Of A Beverage Patents (Class 73/19.06)
  • Patent number: 11505476
    Abstract: The sub-ambient solar desalination system includes a solar pond and a pressure reducing structure. The solar pond is adapted for receiving saltwater and heating the saltwater through direct exposure to solar radiation at atmospheric pressure. The pressure reducing structure is in fluid communication with the solar pond for receiving heated saltwater therefrom. The pressure reducing structure is configured such that pressure of the heated saltwater within a central portion of the pressure reducing structure is at sufficiently reduced sub-ambient pressure to undergo a phase change to produce pure water vapor and a concentrated brine solution. The pressure reducing structure has a vapor outlet for releasing the pure water vapor, which is collected in a fresh water tank and condensed into pure liquid water. The solar pond is in fluid communication with an outlet portion of the pressure reducing structure for recycling the concentrated brine solution back to the solar pond.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: November 22, 2022
    Assignee: UNITED ARAB EMIRATES UNIVERSITY
    Inventors: Mohsen Sherif, Fadi Alnaimat, Bobby Matthew
  • Patent number: 8701509
    Abstract: A sampling device allows samples to be taken from a fluid that is pressurized and/or contains volatile components. The sampling device has a sampling housing (121, 521), an inlet (10, 110, 510), an outlet (11, 111, 511), a measuring cell (17, 317, 517) and a valve unit (118, 534). The valve unit has a valve which, in a first position, connects the inlet to the outlet by way of the measuring cell. In a second position, the valve connects the inlet directly to the outlet, while also disconnecting the measuring cell from both the inlet and the outlet. The valve unit also has at least one adjustable flow restrictor, through which the flow of the fluid through the sampling device is regulated.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: April 22, 2014
    Assignee: Mettler-Toledo AG
    Inventors: Klaus-Dieter Anders, Dragan Radanovic
  • Publication number: 20130081443
    Abstract: A method for determining a volume of beverage, preferably a carbonated beverage in a collapsible beverage container, comprises a beverage dispensing system including a pressure chamber with the collapsible container, the pressure chamber defining an inner volume equal to the sum of the volume of beverage and a residual gas volume. The method also comprises a pressurization system for supplying a volume of gas of atmospheric pressure from the outside of the pressure chamber to the residual gas volume, and a pressure sensor for detecting a low pressure value and a high pressure value, respectively. The method further comprises the steps of supplying the volume of gas to the residual gas volume by using the pressurization system, determining the volume of gas supplied by the pressurization system from the outside of the pressure chamber to the residual gas volume, and establishing a measure of the volume of beverage included in the collapsible beverage container.
    Type: Application
    Filed: July 21, 2011
    Publication date: April 4, 2013
    Applicant: CARLSBERG BREWERIES A/S
    Inventors: Jan Norager Rasmussen, Steen Vesborg
  • Publication number: 20100192668
    Abstract: A system for the automated regulation of a gas permeation testing system is disclosed, wherein a control system in communication with a data processor facilitates more precise control of a pressurized fluid caused to flow through the gas permeation testing system.
    Type: Application
    Filed: July 18, 2008
    Publication date: August 5, 2010
    Inventors: Frank E. Semersky, Jonathan A. McGurk, Aaron R. Teitlebaum
  • Patent number: 7159443
    Abstract: The present invention relates to a new concept in measuring the dissolved gas levels in supersaturated liquid streams. In particular, the new device is specifically applicable to the measurement of carbonation levels in soft drinks. The measurement is made by permitting the beverage to escape from the pressurized container to atmospheric pressure through a thin tubing. The gas escaping from the supersaturated beverage separates the liquid stream into alternating gas and liquid segments. The relative long term average length of the segments is directly related to the CO2 content of the beverage. The instrument is simple to operate, inexpensive, and needs no calibration; it is easily adaptable to presently used laboratory equipment, and is useful in production process control.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: January 9, 2007
    Inventor: Peter A. Wolf
  • Patent number: 6874351
    Abstract: A method for determining the content quantities, solubilities and/or saturation pressures of gases dissolved in a liquid, which is characterized in that in order selectively to determine the individual content quantities of at least two gases dissolved in a liquid sample, more particularly carbon dioxide, nitrogen and/or oxygen, and/or the solubilities or saturation pressures thereof, the volume of at least one measuring chamber filled with the liquid for testing is increased the volume of at least two steps by volume increase factors differing one from another, each having numerical values greater than 1, in that, after each of the volume increase steps, the equilibrium pressure established in the measuring chamber is ascertained, and in that, on the basis of the at least two measured pressure values obtained in this way, the content quantities of the individual gases dissolved in the liquid, and/or the solubility or saturation pressure thereof, are calculated individually.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: April 5, 2005
    Assignee: Anton Paar GmbH
    Inventors: Josef Bloder, Josef Gautsch, Klauss Germann, Gerhard Murer
  • Patent number: 6192737
    Abstract: The invention pertains to a method for measuring the concentration of dissolved gases in a liquid [(39)], especially of CO2 in beverages, in which the liquid [(39)] is passed across the retentate side [(140)] of a membrane [(14)] that is at least partially permeable to the dissolved gas, and [in which] the volumetric flow of the permeated gas on permeate side [(16)] of the membrane [(14)] is determined, the temperature of the liquid [(39)] is measured, and the concentration of the dissolved gas in the liquid [(39)] is calculated from these values. In this, the thickness of the membrane [(14)] can be pre-selected as a function of the flow rate of the liquid [(39)] flowing along the retentate side [(140)].
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: February 27, 2001
    Assignees: Rosemount Analytical Inc., GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Klaus Ohlrogge, Carsten Hasler, Jan Wind, Dieter Cegla, Franz Josef Steffens