012
    Publication date: May 8, 2014
    Applicants: Mazda Motor Corporation, JTEKT Corporation
    Inventors: Ryohei Shigeta, Akiyoshi Kakita, Masaki Mita, Akira Kodama, Yasushi Yagi
  • Patent number: 8718890
    Abstract: A materials handling vehicle is provided comprising: a frame; wheels supported on the frame; a traction motor coupled to one of the wheels to effect rotation of the one wheel; a speed control element operable by an operator to define a speed control signal corresponding to a desired speed of the traction motor; a system associated with a steerable wheel to effect angular movement of the steerable wheel; and control apparatus coupled to the speed control element to receive the speed control signal, and coupled to the traction motor to generate a drive signal to the traction motor in response to the speed control signal to control the operation of the traction motor. The control apparatus may determine an acceleration value for the traction motor based on at least one of an angular position of the steerable wheel, a speed of the traction motor and a current position of the speed control element as defined by the speed control signal.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: May 6, 2014
    Assignee: Crown Equipment Corporation
    Inventors: George Robert Wetterer, James Francis Schloemer, Monty L. Crabill, Eric L. Jensen
  • Patent number: 8706370
    Abstract: A lockup clutch control apparatus controls slippage of a lockup clutch to a desired slippage by manipulating clutch engagement force of the lockup clutch, wherein an engine is provided with a supercharger, and a torque converter is disposed between the engine and an automatic transmission, and provided with the lockup clutch. The lockup clutch control apparatus includes a controller configured to: set the clutch engagement force based on a measured value of torque inputted to the lockup clutch; determine whether the engine is operating in a predetermined supercharger lag region in which the measured value deviates from an actual value of the torque; and perform a first operation of correcting the clutch engagement force by reducing the clutch engagement force in response to determination that the engine is operating in the supercharger lag region.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: April 22, 2014
    Assignees: JATCO Ltd, Nissan Motor Co., Ltd.
    Inventor: Morimasa Yamawaki
  • Patent number: 8700245
    Abstract: In a motor vehicle having two, in particular electrical, drives, a partial torque is in each case intended to be assigned to the individual drives from a demanded total torque, to be precise taking account of the energy efficiency on the one hand and the stability of the vehicle on the other hand. A first controller is responsible for taking account of the energy efficiency, and predetermines a bandwidth of possible partial torques for an individual drive. This bandwidth may be restricted by a second controller, when driving stability requires this. The second controller is coupled to appropriate sensors (yaw rate sensor, lateral acceleration sensor, longitudinal acceleration sensor) and knows the steering angle ?. In the course of interchanging data signals with a first control device, the partial torques are defined with the involvement of the second control device, for which purpose the first control device emits control commands.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: April 15, 2014
    Assignee: Audi AG
    Inventors: Karl-Heinz Meitinger, Michael Wein, Sebastian Strasser, Martin Werner
  • Patent number: 8700280
    Abstract: A road surface frictional coefficient estimation device includes: a first straight travel determination unit configured to determine whether or not a vehicle travels straight based on a rotational speed difference between a plurality of wheels of the vehicle; a second straight travel determination unit configured to determine whether or not the vehicle travels straight based on a steering angle of the vehicle; a selection unit configured to select one of determination results of the first straight travel determination unit and the second straight travel determination unit; and a frictional coefficient estimation unit configured to estimate a frictional coefficient of a road surface on which the vehicle travels when the one of the determination results selected by the selection unit indicates that the vehicle travels straight.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: April 15, 2014
    Assignee: JTEKT Corporation
    Inventors: Tomohiro Nozu, Ryohei Shigeta, Akira Kodama, Go Nagayama, Yasushi Yagi, Daisuke Kofu, Akihiro Tatara
  • Publication number: 20140100750
    Abstract: A motor vehicle having: prime mover means; at least first and second groups of one or more wheels; and a driveline to connect the prime mover means to the first and second groups of one or more wheels such that the first group of one or more wheels may be driven by the prime mover means when the driveline is in a first mode of operation and the second group of one or more wheels may additionally be driven by the prime mover means when the driveline is in a second mode of operation, the driveline including an auxiliary portion comprising releasable torque transmitting means operable to connect the second group of one or more wheels to a torque transmission path from the prime mover means when the driveline transitions between the first mode and the second mode, the vehicle comprising control means operable automatically to control the driveline to transition from the first mode to the second mode and from the second mode to the first mode, the control means being operable to prevent a transition from the first
    Type: Application
    Filed: February 20, 2012
    Publication date: April 10, 2014
    Applicant: Jaguar Land Rover Limited
    Inventor: Pete Stares
  • Patent number: 8694220
    Abstract: In a transient control computing section, a left-right drive force difference transient control gain computing section finds a left-right drive force difference transient control gain ? that is smaller than 1 in a region where a target yaw rate change rate is small, i.e., a low speed steering region, and a left-right drive force difference transient control computation value calculating section finds a left-right rear wheel drive force difference transient control computation value. The transient control computing section then multiplies the left-right rear wheel drive force difference transient control computation value by the left-right drive force difference transient control gain ? to calculate the left-right rear wheel drive force difference transient control amount and contributes the same to a drive force distribution control for left and right wheels (left and right rear wheels).
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: April 8, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Shinichi Suzuki
  • Patent number: 8682556
    Abstract: A control device for controlling a front wheel drive force and a rear wheel drive force of a vehicle includes a first controller for controlling a drive force of main drive wheels and the drive force of auxiliary drive wheels wherein the drive force of the main drive wheel is one of a front-wheel drive force and a rear-wheel drive force, and the drive force of the auxiliary drive wheel is another of the front-wheel drive force and the rear-wheel drive force, and a second controller for sending to the first controller an auxiliary-drive-wheels-limiting drive force for limiting the drive force of the auxiliary drive wheels in a case that the vehicle is traveling in an unstable state. The second controller has a calculation unit for calculating the auxiliary-drive-wheel-limiting drive force on the basis of a vehicle instability parameter.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 25, 2014
    Assignee: Nissin Kogyo Co., Ltd.
    Inventor: Toshiyuki Handa
  • Publication number: 20140074368
    Abstract: A motor vehicle having: prime mover means; at least first and second groups of one or more wheels; and a driveline to connect the prime mover means to the first and second groups of one or more wheels such that the first group of one or more wheels and not the second group is driven by the prime mover means when the driveline is in a first mode of operation and the first and second groups of one or more wheels are driven by the prime mover means when the driveline is in a second mode of operation, the driveline comprising an auxiliary portion comprising a first releasable torque transmitting means, a prop shaft and a second releasable torque transmitting means, the first releasable torque transmitting means being operable to connect a first end of the prop shaft to the prime mover means, the second releasable torque transmitting means being operable to connect a second end of the prop shaft to the second group of one or more wheels, the vehicle further comprising control means operable to control the first an
    Type: Application
    Filed: February 20, 2012
    Publication date: March 13, 2014
    Applicant: Jaguar Land Rover Limited
    Inventor: Pete Stares
  • Patent number: 8670910
    Abstract: A method for controlling a speed difference between speed of wheels of a front axle and speed of wheels of a rear axle of a four-wheel drive vehicle. The method: determines an initial speed difference set point based on the speed of the vehicle; determines one or more intermediate speed difference set points based on one or more operational parameters of the vehicle; modulates the initial speed difference set point based on the intermediate speed difference set points to obtain a final speed difference set point; measures the speed difference and compares the measured speed difference with the final speed difference set point; and controls the measured speed difference, so that the measured speed difference reaches the final speed difference set point.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: March 11, 2014
    Assignee: Renault S.A.S.
    Inventors: Francois Foussard, Alessandro Monti, Richard Pothin, Nicolas Romani, Philippe Saint-Loup
  • Patent number: 8670909
    Abstract: An automotive vehicle may include one or more controllers, a braking system and an electric machine. The one or more controllers may be configured to determine whether the vehicle is about to roll over. The braking system may be configured to apply a braking torque for a time period, under the command of the one or more controllers, to a front traction wheel to cause the front traction wheel to skid or slide relative to a road if the vehicle is about to roll over. The electric machine may be configured to generate a propulsion torque, under the command of the one or more controllers, during the time period.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: March 11, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: William Paul Perkins, Michael Edward Brewer
  • Publication number: 20140067217
    Abstract: A motor vehicle having: prime mover means; at least first and second groups of one or more wheels; and a driveline operable by means of control means to connect a torque transmission path from the prime mover means to the first and second groups of one or more wheels such that the first group of one or more wheels and not the second group is coupled to the torque transmission path when the driveline is in a first mode of operation and both the first and second groups of one or more wheels are coupled to the torque transmission path when the driveline is in a second mode of operation, the driveline being operable to connect the second group to the torque transmission path from the prime mover means by means of an auxiliary portion thereof, the auxiliary portion comprising first and second releasable torque transmitting means and a prop shaft, the first end of the prop shaft to the torque means being operable to connect a first end of the prop shaft to the torque transmission path from the prime mover means, th
    Type: Application
    Filed: February 20, 2012
    Publication date: March 6, 2014
    Inventor: Pete Stares
  • Publication number: 20140067216
    Abstract: Embodiments of the present invention provide a motor vehicle having: prime mover means; at least first and second groups of one or more wheels; and a driveline operable to connect the prime mover means to the first and second groups of one or more wheels such that the first group of one or more wheels and not the second group is coupled to a torque transmission path from the prime mover means when the driveline is in a first mode of operation and both the first and second groups of one or more wheels are coupled to a torque transmission path from the prime mover means when the driveline is in a second mode of operation, the driveline including an auxiliary portion for connecting the second group to the torque transmission path from the prime mover means, the auxiliary portion comprising first and second releasable torque transmitting means and a prop shaft, the first releasable torque transmitting means being operable to connect a first end of the prop shaft to the torque transmission path from the prime move
    Type: Application
    Filed: February 20, 2012
    Publication date: March 6, 2014
    Applicant: JAGUAR LAND ROVER LIMITED
    Inventors: Pete Stares, Ian Beverley, Shaun Wick, Russell Osborn, Paul Beever
  • Publication number: 20140067215
    Abstract: A utility vehicle comprises a plurality of ground engaging members and a frame supported by the plurality of ground engaging members. The frame includes a front frame portion, a mid-frame portion, and a rear frame portion. The utility vehicle further comprises an attachment supported at the front frame portion. Additionally, the utility vehicle includes an operator area supported by the frame and including an operator seat and an adjacent passenger seat spaced apart from the operator seat. The operator seat and the passenger seat are in a side-by-side arrangement. The utility vehicle also comprises an auxiliary power assembly having an attachment shaft configured to be operably coupled to the attachment. The attachment shaft extends in a generally longitudinal direction of the utility vehicle and projects outwardly from the front frame portion.
    Type: Application
    Filed: December 21, 2012
    Publication date: March 6, 2014
    Applicant: POLARIS INDUSTRIES INC.
    Inventors: MARCUS A. WETTERLUND, MATTHEW J. KALDOR, BRIAN P. DEHNERT
  • Publication number: 20140067218
    Abstract: Embodiments of the present invention provide a motor vehicle having: prime mover means; at least first and second groups of one or more wheels; and a driveline operable by means of control means to connect a torque transmission path from the prime mover means to the first and second groups of one or more wheels such that the first group of one or more wheels and not the second group is coupled to the torque transmission path when the driveline is in a first mode of operation and both the first and second groups of one or more wheels are coupled to the torque transmission path when the driveline is in a second mode of operation, the driveline being operable to connect the second group to the torque transmission path by means of an auxiliary portion comprising first and second releasable torque transmitting means and a prop shaft, the first releasable torque transmitting means being operable to connect a first end of the prop shaft to the torque transmission path, the second releasable torque transmitting means
    Type: Application
    Filed: February 20, 2012
    Publication date: March 6, 2014
    Inventors: Pete Stares, David Clare
  • Publication number: 20140067219
    Abstract: In one aspect of the invention there is provided a motor vehicle having: a prime mover; at least first and second groups of one or more wheels; and a driveline to connect the prime mover to the first and second groups of one or more wheels such that the first group of one or more wheels is driven by the prime mover when the driveline is in a first mode of operation and the second group of one or more wheels is additionally driven by the prime mover when the driveline is in a second mode of operation, the driveline including an auxiliary driveline comprising releasable torque transmitting means operable to connect the second group of one or more wheels to the prime mover when the driveline transitions between the first mode and the second mode, wherein when in the first mode the driveline is operable to transition to the second mode responsive to an output of a reactive evaluator and a predictive evaluator, the output of the reactive evaluator being responsive to a determination whether an amount of wheel slip
    Type: Application
    Filed: February 20, 2012
    Publication date: March 6, 2014
    Inventors: Pete Stares, Ian Beverley, Shaun Wick, Russell Osborn, Paul Beever, Sam Anker, Bruce Buckley
  • Patent number: 8666604
    Abstract: The invention relates to a method of detecting external impacts in vehicle steering systems (12) which include a rotatable steering shaft (16) and a servomotor (22) for generating a steering assist torque, the method including the steps of: (a) continuously measuring a first characteristic; (b) continuously measuring a second characteristic; (c) forming tuples of characteristics at least from a measured value of the first characteristic and a simultaneously picked up measured value of the second characteristic; (d) comparing the tuples of characteristics of step (c) with a predetermined normal operating range (36) of a multidimensional characteristic diagram (34) which is defined at least by the first characteristic and the second characteristic; and (e) storing a tuple of characteristics of step (c) and/or triggering an alarm signal if this tuple of characteristics from step (c) is outside the normal operating range (36).
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: March 4, 2014
    Assignee: TRW Automotive GmbH
    Inventors: Dieter Fehlings, Marcus Weser
  • Publication number: 20140058638
    Abstract: A four-wheel-drive vehicle includes a clutch that is able to allow and interrupt transmission of driving force to a propeller shaft, and a traction control unit that controls at least one of the driving force generated by an engine and braking force applied to right and left front wheels to suppress a slip of the right and left front wheels. When the drive mode is switched from a two-wheel-drive mode to a four-wheel-drive mode, if the relative rotational speed between a first rotary member and a second rotary member constituting a clutch is equal to or higher than a predetermined value, an ECU outputs a control command signal for suppressing the slip of the right and left front wheels to the traction control unit.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 27, 2014
    Applicant: JTEKT Corporation
    Inventors: Kenta TANIGUCHI, Akira Kodama, Tomoaki Kato, Masaki Mita
  • Patent number: 8660753
    Abstract: The present invention relates to a control method of a wheel alignment apparatus using an MDPS, which determines whether or not to cancel center alignment control due to a trouble or error is preferentially determined prior to each control step and then performs control when wheels of a vehicle having an MDPS mounted therein are aligned, such that the trouble or error is preferentially considered in the control priority, thereby increasing driver's convenience and improving safety performance for protecting the driver.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: February 25, 2014
    Assignee: Hyundai Mobis Co., Ltd.
    Inventor: Jeong Ku Kim
  • Patent number: 8655528
    Abstract: A method for allocating forces among the corners of a vehicle having a redundant actuator suite includes determining a set of desired forces at the center of gravity of the vehicle, and allocating the set of desired forces among the corners of the vehicle as virtual control commands using a controller. The method also includes mapping the virtual control commands at the corners to actual or true control commands at the corners, and controlling a plurality of actuators at the corners using the actual or true control commands. The actuators may include friction brakes and wheel motors. Mapping the virtual control commands may include using a Least Squares formulation. Control of the actuators may be prioritized with respect to each other using weighting matrices. A vehicle includes a controller having actuators and a controller configured for executing the above method.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: February 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Youssef A. Ghoneim, Shih-Ken Chen, Valery Pylypchuk, Nikolai K. Moshchuk, Bakhtiar Brian Litkouhi
  • Publication number: 20140046564
    Abstract: In a control device for four-wheel drive vehicle, yaw moment for suppressing understeer tendency of the vehicle is calculated as target yaw moment. If the average wheel speed of right and left wheels of a front shaft is more than the wheel speed of a turning outer wheel of a rear shaft, a control unit performs control as follows: when the target yaw moment Mzt is applied to the vehicle, a wheel clutch of the turning outer wheel is engaged, and a wheel clutch of a turning inner wheel is disengaged, so that the engaging force of a transfer clutch 15 is controlled based on the target yaw moment Mzt. If the average wheel speed of the right and left wheels is not more than the wheel speed of the turning outer wheel, the transfer clutch 15, right wheel clutch and left wheel clutch are disengaged.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 13, 2014
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventor: Koji MATSUNO
  • Patent number: 8649933
    Abstract: Video event recorders are coupled to a vehicle power source via an on-board diagnostic system including its power bus, data bus, and scanner port connector. Video event recorders are provided with a power input arranged in conjunction with a standard ODBII type “D” connector. Systems further include an extension cable between the connector and the vehicle event record to accommodate mounting needs associated with each. In advanced versions, both OBD power and data networks are coupled to the vehicle event recorded such that data relating to vehicle diagnostic systems can be captured in a triggered event along with video data. In addition, some versions are provided with special detection mechanism to determine the use state of a vehicle and adjust application of power accordingly. Thus an “in-use” detector is coupled to the vehicle and/or OBD systems to provide feedback which helps to conserve power and regulate the power connections.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: February 11, 2014
    Assignee: SmartDrive Systems Inc.
    Inventors: James Plante, Ramesh Kasavaraju, Bruce Lightner
  • Publication number: 20140039772
    Abstract: A machine may include a powertrain drivingly connected to the wheels through a torque transfer unit to transfer torque to the front wheels as a function of a desired front torque and to the rear wheels as a function of a desired rear torque. At least one sensor of the machine may detect a value of an operating parameter indicative of a work cycle step being performed by the machine. A control unit determines the work cycle step being performed as a function of the value of the parameter, and the desired front and rear torques as a function of the work cycle step. The control unit also considers the weight and position of a load of material borne by an implement of the machine in determining the work cycle step being performed.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: CATERPILLAR, INC.
    Inventor: Jeffrey Edward Jensen
  • Patent number: 8645030
    Abstract: Provided is a controller for an inverted pendulum type vehicle capable of moving the vehicle smoothly. The inverted pendulum type vehicle 1 is provided with a grip 18 at a upper end portion of a base body 9. A grip-acting external force F acting on the grip 18 is detected by a force sensor 55. According to the detected grip-acting external force F, a required center-of-gravity velocity generator 74 determines required center-of-gravity velocities Vb_x_aim and Vb_y_aim, and on the basis thereof, a traveling motion unit controller determines a manipulated variable for control.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: February 4, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shinichiro Kobashi, Kazushi Akimoto, Hideo Murakami, Toru Takenaka, Hiroshi Gomi
  • Patent number: 8626404
    Abstract: The described system and method are implemented within a motor grader or other machine for grading of surfaces, wherein the machine includes a ground engaging element, as well as one or more blades for removing surface material. In this context, the described system and method prevent slippage of the ground engaging element against the underlying surface. In an embodiment, a torque limit is applied, wherein the torque limit corresponds to a torque that is less than that required for slippage under the current operating conditions, thus avoiding the problems caused by both overly aggressive and overly conservative cut depth strategies.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 7, 2014
    Assignee: Caterpillar Inc.
    Inventors: Norval P. Thomson, Gregory Durst, Martin Lehman, Shane McBride, Daniel P. Sergison