Combined With Other Measuring Means Patents (Class 73/54.02)
  • Patent number: 11774430
    Abstract: Certain disclosed method embodiments concern performing a stalk puncture test to determine force and displacement data. Plant features, such as rind thickness, stalk radius, stalk diameter, section modulus and/or integrative puncture score, primarily applicable to corn, sorghum, sunflower, wheat or rice, can be calculated using the force and displacement data. The calculated plant features are used to select plants for selective breeding to produce lodging-resistant crop hybrids. The present invention also provides embodiments of a hand-held puncture device that can be used to practice disclosed method embodiments.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: October 3, 2023
    Assignee: University of Idaho
    Inventors: Daniel Robertson, Douglas Cook, Will Seegmiller, Taylor Spence, Kate Seegmiller, Andrew Stucker
  • Patent number: 11608230
    Abstract: Conveyor idler monitoring apparatus, systems and methods are provided. In some embodiments, one or more sensors (e.g., temperature sensors, load sensors, etc.) are supported by the shaft of a conveyor idler. In some embodiments, one or more sensors are in data communication with a wireless transmitter. In some embodiments, a power generator driven by rotation of the idler is in electrical communication with one or more sensors and/or a wireless transmitter. In some embodiments, a plurality of idlers monitoring systems are in data communication with a conveyor monitoring system and/or operational monitoring system.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: March 21, 2023
    Assignee: Superior Industries, Inc.
    Inventors: Osvaldo Baggio, Eduardo Martinelli
  • Patent number: 11313738
    Abstract: A handheld apparatus for measuring atmospheric temperature inversions consisting of a battery powered electronic display portion, a folding pole portion, and a temperature sensor protected from sources of heat radiation. An electronic circuit measures air temperatures at multiple heights accurately by automatically determining when readings have stabilized and reads a tilt sensor to assure temperature readings are at the proper height. Affixing said temperature sensor to the end of a pole while the opposite end is held in the user's hand facilitates waving of the temperature sensor end through the air to increase air flow, therefore, assuring quicker response and accurate air temperature readings. An electronic display indicates the presence and intensity of an atmospheric temperature inversion.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: April 26, 2022
    Assignee: Innoquest, Inc.
    Inventor: William C. Hughes
  • Patent number: 11307125
    Abstract: A MEMS-nanoindenter chip performs nanoindentation on a specimen. The MEMS-nanoindenter chip has an intender probe joined with an indenter tip. The indenter tip indents into the specimen. A reference probe is joined with a reference tip, the reference tip touches the specimen. Sensing capabilities are provided to measure the position of the indenter probe relative to the reference probe. The MEMS-nanoindenter chip enables highly accurate measurements since the frame stiffness is not part of the measurement chain any more. Furthermore, thermal drift during the nanoindentation is considerably reduced.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: April 19, 2022
    Assignee: FemtoTools AG
    Inventors: David Beyeler, Simon Muntwyler, Felix Beyeler
  • Patent number: 11061011
    Abstract: The present invention relates to a method for determining a time window in which a casing pressure test can be performed without damaging a cement sheath. The time window is determined by: determining the hydration degree of the cement at a given time for a considered pressure and temperature values in the well; and then comparing the determined hydration degree to a predetermined value. If the determined hydration degree is below the predetermined value, then the casing pressure test can be done without damaging the cement.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: July 13, 2021
    Assignee: TOTAL SE
    Inventors: Christophe Urbanczyk, André Garnier, Jean Sulem, Siavash Ghabezloo, Nicolaine Agofack
  • Patent number: 10746758
    Abstract: A microelectromechanical (MEMS) sensor suite including a three axis accelerometer including an accelerometer sensor polyhedron having a series of faces, and a series of axial accelerometers on three faces of the series of faces of the accelerometer sensor polyhedron. The MEMS sensor suite also includes a three axis magnetometer including a magnetometer sensor polyhedron having a series of faces, and a series of axial magnetometers on three faces of the series of faces of the magnetometer sensor polyhedron.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: August 18, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Hung Nguyen, David T. Chang, Raviv Perahia, Logan D. Sorenson
  • Patent number: 10544343
    Abstract: Disclosed herein is a method for viscosity measurement of non-Newtonian fluid for in-line measurement and process control. The process involves mixing additives to a base fluid to form the non-Newtonian fluid. The non-Newtonian fluid is fed to an in-line viscosity measurement device to obtain a rheological measurement. The addition of the additives to the base fluid is then adjusted based on the rheological measurement. A system for accomplishing the same is also disclosed.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: January 28, 2020
    Assignee: Schlumberger Technology Corporation
    Inventors: Avinash Ramesh, Garud Bindiganavale Sridhar, Jonathan Wun Shiung Chong, Rajesh Luharuka, Lewis Callaway, Gregoire Omont, Ivan Alaniz
  • Patent number: 9891152
    Abstract: Methods for determining fluid rheology, the methods including determining a first discharged volume or weight of a fluid at a first time, determining at least a second discharged volume or weight of the fluid at a second time, and calculating fluid rheology based on the determined first and at least second discharged fluid volumes or weights at the first and second times.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: February 13, 2018
    Assignee: M-I L.L.C.
    Inventors: Quanxin Guo, Cong Wang, Thomas Geehan, Lujun Ji
  • Patent number: 9513201
    Abstract: A system and method for measuring physical properties of non-Newtonian fluids, such as fluids containing dispersed solid particulate material and having a yield stress. A fluid resistance member is moved through the non-Newtonian fluid sufficiently slowly that viscous drag on the member is negligible and fluid resistance is essentially due to the yield stress of the fluid. The torque required to maintain the movement of the member through the fluid is measured, and at least one physical property, other than apparent viscosity of the fluid, is determined by employing a known relationship between the measured torque and the physical property of interest.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: December 6, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Valerie Anderson, Gerald Henry Meeten
  • Publication number: 20150101400
    Abstract: A viscosity measuring apparatus is mounted on a vehicle provided with an engine, a cylinder pressure sensor configured to detect cylinder pressure which is inner pressure of a cylinder of the engine, a fuel injection valve configured to supply fuel to the engine, and a temperature sensor configured to detect temperature of a coolant of the engine. The viscosity measuring apparatus is provided with: an estimating device configured to calculate a cooling loss from a heating value of the cylinder based on the cylinder pressure detected by the cylinder pressure sensor and an input heating value of the cylinder, and to estimate viscosity of the coolant on the basis of the calculated cooling loss.
    Type: Application
    Filed: June 18, 2012
    Publication date: April 16, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Sho Tomita, Rentaro Kuroki
  • Patent number: 8974658
    Abstract: An exemplary embodiment of the invention may include a method for electrochemically monitoring the mobility of particles in a fluid in response to an external field, the method may include monitoring an electrical characteristic of the fluid in an electrochemical cell, the fluid comprising particles that can be moved under the influence of an externally applied field; observing changes in the electrical characteristic caused by particle movement induced by the external field; and inferring a change in the physical state of the fluid from a change in the magnitude of the electrical characteristic observed.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: March 10, 2015
    Assignee: Universal Biosensors Pty Ltd
    Inventors: Peter Michael Newman, Ronald Christopher Chatelier
  • Publication number: 20150059446
    Abstract: A method and system for on-line multi-component fluid analysis, the system can be configured to measure the absolute viscosity using data acquired by monitoring the flow rate or pump rate and pressure at the discharge for a reference fluid and the flow rate or pump rate and pressure at the discharge for a sample fluid. The system and method can also include comparing the data acquired for the sample fluid and the reference fluid. The system and method can present rheological behavior of the sample fluid as Newtonian viscosity and the shear rate in real time.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Joram AGAR, David FARCHY
  • Publication number: 20150000397
    Abstract: The present application provides apparatus and methods for determining the density of a fluid sample. In particular, it provides a sensor device which can be loaded with a fluid sample such as blood, and which further comprises at least one oscillating beam member or resonator. Exposure of the blood sample to clotting agents allows a clotting reaction to commence. The device allows the density of the sample fluid to be monitored with reference to the oscillation of the vibrating beam member, thus allowing the monitoring of the clotting of the fluid sample.
    Type: Application
    Filed: August 22, 2014
    Publication date: January 1, 2015
    Inventor: Richard Day
  • Patent number: 8881579
    Abstract: A method of determining viscosity of structurally viscous fluids or beverages containing small pieces, fibers, pulps, fruit cells, cereals, particles or the like, for processing in filling, fruit juice preparation, dairy or brewery process plants, includes providing a tube rheometer having an at least substantially horizontal, straight meter tube with an inner diameter over a length of the meter tube length. At least two different volume flows are generated, exclusively gravimetrically, in the tube rheometer. The at least two different volume flows are adjusted to be substantially constant so as to determine a flow index and a consistency factor of the at least two volume flows. Pressure losses of the at least two volume flows are measured. The viscosity is determined based on the flow index, the consistency factor and the pressure losses.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: November 11, 2014
    Assignee: Krones AG
    Inventor: Joerg Zacharias
  • Patent number: 8880276
    Abstract: A powertrain control module determines engine oil properties based on friction in an engine. The powertrain control module includes an engine combustion module that models engine torque based on engine speed and engine pumping losses due to intake and exhaust gasses. A transmission module models transmission torque applied to the engine based on transmission speed and gear. An accessory loads module models torque applied to the engine by accessory loads including at least one of a power steering pump, an air conditioning compressor, a water pump, and an alternator. An oil viscosity module determines engine oil viscosity based on a friction torque and predetermined engine data that coincides with reference oils. The friction torque is based on the engine torque, transmission torque, and accessory loads torque.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: November 4, 2014
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Ningsheng Qiao, Kevin Joseph Bush
  • Publication number: 20140260559
    Abstract: This invention relates to a method of inducing fluid flow in a passive capillarity filled microfluidic device involving the use of a dual flow control reagent system, wherein the first flow control reagent is a surfactant which reduces surface tension of an aqueous fluid sample and the second flow control reagent is a viscosity enhancer.
    Type: Application
    Filed: August 10, 2012
    Publication date: September 18, 2014
    Applicant: MOLECULAR VISION LIMITED
    Inventors: Oliver Hofmann, Simon Rattle, Claire Walshe
  • Patent number: 8794051
    Abstract: A method of determining rheological properties can include dispensing a fluid into a rheometer including a stator having at least one helical blade, measuring torque (T) due to relative rotation between the stator and a rotor of the rheometer at different rotational speeds (RPM's), calculating shear stress (SS) as follows: SS=T?/K, and calculating volume averaged shear rate (VASR) as follows: VASR=k1*RPM?, where K, k1, ? and ? are experimentally-derived coefficients. A method of mixing fluids and performing a rheological test on the admixed fluids can include dispensing a fluid into a rheometer, then dispensing another fluid into the rheometer, then mixing the fluids with at least one helical blade of the rheometer, and then measuring torque due to relative rotation between a stator and a rotor of the rheometer. A rotary rheometer can include a rotor, and a stator having at least one helical blade.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: August 5, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Ronnie Glen Morgan, Sairam KS Pindiprolu, Balasundaram Balaraman, Ganesh Shriniwas Pangu
  • Publication number: 20140202236
    Abstract: A rheometer includes a drive shaft, a drag cup motor for rotating the drive shaft, a first measuring object supported by the drive shaft, a second measuring object, a linear position sensor, and processing and control electronics. The linear position sensor includes a target (e.g., an aluminum target) mounted to the drive shaft, and a pair of coils. The linear position sensor is configured to measure thermal expansion of the drive shaft based on a change in impedance of the coils resulting from a displacement of the target relative to the coils. The processing and control electronics are in communication with the coils and are configured to adjust a position of one of the measuring objects relative to the other based on a change in impedance of the coils resulting from a displacement of the target relative to the coils, thereby to maintain a substantially constant measurement gap therebetween.
    Type: Application
    Filed: August 3, 2012
    Publication date: July 24, 2014
    Applicant: WATERS TECHNOLOGIES CORPORATION
    Inventors: Nigel Doe, Peter Foster
  • Patent number: 8763447
    Abstract: Measuring apparatus comprises a rotating plate 17, a torque detection plate 18 disposed on a same axis parallel to the plate 17 with a given gap, a torque sensor about the plate 18 through the specimen held between two plates. The plate 18 is a total reflection prism which is made from a material that has a greater refractive index than the specimen and transmits UV and infrared light. An ultraviolet beam is directed onto the specimen through the prism. An infrared beam is directed into the prism. The infrared beam emerging from the prism after total reflection from the interface between the prism and the specimen is detected. A signal processor analyzes the infrared absorption spectrum of the specimen on the basis of the infrared beam. While the viscosity of the specimen in the curing process is measured, the signal processor simultaneously measures the infrared absorption spectrum.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: July 1, 2014
    Assignees: JASCO Corporation, JASCO International Co., Ltd.
    Inventors: Toshiyuki Nagoshi, Jun Koshoubu, Mitsuo Watanabe, Takashi Inoue, Shigeru Ito
  • Publication number: 20140157876
    Abstract: A system and method for measuring physical properties of non-Newtonian fluids, such as fluids containing dispersed solid particulate material and having a yield stress. A fluid resistance member is moved through the non-Newtonian fluid sufficiently slowly that viscous drag on the member is negligible and fluid resistance is essentially due to the yield stress of the fluid. The torque required to maintain the movement of the member through the fluid is measured, and at least one physical property, other than apparent viscosity of the fluid, is determined by employing a known relationship between the measured torque and the physical property of interest.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 12, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: VALERIE ANDERSON, GERALD HENRY MEETEN
  • Patent number: 8555706
    Abstract: A novel configuration for a falling body viscometer using an electromagnetic induction sensor, wherein the time at which a falling body passes through the electromagnetic induction sensor can be specified with enhanced accuracy. This enables the falling speed of the falling body and in turn the viscosity of a fluid to be measured with increased accuracy. A falling body viscometer is provided with a first pair of coils located at the outer periphery of a measuring container so as to be separated from each other in the vertical direction, and also with a second pair of coils located at the outer periphery of the measuring container so as to be separated from each other in the vertical direction and to be located below the first coil pair, a specified distance away therefrom.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: October 15, 2013
    Assignee: Asahi Group Holdings, Ltd.
    Inventors: Kimito Kawamura, Motoyuki Tagashira, Eiji Tamura
  • Patent number: 8540869
    Abstract: A method for forming a finished lubricant comprises selecting a target high temperature viscosity for the finished lubricant. A target high temperature viscosity for a base oil blend is selected. The target high temperature viscosity for the base oil blend is less than the target high temperature viscosity for the finished lubricant. At least two base oils from at least three viscosity grades of base oils are selected and mixed to form a base oil blend that meets the target high temperature viscosity for the base oil blend. The base oil blend is mixed with performance additive package and viscosity modifier to provide a finished lubricant that meets the target high temperature viscosity for the finished lubricant. The at least two base oils for the base oil blend having the target high temperature viscosity are selected such that less viscosity modifier is needed to meet the target high temperature viscosity of the finished lubricant.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: September 24, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: John A. Zakarian, Angelito T. Tirona
  • Publication number: 20130239664
    Abstract: A system and method for determining at least one fluid characteristic of a downhole fluid sample using a downhole tool are provided. In one example, the method includes performing a calibration process that correlates optical and density sensor measurements of a fluid sample in a downhole tool at a plurality of pressures. The calibration process is performed while the fluid sample is not being agitated. At least one unknown value of a density calculation is determined based on the correlated optical sensor measurements and density sensor measurements. A second optical sensor measurement of the fluid sample is obtained while the fluid sample is being agitated. A density of the fluid sample is calculated based on the second optical sensor measurement and the at least one unknown value.
    Type: Application
    Filed: May 3, 2013
    Publication date: September 19, 2013
    Applicant: Schlumberger Technology Corporation
    Inventors: Kai Hsu, Kentaro Indo, Oliver C. Mullins, Peter S. Hegeman
  • Publication number: 20130180319
    Abstract: A method for identifying possible damage in a toothed transmission stage having at least one pair of engagement toothed wheels includes measuring with a vibration transducer an oscillation signal corresponding to oscillations produced by a rolling and impact motion when teeth of a pair of the toothed wheels mesh under load during operation of the transmission stage, comparing the oscillation signal with a calibration oscillation signal, determining a torque acting on the transmission stage from a difference between the oscillation signal and the calibration oscillation signal, and evaluating the measured oscillation signal commensurate with the determined torque to identify the possible damage to the transmission stage.
    Type: Application
    Filed: July 17, 2012
    Publication date: July 18, 2013
    Applicant: Siemens Aktiengesellschaft
    Inventors: Arno Klein-Hitpass, Jan-Dirk Reimers
  • Publication number: 20130036816
    Abstract: An apparatus for determining and/or monitoring at least one process variable, especially a fill level, a density or a viscosity, of a medium in a container, including: a mechanically oscillatable structure protruding into the container during operation, with at least one oscillatory characteristic dependent on the process variable; an electromechanical transducer; and electronics, for producing an exciter signal connected to the input side of the transducer, which has a first filter, wherein the first filter filters out a wanted signal from the received signal; and which determines and/or monitors the process variable based on the wanted signal.
    Type: Application
    Filed: March 24, 2011
    Publication date: February 14, 2013
    Applicant: Endress + Hauser GmbH +Co. KG
    Inventors: Martin Urban, Tobias Brengartner
  • Patent number: 8322196
    Abstract: Vibrating wire viscometers are described. Some example vibrating wire viscometer housings include a flowline through the housing to expose a first wire to a downhole fluid, a cavity in the housing to hold a magnet and to conduct one or more additional wires from the flowline to a signal generator, first and second electrically conductive posts mechanically coupled to the housing to hold the first wire in tension within the flowline, and a seal mechanically coupled to the housing to prevent access to the magnet by the downhole fluid.
    Type: Grant
    Filed: August 2, 2009
    Date of Patent: December 4, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Raghu Madhavan, Yu Hatori, Mami Nishida, Sophie Nazik Godefroy, Michael Stangeland, Go Fujisawa
  • Patent number: 8307698
    Abstract: Vibrating wire viscometers are disclosed. An example vibrating wire viscometer includes first and second electrically conductive tubes, where the first tube is at least partially inserted into the second tube, and where the first and second tubes are coupled via an electrically insulating bonding agent. The example viscometer further includes first and second electrically conductive pins inserted into respective ones of the first and second tubes, and an electrically conductive wire fastened to the first and second pins to vibrate in a downhole fluid to determine a viscosity of the downhole fluid.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: November 13, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Noriyuki Matsumoto, Sophie Nazik Godefroy, Kazumasa Kato, Go Fujisawa
  • Patent number: 8286465
    Abstract: A composition that will automatically flow (auto-flow) and form a fillet (self-fillet) will have a yield stress within the range of 1.8 Pa to 10 Pa (20 dynes/cm2 to 100 dynes/cm2). Such a composition can be designed by using an appropriate choice of filler, regardless of the resin system used in the composition.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: October 16, 2012
    Assignee: Henkel AG & Co. KGaA
    Inventor: Minghai Wang
  • Patent number: 8281646
    Abstract: This invention relates to a measurement tool, and in particular to a measurement tool for use in determining the density and/or viscosity of a stationary or moving fluid. The measurement tool has been designed for use in borehole applications during the location and exploitation of oil and gas reserves. The measurement tool has a resilient pipe with a substantially uniform cross-section along its length, and the fluid is located within the pipe. The pipe carries an exciter which is connected to a signal generator, the exciter and signal generator being adapted to impart transverse and/or rotational oscillations to the pipe. Measuring the frequency of the oscillations can be used to determine the density and/or the viscosity of the fluid within the pipe.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: October 9, 2012
    Assignee: Precision Energy Services, Inc.
    Inventors: Margaret Cowsar Waid, Bryan W. Kasperski, Michael Andrew Yuratich
  • Patent number: 8171776
    Abstract: A torque measuring device for determining properties such as viscosity, shearing force or concentration in liquids or suspensions. The device comprises two elastically connected concentric axles in the form of one external hollow axle through which an inner measuring axle extends, and an element responsive to the measured medium located on a distal end of the measuring axle. The axles are individually propelled by electrical motors. The motors are operated such that the axles rotate at generally constant speed and, simultaneously, the phase between the two are controlled irrespective of applied speed and torque. The torque is measured through the degree of load of the motor propelling the inner axle, which is provided as an output signal.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: May 8, 2012
    Assignee: BTG Pulp & Paper Sensors AB
    Inventors: Niclas Andersson, Joakim Kullander, Peter Lundberg, Peter Adrian
  • Patent number: 8161801
    Abstract: A method is used to determine the viscosity of a fluid. The method includes arranging a body (11) in a fluid-leading channel, with which vortices form in the flow direction (10) therebehind, which are detected with regard to measurement technology. Also, the flow speed in the channel, at which vortices arise for the first time or barely just continue to exist, is determined, and this speed is used as a measure for the viscosity of the through-flowing fluid.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 24, 2012
    Assignee: Grundfos Management A/S
    Inventor: Michael Verdirk
  • Publication number: 20120085151
    Abstract: The present invention relates to a method for automatically determining the relative solution viscosity and/or the melt volume flow rate of a polymer, during a phase of the process for producing the polymer, where the polymer is in a solution with 10 to 20% by weight of the polymer in an organic solvent. The method includes continuously removing a substream of the polymer solution from a component of the process for producing the polymer, wherein the polymer solution is essentially free from inorganic salts; removing a sample having a volume of from 1 to 10 ?l from the substream; introducing the sample into a gel permeation chromatography apparatus and determining the gel permeation chromatography data for the polymer; and automatically determining the relative solution viscosity and/or the melt volume flow rate of the polymer from the data obtained from the gel permeation chromatogram, on the basis of calibration relationships.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 12, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Stephan Konrad, Stefanie Braun, Johann Rechner, Rainer Knopf, Tom Foubert, Franky Bruynseels, Maarten De Bock
  • Publication number: 20120074069
    Abstract: An enhanced system for monitoring clogging of a fluid filter. A differential pressure sensor connects to fluid lines on opposite sides of the filter to measure a pressure difference across the filter. A viscosity-indicating property sensor connects to one of the fluid lines to measure a viscosity-indicating property of the fluid. A filter monitor in communication with the differential pressure sensor and the viscosity-indicating property sensor issues an operator alert when the pressure difference across the filter exceeds a differential pressure set point. The differential pressure set point is a function of the viscosity-indicating property of the fluid in the fluid line. In one embodiment, a fluid flow rate device in communication with the filter monitor indicates a flow rate of the fluid through the filter. The differential pressure set point is additionally a function of the flow rate of fluid through the filter.
    Type: Application
    Filed: July 19, 2010
    Publication date: March 29, 2012
    Applicant: HANILTON SUNDSTRAND CORPORATION
    Inventors: David L. Ripley, Brian E. Hemesath
  • Publication number: 20110252871
    Abstract: Measuring apparatus comprises a rotating plate 17, a torque detection plate 18 disposed on a same axis parallel to the plate 17 with a given gap, a torque sensor about the plate 18 through the specimen held between two plates. The plate 18 is a total reflection prism which is made from a material that has a greater refractive index than the specimen and transmits UV and infrared light. An ultraviolet beam is directed onto the specimen through the prism. An infrared beam is directed into the prism. The infrared beam emerging from the prism after total reflection from the interface between the prism and the specimen is detected. A signal processor analyzes the infrared absorption spectrum of the specimen on the basis of the infrared beam. While the viscosity of the specimen in the curing process is measured, the signal processor simultaneously measures the infrared absorption spectrum.
    Type: Application
    Filed: April 13, 2011
    Publication date: October 20, 2011
    Applicants: JASCO INTERNATIONAL CO., LTD., JASCO CORPORATION
    Inventors: Toshiyuki Nagoshi, Jun Koshoubu, Mitsuo Watanabe, Takashi Inoue, Shigeru Ito
  • Publication number: 20110226044
    Abstract: A portable handheld consistometer that includes a probe having a shaft and a probe tip attached to a first end of the shaft. In an embodiment, the probe tip has a cross-sectional area greater than that of the shaft, the probe configured to be inserted into a material to measure the consistency thereof. In an embodiment, a force sensor is attached to a second end of the shaft opposite the first end. The force sensor is coupled to processing circuitry, and is configured to measure the force with which the probe tip penetrates the material. In an embodiment, a distance sensor is coupled to the processing circuitry. The distance sensor is configured to measure the distance that the probe tip penetrates into the material. Further; the handheld consistometer includes a display screen coupled to the processing circuitry and configured to display the results of consistency measurements.
    Type: Application
    Filed: March 17, 2011
    Publication date: September 22, 2011
    Applicant: INNOQUEST, INC.
    Inventors: William C. Hughes, John D. Guy
  • Patent number: 7997121
    Abstract: A milliwave melter monitoring system is presented that has a waveguide with a portion capable of contacting a molten material in a melter for use in measuring one or more properties of the molten material in a furnace under extreme environments. A receiver is configured for use in obtaining signals from the melt/material transmitted to appropriate electronics through the waveguide. The receiver is configured for receiving signals from the waveguide when contacting the molten material for use in determining the viscosity of the molten material. Other embodiments exist in which the temperature, emissivity, viscosity and other properties of the molten material are measured.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: August 16, 2011
    Assignee: Savannah River Nuclear Solutions, LLC
    Inventors: William E. Daniel, Paul P. Woskov, Shanmugavelayutham K. Sundaram
  • Publication number: 20110185795
    Abstract: The present invention relates to an apparatus (100) suitable for use in substantially continuous measurement of a physical property particularly the rheology and/or viscosity of a drilling fluid in use thereof in a drilling fluid or mud flow circuit of a drilling device. The present invention also relates to an apparatus (100) suitable for use in substantially continuous measurement of a physical property particularly the rheology and/or viscosity of any non-newtonian fluid is use thereof. The apparatus (100) comprises of a sample chamber (26) having an inlet (7) and an outlet (9) and is arranged to allow a drilling fluid to flow therethrough from the inlet 7 to the outlet (9). Detector devices (33, 34, 35) such as Viscometers are provided for substantially continuous measurement of a physical property particularly the rheology and/or viscosity of a drilling fluid flowing thought the sample chamber (26) in use of the apparatus (100).
    Type: Application
    Filed: June 22, 2009
    Publication date: August 4, 2011
    Inventor: Ross Colquhoun
  • Patent number: 7987700
    Abstract: The present invention provides an apparatus (Oscosurvismeter) for measuring osmotic pressure, surface tension, viscosity and conductance. Oscosurvismeter is made of Borosil glass material for measuring osmotic pressure, specific conductance, viscosity and surface tension of solutions. Solutions of different strengths are taken in two cells/compartments, partitioned by semi permeable membrane (SPM), respectively. Concentration gradient makes the solvent move towards concentrated solution to establish equilibrium that measures osmotic pressure. The Oscosurvismeter saves time and material, and enhances accuracy and precision in measurements, the instrument consists of six parts: Survismeter, Osmometer, Electrode, Metallic clamp, Semipermeable membrane (SPM), and High Potential metallic springs. The high accuracies data are noted with the instrument.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: August 2, 2011
    Inventor: Man Singh
  • Publication number: 20110174061
    Abstract: A novel configuration for a falling body viscometer using an electromagnetic induction sensor, wherein the time at which a falling body passes through the electromagnetic induction sensor can be specified with enhanced accuracy. This enables the falling speed of the falling body and in turn the viscosity of a fluid to be measured with increased accuracy. A falling body viscometer is provided with a first pair of coils located at the outer periphery of a measuring container so as to be separated from each other in the vertical direction, and also with a second pair of coils located at the outer periphery of the measuring container so as to be separated from each other in the vertical direction and to be located below the first coil pair, a specified distance away therefrom.
    Type: Application
    Filed: September 14, 2009
    Publication date: July 21, 2011
    Applicant: Asahi Breweries Ltd
    Inventors: Kimito Kawamura, Motoyuki Tagashira, Eiji Tamura
  • Publication number: 20110108124
    Abstract: The viscosity feedback temperature control system provides a means for controlling the viscosity of a process fluid about a user-defined setpoint by varying the temperature of the fluid within a user-defined range to take advantage of the viscosity versus temperature characteristics inherent in all fluids.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 12, 2011
    Inventor: Michael R. Bonner
  • Publication number: 20100139374
    Abstract: The viscosity or relative viscosity of samples can be measured in parallel by dispensing or aspirating the samples at a set condition and then measuring a property of the sample such as mass dispensed or aspirated.
    Type: Application
    Filed: December 3, 2009
    Publication date: June 10, 2010
    Inventors: Daniel L. Dermody, Suraj S. Deshmukh, Matthew T. Bishop, Drew A. Davidock, J. Keith Harris, Tzu-Chi Kuo, Paul L. Morabito, Melissa A. Mushrush, Donald W. Patrick, Jonathan J. Zieman
  • Patent number: 7677086
    Abstract: An engine oil viscosity measurement system is provided. The system includes: a solenoid response module that determines an actual response time based on a position signal; an expected response module that determines an expected response time based on a system voltage and engine oil temperature; and a diagnostic module that diagnoses viscosity of the engine oil based on the actual response time and the expected response time.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: March 16, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: William C. Albertson, David R. Staley, Mike M. McDonald, Bryan K. Pryor
  • Publication number: 20100014553
    Abstract: Cloud point monitoring systems for determining a cloud point of diesel fuel are provided. In one exemplary embodiment, a cloud point monitoring system determines a cloud point temperature value utilizing signals indicating a viscosity level of diesel fuel and a temperature of the diesel fuel.
    Type: Application
    Filed: July 16, 2008
    Publication date: January 21, 2010
    Applicant: GM Global Technology Operations, Inc.
    Inventors: BRYAN K. PRYOR, WILLIAM C. ALBERTSON
  • Publication number: 20090282901
    Abstract: An apparatus and method for measuring or comparing rheological properties of fluid samples in parallel is disclosed. The apparatus includes a plurality of sensing elements which are comprised of flow channels and reservoirs in fluid communication. The channels provide flow paths for the fluid samples which are initially contained within external reservoirs. The method includes flowing the fluid samples at variable rates and monitoring simultaneously sample flow rates from the reservoirs through a plurality elements for one or more increments of time. The disclosed method is capable of measuring or comparing rheological properties of at least two fluid samples simultaneously. Useful flow rates monitoring devices include optical array sensors and image analysis systems.
    Type: Application
    Filed: May 17, 2008
    Publication date: November 19, 2009
    Inventor: WILLIAM KEITH LEONARD
  • Patent number: 7581435
    Abstract: Embodiments of the present invention are directed to an apparatus for acquiring physical properties of a fluid sample at high temperatures and pressures. The apparatus comprises a sample manifold, one or more pressure intensifiers to push or pull a sample through the sample manifold, and a viscosity coil to receive a part of the sample to measure a viscosity of the sample.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: September 1, 2009
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Michael T. Pelletier
  • Patent number: 7574898
    Abstract: A method and apparatus for providing, e.g., identifying or determining, at least one parameter of a fluid moving through a fluid channel using a vibrating wire in contact with the fluid moving through the fluid channel that is clamped under tension. The vibrating wire is actuated by an actuating device capable of displacing the vibrating wire from an initial position. An interpretation element further is utilized to provide a parameter of the fluid moving through the fluid channel based upon data from the vibrating wire following actuation by the actuation element.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: August 18, 2009
    Assignee: Schlumberger Technology Corporation
    Inventors: Christopher Harrison, Isabelle Etchart, Kai Hsu, Jacques Jundt, Anthony Robert Holmes Goodwin, Sophie Godefroy, Matthew Sullivan, Antoine Fornari
  • Publication number: 20090090504
    Abstract: Controlling a well injection operation, such as a well fracturing operation, includes identifying a flow characteristic of a fracturing fluid, identifying a flow characteristic of a base fluid used for forming the fracturing fluid, determining an amount of friction reduction change of the fracturing fluid, and adjusting the amount of friction reduction of the fracturing fluid to coincide with a selected friction reduction amount. Identifying a flow characteristic may be performed by a rheology measuring device including a measurement tube, a first pressure sensor disposed at a first position on the measurement tube, a second pressure sensor disposed at a second position on the measurement tube, a flow meter disposed at a third position along the measurement tube, a temperature sensor disposed at a fourth location along the measurement tube, and a control unit interconnected to the first and second pressure sensors, the flow meter, and the temperature sensor.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 9, 2009
    Applicant: HALLIBURTON ENERGY SERVICES, INC. - DUNCAN
    Inventors: Glenn Weightman, Bruce Lucas
  • Patent number: 7466236
    Abstract: [Theme] To provide a device or a judging method for judging the type of liquid inside a container that can be applied to containers of various shapes and can be applied to cases where the remaining amounts of liquids in containers differ. [Solution Means] This invention's device for judging the type of liquid inside a container is equipped with: a plate capacitor 1, wherein two plate electrodes 1a and 1b are positioned in opposing manner; a container supporting member 3, holding, in a region besides the region sandwiched between plate electrodes 1a and 1b, a non-conductive container 2 that can contain a liquid in its interior; an oscillation circuit 4, containing capacitor 1; and a control part 5, detecting the oscillation frequency of the oscillation circuit; and container supporting member 3 is arranged to adjust the distance from plate electrode 1a to container 2 in accordance with the size of container 2.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: December 16, 2008
    Assignee: Tokyo Gas Co., Ltd.
    Inventors: Takeshi Abe, Yasuhiko Shinozawa, Tomohide Machida, Kouichiro Yamada
  • Patent number: 7454958
    Abstract: The invention provides devices and methods for acoustically determining the properties of the contents of one or more reservoirs in a plurality of reservoirs. Each reservoir is adapted to contain a fluid. An acoustic radiation generator can be positioned in acoustic coupling relationship to each of the reservoirs. Acoustic radiation generated by the acoustic radiation generator is transmitted through each reservoir to an analyzer. The analyzer is capable of analyzing a characteristic of the transmitted acoustic radiation and optionally correlating the characteristic to a property of the reservoirs' contents. Properties that may be determined include volume, temperature, and composition. The invention is particularly suited to determining the properties of the contents of a plurality of reservoirs to allow for accuracy and control over the dispensing of fluids therefrom.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: November 25, 2008
    Assignee: Labcyte Inc.
    Inventors: Richard N. Ellson, Richard G. Stearns
  • Patent number: 7437912
    Abstract: A method and device for assessing rheological properties of a fluid, including lubricity and viscosity. The invention utilizes a tube into which the fluid is introduced, and relies on tracking the movement of the fluid through the tube either alone or with one or more particles intentionally introduced into the fluid to assess the rheological properties of the fluid. The method and device generally entail flowing the fluid and the optional suspended particle through a passage within the tube, and assessing a rheological property of the fluid within the tube by tracking the movement of the fluid and/or particle through the portion relative to the flow of the fluid through the portion.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: October 21, 2008
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Douglas Ray Sparks, Nader Najafi