By Measuring Swirl Rate Imparted By Static Means Patents (Class 73/861.32)
  • Patent number: 11925177
    Abstract: A continuously variable nozzle system includes a nozzle body (5) with an inlet and an outlet. A conduit is defined between the inlet and the outlet by a series connection of components which includes a flow meter (10). The flow meter (10) has a chamber (83) with internal helical splines (82) that are configured to interact with a spray liquid passing through the chamber (83) and create a cyclone-like effect. A sphere (52) is located inside the chamber (83) for free movement along a circular path (106). A sensor is located outside of the chamber (83) and configured to detect motion of the sphere (52) and generate an output (9) signal in response to detected motion.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: March 12, 2024
    Assignee: Intelligent Agricultural Solutions LLC
    Inventors: Marshall T. Bremer, Nicholas Butts, Todd A. Meidinger, Benjamin J. Wolbaum, Daniel R. Wood, Jr., Michael D. Schmidt
  • Patent number: 11346692
    Abstract: A flow meter includes two parts, a flow unit which can be fitted between fluid pipes and a detection unit snapped on the flow unit. The flow unit has a housing which accommodates a measuring chamber in which there is a rotating measuring ball. The detection unit is snapped on the measuring chamber and has a C-shaped housing part. Inside the housing part there is a printed circuit board which is also C-shaped and is present at a distance from the inner wall of the housing part. When the detection unit is snapped on the measuring chamber, the ends of the housing part will be bent outward. As a result of the clearance between the inner wall of the housing part and the printed circuit board and the fact that the housing part is slidable relative to the printed circuit board, the printed circuit board is not bent.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: May 31, 2022
    Inventor: Marcel Leonardus Josephus Petrus Peters
  • Patent number: 11287357
    Abstract: Components and systems are disclosed for determining fluid component concentrations. In some embodiments, a vortex chamber is configured to rotationally direct fluid flow. A first pressure sensor is disposed on an inner radial position within the vortex chamber. A second pressure sensor is disposed on an outer radial position within the vortex chamber. A fluid property detector is configured to determine a fluid property based, at least in part, on pressure values detected by the first and second pressure sensors.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: March 29, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Stephen Michael Greci, Michael Linley Fripp
  • Patent number: 10869638
    Abstract: An acoustic device for spirometric measurement is provided. The acoustic device includes an inlet conduit configured to receive an airflow and a central cavity in communication with the inlet conduit. The central cavity includes a channel configured to guide at least a portion of the airflow into a vorticial flow about a central axis of the central cavity. The acoustic device further includes an outlet conduit configured to receive at least a portion of the vorticial flow and transduce at least a portion of kinetic energy of the vorticial flow into an acoustic emission. A frequency of the acoustic emission varies based on a rate of the airflow provided to the inlet conduit. In addition, the acoustic device includes a flow controller configured to modify at least a portion of the airflow provided to the inlet conduit.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: December 22, 2020
    Inventor: Krispin Johan Leydon
  • Patent number: 9366273
    Abstract: An improvement in a vapor recovery line in the form of a vortex shedding flow meter installable within such vapor recovery line to monitor the flow rate of vapor being returned through the vapor recovery line, such flow meter including a housing having an inlet flange with an associated inlet connectable to the upstream portion of the vapor recovery line, an outlet flange with an outlet connectable to the downstream portion of the vapor recovery line, a housing for a passageway extending between the inlet and outlet, with a vortex strut extending into the passageway nearer the outlet to generate shed flow vortices and a transmitter-receiver transducer pair positioned nearer the outlet to subject the shed vortices to a sonic beam to effect modulation thereof, and an electronics package within an electronic housing portion for determining from such modulation the flow rate of the vapor passing through the vapor recovery line.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: June 14, 2016
    Assignee: Husky Corporation
    Inventors: Paul Pitney, David Medin, Thomas Hamilton, Mitchell Thomas
  • Patent number: 9138167
    Abstract: An acoustic means for rendering key respiratory measurements accessible to hand-held mobile digital devices with audio input capabilities (such as mobile phones, personal digital assistants, mobile gaming platforms, and tablets). One or more embodiments comprise: a compact and portable whistle (101) that encodes a user's expiratory airflow rate as audio frequency, and a software process with local or remote access to mobile-device audio that decodes said audio frequency to regain expiratory airflow rate and derive key respiratory measurements, so that these measurements and related information may conveniently be made available to the user (100) and the user's health network of family members (103) and physicians (104). Embodiments enable leveraging the ubiquity and extensive capabilities of hand-held mobile digital devices, while simultaneously simplifying requirements for a dedicated spirometry device.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: September 22, 2015
    Inventor: Krispin Johan Leydon
  • Publication number: 20140260669
    Abstract: Systems and method for flow sensing are provided. One system includes a flow conduit configured to allow fluid flow therethrough, a flow disturber disposed in the flow conduit and configured to impart a flow disturbance to the fluid flow and an actuator operably connected to the flow disturber to control the flow disturber to impart the flow disturbance to the fluid flow. The system further includes a plurality of sensors disposed in the flow conduit that are configured to have a geometrical and functional relationship with the flow conduit and the flow disturber, wherein the plurality of sensors are responsive to flow characteristics in the flow conduit. The system also includes a processor operably coupled to the plurality of sensors and configured to determine a flow rate of the fluid flow in the flow conduit using timing characteristics to select a processing method.
    Type: Application
    Filed: August 16, 2013
    Publication date: September 18, 2014
    Applicant: Amphenol Corporation
    Inventors: Ertugrul Berkcan, Michael Klitzke, Nannan Chen, Cheng-Po Chen, Yizhen Lin
  • Patent number: 7962293
    Abstract: A method and apparatus for determining a level of stratification of a multiphase fluid flow passing through a pipe is provided. The method includes, and the apparatus is operable to perform, the steps of: 1) determining a flow velocity of the multiphase fluid flow passing through a first radial region of the pipe; 2) determining a flow velocity of a portion of the multiphase fluid flow passing within a second radial region of the pipe, wherein the second radial region is above the first radial region; and 3) comparing the flow velocity from the first radial region and flow velocity from the second radial region to determine information indicative of the stratification of the multiphase fluid flow.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: June 14, 2011
    Assignee: Expro Meters, Inc.
    Inventor: Daniel L. Gysling
  • Patent number: 6739204
    Abstract: Velocity/flow measuring of purge gas when welding pipe, is accomplished by providing a controllably fixed orifice at the distal end of the pipe being welded. The purge gas passes through a pressure regulator, a flow meter, and a purifier. An isolation/control valve is used to control access to the purge gas. The purge gas then passes through a header connected to the input end of the first pipe. A second pipe is positioned adjacent to the first pipe. A pressure clamp, tape or other sealing means seals the circumferential weld area between the first pipe and the second pipe. A second pressure gauge monitors the gas pressure at the pressure clamp. The purge gas passes through the weld area, to a manifold in fluid communication with a first pressure gauge, a back pressure control means and to a weld purge orifice fitting, having a selected orifice size.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: May 25, 2004
    Inventor: Byron Barefoot
  • Publication number: 20030230150
    Abstract: The transducer serves to generate a measurement signal corresponding to at least one physical parameter of a fluid flowing in a pipe. It comprises a flow tube of predeterminable lumen for conducting the fluid which communicates with the pipe at the inlet and outlet ends. In operation, an excitation assembly causes reactions, particularly reaction forces, in the fluid within the at least one flow tube in a non-invasive manner, which are sensed and converted into measurement signals representative thereof by means of a sensor arrangement. To obtain as axisymmetric a density distribution in the fluid as possible, means are provided in an inlet area of the transducer or at least in the vicinity thereof which cause a swirl in the entering fluid and, thus, a rotational motion in the fluid within the flow-tube lumen about an axis of rotation lying in the direction of fluid flow.
    Type: Application
    Filed: March 13, 2003
    Publication date: December 18, 2003
    Inventors: Wolfgang Drahm, Alfred Rieder