By Torque Variation Patents (Class 73/114.11)
  • Patent number: 11815415
    Abstract: A gap compensated stress sensing system and methods for using the same are provided. The system can include a sensor head in communication with a controller. The sensor head can contain a stress sensor configured to generate a stress signal representing stress applied to a target based upon measurement of generated magnetic fluxes passing through the target. The system can also include a drive circuit configured to provide a current for generation of the magnetic fluxes, and to measure signals characterizing a gap between the sensor head and the target. The controller can analyze these signals to determine a gap-dependent reference signal that is relatively insensitive to electrical runout. The controller can further adjust the stress signal based upon the gap-dependent reference signal to determine an improved stress signal that has reduced sensitivity to gap changes.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: November 14, 2023
    Assignee: Bently Nevada, LLC
    Inventors: Lysle R. Turnbeaugh, Daniel Lewis Farr
  • Patent number: 9475520
    Abstract: When a shaft misalignment detection part detects occurrence of a shaft misalignment that is a misalignment in a relative position in a radial direction of a rotary shaft between a magnet part and a sensor part, the shaft misalignment detection part outputs a shaft misalignment determination flag to a correction part and a control change instruction part. The correction part calculates a motor rotational angle so as to reduce a detection error caused by the shaft misalignment. The control change instruction part outputs instructions of changing calculation methods so that influence by the detection error decreases to an assist torque setting part and an assist current instruction part.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: October 25, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kohei Yanai, Kenichiro Aoki
  • Patent number: 9261433
    Abstract: When ignition is retarded in an internal combustion engine, an engine misfire detection system calculates a difference between combustion-time engine torque produced when combustion takes place in the engine, and expansion torque corresponding to non-combustion-time engine torque produced when the engine rotates without causing combustion, at intervals of a predetermined crank angle, calculates a shift amount with which a total value of the differences within a misfire determination period is maximized, and shifts the misfire determination period by the shift amount.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: February 16, 2016
    Assignees: Nippon Soken, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuji Ito, Yoshiaki Atsumi
  • Publication number: 20140352414
    Abstract: When ignition is retarded in an internal combustion engine, an engine misfire detection system calculates a difference between combustion-time engine torque produced when combustion takes place in the engine, and expansion torque corresponding to non-combustion-time engine torque produced when the engine rotates without causing combustion, at intervals of a predetermined crank angle, calculates a shift amount with which a total value of the differences within a misfire determination period is maximized, and shifts the misfire determination period by the shift amount.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 4, 2014
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, NIPPON SOKEN, INC.
    Inventors: Yuji Ito, Yoshiaki Atsumi
  • Patent number: 8756984
    Abstract: In a condition where an engine is running, a fuel injector injects no fuel, and a fuel pump discharges no fuel so that a fuel pressure in a common-rail is kept constant, an ECU computes an actual torque based on a current engine speed and determines whether the actual torque is increased or decreased relative to a predetermined reference torque. Moreover, in the same condition as above, a fuel pressure in the common-rail is detected. Based on variations of the actual torque and the fuel pressure in the common-rail, the ECU determines whether an abnormality occurs and identifies a type of the abnormality.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: June 24, 2014
    Assignee: Denso Corporation
    Inventor: Yusuke Majima
  • Patent number: 8538626
    Abstract: Methods and systems are provided for an engine. A condition of the engine may be diagnosed based on a combustion torque profile of the engine estimated using signals from a generator operationally connected to the engine and/or other signals associated with the engine. Different types of degradation may be distinguished based on discerning characteristics within the estimated combustion torque profile data. Thus, a degraded engine component may be identified in a manner that reduces service induced delay.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: September 17, 2013
    Assignee: General Electric Company
    Inventors: Ajith Kumar, Somakumar Ramachandrapanicker, Paul Flynn, Arijit Banerjee, Rupam Mukherjee
  • Publication number: 20130160536
    Abstract: In a condition where an engine is running, a fuel injector injects no fuel, and a fuel pump discharges no fuel so that a fuel pressure in a common-rail is kept constant, an ECU computes an actual torque based on a current engine speed and determines whether the actual torque is increased or decreased relative to a predetermined reference torque. Moreover, in the same condition as above, a fuel pressure in the common-rail is detected. Based on variations of the actual torque and the fuel pressure in the common-rail, the ECU determines whether an abnormality occurs and identifies a type of the abnormality.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 27, 2013
    Applicant: DENSO CORPORATION
    Inventor: DENSO CORPORATION
  • Patent number: 8166951
    Abstract: An engine includes an angular velocity detecting means 10 for detecting a rotation angular velocity of a crankshaft 11 of the engine, a torque generated by the engine detecting means for detecting a variability of the angular velocity amplitude obtained by the angular velocity detecting means 10 as the variability of the torque generated by the engine. The engine compensates a fuel injection quantity by comparing the angular velocity amplitude detected by the angular velocity detecting means with the adequate angular velocity amplitude.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: May 1, 2012
    Assignee: Yanmar Co., Ltd.
    Inventors: Takeshi Takahashi, Tooru Yoshizuka, Yukihiro Shinohara, Keiji Ooshima, Toshiro Itatsu
  • Patent number: 7996142
    Abstract: A combustion control system includes a magnetic torque sensor disposed between an engine and a load. The magnetic torque sensor is configured to directly measure engine torque and output a torque signal indicative of the engine torque. A control unit is communicatively coupled to the magnetic torque sensor. The control unit is configured to receive the torque signal and determine one or more combustion parameters based on the torque signal. The control unit is also configured to control one or more manipulating parameters of the engine based on the one or more combustion parameters so as to control combustion in the engine.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: August 9, 2011
    Assignee: General Electric Company
    Inventors: Christof Martin Sihler, Georgios Bikas, Herbert Kopecek
  • Patent number: 7801657
    Abstract: A control system for a vehicle having first and second wheels is provided that includes a differential apparatus adapted to distribute torque between the first and second wheels and a traction controller for controlling operation of the differential apparatus from vehicle launch up to a predetermined vehicle speed. The traction controller is configured to engage the differential apparatus in a first operating state according to at least one vehicle operating parameter indicative of a low traction operating condition and to further control engagement of the differential apparatus in a second vehicle operating state during the low traction operating condition according to a difference between an actual vehicle yaw rate and a predetermined target vehicle yaw rate. The control system also includes a stability controller for controlling engagement of the differential apparatus at or above the predetermined vehicle speed.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: September 21, 2010
    Assignee: Eaton Corporation
    Inventors: Damrongrit Piyabongkarn, Jae Y. Lew, John A. Grogg, Robert J. Kyle
  • Patent number: 7726281
    Abstract: A control module comprising a cylinder torque determination module that determines an indicated torque for a cylinder in an engine based on a pressure in the cylinder, a cylinder torque balancing module that determines a derivative term for the cylinder based on rotation of a crankshaft, and a cylinder pressure error detection module that detects a pressure error for the cylinder based on the indicated torque and the derivative term. A method comprising determining an indicated torque for a cylinder in an engine based on a pressure in the cylinder, determining a derivative term for the cylinder based on rotation of a crankshaft, and detecting a pressure error for the cylinder based on the indicated torque and the derivative term.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: June 1, 2010
    Inventors: Kenneth J. Buslepp, Douglas R. Verner, Joseph R. Dulzo, David S. Mathews