Vibrated Conduit Patents (Class 73/861.355)
  • Patent number: 9921093
    Abstract: A first magnetic holder is attached to a U-shaped curved tube portion of a synthetic resin made measurement tube, and a magnetomotive body having a magnetic pole surface facing forward is embedded in a distal end of the first magnetic holder. A second magnetic holder is provided on a substrate at a position facing the distal end of the first magnetic holder with a space apart therefrom. The second magnetic holder includes a permanent magnet disposed to face the magnetomotive body in the first magnetic holder with a magnetic pole surface facing toward the first magnetic holder, so that the magnetic pole surface having a magnetic pole opposite to that of the magnetomotive body face each other. The permanent magnet of the second magnetic holder retains the curved tube portion of the measurement tube elastically with a space apart therefrom by attracting the magnetomotive body with a magnetic attraction force.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: March 20, 2018
    Assignee: ATSUDEN CO., LTD.
    Inventors: Eiichi Murakami, Yoshiaki Suzuki
  • Patent number: 9851242
    Abstract: A combined driver and pick-off sensor component (200, 300) for a vibrating meter is provided. The combined driver and pick-off sensor component (200, 300) includes a magnet portion (104B) with at least a first magnet (211). The combined driver and pick-off sensor component (200, 300) further includes a coil portion (204A, 304A) receiving at least a portion of the first magnet (211). The coil portion (204A, 304A) includes a coil bobbin (220), a driver wire (221) wound around the coil bobbin (220), and a pick-off wire (222) wound around the coil bobbin (220).
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: December 26, 2017
    Assignee: Micro Motion, Inc.
    Inventors: Christopher George Larsen, Matthew Joseph Rensing, Amy Mai Nilsen, Roger Scott Loving
  • Patent number: 9810562
    Abstract: A brace bar (300, 400, 500, 600, 700) is provided. The brace bar (300, 400, 500, 600, 700) includes a brace bar body (302, 402, 502, 602, 702) with a perimeter, a first aperture (304a, 404a, 504a, 604a, 704a) and a second aperture (304b, 404b, 504b, 604b, 704b) in the brace bar body (302, 402, 502, 602, 702), and a gap (306, 406, 506, 606, 706) formed in the brace bar body (302, 402, 502, 602, 702) connecting the first aperture (304a, 404a, 504a, 604a, 704a) and the second aperture (304b, 404b, 504b, 604b, 704b) wherein the gap (306, 406, 506, 606, 706) is wholly contained within the perimeter of the brace bar body (302, 402, 502, 602, 702).
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: November 7, 2017
    Assignee: Micro Motion, Inc.
    Inventors: Philip Powers, Glenn Byron
  • Patent number: 9784657
    Abstract: In some embodiments, an apparatus includes a base structure and a tube. The tube has a first tube portion, a second tube portion substantially parallel to the first tube portion, an inlet portion, and an outlet portion. The tube is configured to have a material pass from the inlet portion to the outlet portion. The apparatus further includes a drive element in contact with the tube. The drive element is configured to vibrate the tube such that the first tube portion conducts vibrational movements out of phase with vibrational movements of the second tube portion. The apparatus also includes a sensing element, at least a portion of which is in contact with the tube. The sensing element is configured to sense deflections of the first tube portion and the second tube portion such that at least one property of the material is determined.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: October 10, 2017
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Michael William Putty, Richard Thayre Smith, Nader Najafi
  • Patent number: 9719826
    Abstract: A method, system, and apparatus for measuring mass flow comprises two tubes for transporting a material; two exciters wherein one of the two exciters is fixedly attached on each of the two tubes configured to induce a vibration in the two tubes; at least two sensors on each of the tubes; a test media flowing through the tube, wherein a phase difference in the tubes is indicative of a mass flow of the test media; and a comparer module operably connected to the at least two sensors on each of the tubes for determining a phase difference of the vibrations in the tubes and determining a mass flow according to the phase difference.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: August 1, 2017
    Assignee: Honeywell International Inc.
    Inventors: Xianyong Fan, Chuang Huang, Guokun Song
  • Patent number: 9696194
    Abstract: An apparatus (400) for a vibratory meter (100) having one or more flow tubes (101, 102) adapted to vibrate is provided. The apparatus (400) comprising two or more brace bars (203, 204) adapted to couple to the one or more flow tubes (101, 102), and an isolation bar (402) coupled to the two or more brace bars (203, 204).
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: July 4, 2017
    Assignee: Micro Motion, Inc.
    Inventors: Christopher A Werbach, Gregory Treat Lanham
  • Patent number: 9671268
    Abstract: A method for determining a lateral mode stiffness of one or more fluid tubes (103A, 103B) in a vibrating meter (5) is provided. The method comprises a step of vibrating at least one of the one or more fluid tubes (103A, 103B) in a drive mode vibration. Drive mode sensor signals (310) are received based on a vibrational response to the drive mode vibration. At least one of the one or more fluid tubes (103A, 103B) is vibrated in a lateral mode vibration, wherein the lateral mode is approximately perpendicular to the drive mode. Lateral mode sensor signals (317) are received based on a vibrational response to the lateral mode vibrations. The method further comprises determining a lateral mode stiffness (318) based on the lateral mode sensor signals (317).
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: June 6, 2017
    Assignee: Micro Motion, Inc.
    Inventors: Goldino Alves, Mark James Bell
  • Patent number: 9618374
    Abstract: Flowmeters are described in which a sensor signal received from a sensor that is attached to vibratable flowtube, so as to determine properties of a fluid within the flowtube, contains a drive signal component and a Coriolis mode component. The flowmeters are operable to determine drive parameters of the drive signal component, as well as Coriolis parameters of the Coriolis mode component. By analyzing the sensor signal based on the drive signal parameters, and not on the Coriolis signal parameters, the flowmeters are able to provide stable and accurate determinations of the properties of the fluid.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: April 11, 2017
    Assignee: Invensys Systems, Inc.
    Inventor: Manus P. Henry
  • Patent number: 9593973
    Abstract: The measuring transducer comprises a measuring tube having an inlet-side tube end and an outlet-side tube end, a tube wall having a predetermined wall thickness and a lumen surrounded by the tube wall and extending between the first and second tube end, a support element, which with a support end is mechanically connected with the tube end and with a support end is mechanically connected with the tube end, as well as, laterally spaced from the measuring tube, a support element, which with a support end is mechanically connected with the support end and with a support end is mechanically connected with the support end. The measuring tube of the measuring transducer is adapted to guide a flowing medium in its lumen and during that to be caused to oscillate about a static resting position for producing Coriolis forces. The measuring transducer comprises an oscillation exciter as well as at least one oscillation sensor.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: March 14, 2017
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Christof Huber, Alfred Rieder, Christian Schutze, Ennio Bitto, Martin Josef Anklin
  • Patent number: 9546890
    Abstract: A measuring transducer comprises a measuring tube having an inlet-side tube end and an outlet-side tube end, a tube wall having a predetermined wall thickness and a lumen surrounded by the tube wall and extending between the first and second tube end, a support element, which with a support end is mechanically connected with the tube end and with a support end is mechanically connected with the tube end, as well as, laterally spaced from the measuring tube, a support element, which with a support end is mechanically coupled with the support end and with a support end is mechanically coupled with the support end. The measuring tube is adapted to guide a flowing medium in its lumen and caused to oscillate about a static resting position for producing Coriolis forces. An oscillation exciter as well as at least one oscillation sensor.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: January 17, 2017
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Christof Huber, Alfred Rieder, Christian Schutze, Ennio Bitto, Martin Josef Anklin
  • Patent number: 9541429
    Abstract: A fluid sensing device includes an outer body, an inner body coupled to the outer body by one or more inner body support struts and extending at least partially out from the outer body, and an aft body disposed at least partially within the outer body at a location aft of the inner body, the aft body being coupled to the outer body by one or more aft body support struts. The inner body includes a hollow interior for housing one or more inner body sensors, and the aft body houses one or more aft body sensors. The fluid sensing device can measure one or more parameters of fluid flow at high angularity, such as total temperature and total pressure, locally and simultaneously, allowing additional fluid parameters, such as local entropy, to be calculated.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: January 10, 2017
    Assignee: University of Kansas
    Inventors: Saeed Farokhi, Ray R. Taghavi, Shawn S. Keshmiri
  • Patent number: 9506792
    Abstract: A Coriolis mass flowmeter having at least one curved measuring tube having an inlet end, outlet end and a central curved section between the inlet end and outlet end, a carrier bridge extending between the inlet end and outlet end of the measuring tube and fixing the measuring tube ends, at least one oscillation generator attached to the measuring tube, at least one oscillation sensor for detecting measuring tube oscillations, an evaluation unit for evaluating detected measuring tube oscillations, and wherein the measuring tube extends through at least one opening from an inner area of the carrier bridge out of the carrier bridge into the outer area of the carrier bridge, the central curved section running outside of the carrier bridge. A conductor guiding structure is arranged on the carrier bridge extending toward the oscillation sensor and the conductor arrangement fixed on the conductor guiding structure.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: November 29, 2016
    Assignee: Krohne AG
    Inventors: Tao Wang, Christopher Rolph, Gary Jones
  • Patent number: 9500507
    Abstract: A method of forming a corrosion-resistant vibratory flowmeter is provided. The method comprises constructing a flowmeter assembly including one or more flow tubes configured to be vibrated, with the method being characterized by coating at least a portion of the flowmeter assembly with a diffusion coating, with the diffusion coating being diffused into and comprising a part of the flowmeter assembly.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: November 22, 2016
    Assignee: Micro Motion, Inc.
    Inventors: Megan Casey, Anthony William Pankratz
  • Patent number: 9261393
    Abstract: A Coriolis mass flow measuring device comprises a measuring device electronics as well as, connected thereto, a measuring transducer comprising at least one measuring tube, an oscillation exciter for oscillating the at least one measuring tube and, mutually spaced along the measuring tube, two oscillation sensors for generating oscillation signals representing oscillations of the measuring tube. The measuring tube is adapted to be flowed through by a medium and during that to be caused to vibrate in such a manner that the measuring tube executes wanted oscillations having a wanted frequency. The wanted oscillations are suitable to induce in the flowing medium, dependent on its mass flow rate, Coriolis forces suitable for bringing about a measurement effect of a first type, namely Coriolis oscillations of the wanted frequency superimposed on the wanted oscillations. These Coriolis oscillations are, in turn, suitable to induce in the medium centrifugal forces dependent on its mass flow rate and on its density.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: February 16, 2016
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Christof Huber, Vivek Kumar
  • Patent number: 9250109
    Abstract: A vibration isolation system of mass flowmeter, includes upper horizontal section, vertical section, lower horizontal section, upper arc section between the upper horizontal section and vertical section, and lower arc section between the vertical section and lower horizontal section of U-shaped measuring tube. On the lower arc section there is vibration isolation block. It is characterized by full-length welding between the vibration isolation block's plane of the axis of U-shaped measuring tube and the lower arc section. The U-shaped measuring tube has an inertia center. The straight-line distance between the external welding point in the full weld of the lower arc section between the vibration isolation block mentioned and the measuring tube and the inertia center is equal to the straight-line distance between the internal welding point and the inertia center.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: February 2, 2016
    Assignee: Sichuang Zhongce Flow Measurement Technology Co., Ltd.
    Inventor: Fan Luo
  • Patent number: 9207212
    Abstract: Method for operating a resonant measurement system, especially a Coriolis mass flow meter, so as to be excitable in a linear operating range, the driving terminal current triggered by an electric excitation signal and the driving terminal voltage of the electromagnetic drive triggered by the electric excitation signal are measured. The driving power is determined from the driving terminal current and the driving terminal voltage, and if the driving terminal current exceeds a given maximum driving terminal current, and/or if the driving terminal voltage exceeds a given maximum driving terminal voltage and/or if the driving power exceeds a given maximum driving power, the electric excitation signal is limited to a threshold value such that the driving terminal current remains below the given maximum driving terminal current, and/or the driving terminal voltage remains below the given maximum driving terminal voltage, and/or the driving power remains below the maximum driving power.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: December 8, 2015
    Assignee: Krohne Messtechnik GmbH
    Inventors: Kourosh Kolahi, Ralf Storm, Andreas Poremba
  • Patent number: 9200512
    Abstract: In-situ formation fluid evaluation methods and apparatus configured to measure a first resonance frequency of a first fluid using a first densimeter downhole, wherein a first density of the first fluid is known; measure a second resonance frequency of a second fluid using a second densimeter downhole, wherein the second fluid is a formation fluid received by the second densimeter downhole, and wherein a second density of the second fluid is unknown; and determine the second density of the second fluid using the first and second resonance frequencies and the known first density.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: December 1, 2015
    Assignee: Schlumberger Technology Corporation
    Inventor: Anthony R. H. Goodwin
  • Patent number: 9170142
    Abstract: A curved tube vibrating flow meter (5) includes a flow tube temperature sensor TT (190) and a plurality of case temperature sensors TC (303) affixed to one or more case locations of a case (300) of the curved tube vibrating flow meter (5). The plurality of case temperature sensors TC (303) generate a case temperature signal, wherein a plurality of case temperature sensor resistances at the one or more case locations form a combined case resistance related to thermal importances of the one or more case locations. Meter electronics (20) receives the flow tube temperature signal, receives the case temperature signal, and compensates the curved tube vibrating flow meter (5) for thermal stress using the flow tube temperature signal and the case temperature signal.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: October 27, 2015
    Assignee: Micro Motion, Inc.
    Inventor: Craig Brainerd Van Cleve
  • Patent number: 9074918
    Abstract: A fuel measurement system for measuring a fuel consumption amount of an engine, intended to reduce a measurement error of a Coriolis flowmeter to thereby improve measurement accuracy and reproducibility of a fuel consumption amount. The system includes: a Coriolis flowmeter provided on a fuel supply path for supplying a fuel to the engine to measure a flow rate of the fuel in the fuel supply path; and a temperature control mechanism provided in an upstream side of the Coriolis flowmeter on the fuel supply path to control a temperature of the fuel flowing into the Coriolis flowmeter.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: July 7, 2015
    Assignee: HORIBA, Ltd.
    Inventor: Takashi Matsuyama
  • Patent number: 9052224
    Abstract: A measuring transducer comprises: a housing, with an inlet-side flow divider having four flow openings, and an outlet-side end having four flow openings; a tube arrangement having four tubes connected to the flow dividers; and a first coupling element. An exciter mechanism for producing and/or maintaining mechanical oscillations of the four measuring tubes. The first coupling element includes a deformation body and four connecting struts, of which connected with a first strut end and with the first measuring tube, a second connecting strut is connected with a first strut end and with a second strut end with the second measuring tube, a third connecting strut and with a second strut end with the first measuring tube, and a fourth connecting strut is connected with a first strut end and with a second strut end with the fourth measuring tube.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: June 9, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Christof Huber, Ennio Bitto, Christian Schutze, Marcel Braun
  • Publication number: 20150143922
    Abstract: A vibration isolation system of mass flowmeter, includes upper horizontal section, vertical section, lower horizontal section, upper arc section between the upper horizontal section and vertical section, and lower arc section between the vertical section and lower horizontal section of U-shaped measuring tube. On the lower arc section there is vibration isolation block. It is characterized by full-length welding between the vibration isolation block's plane of the axis of U-shaped measuring tube and the lower arc section. The U-shaped measuring tube has an inertia center. The straight-line distance between the external welding point in the full weld of the lower arc section between the vibration isolation block mentioned and the measuring tube and the inertia center is equal to the straight-line distance between the internal welding point and the inertia center.
    Type: Application
    Filed: May 14, 2014
    Publication date: May 28, 2015
    Applicant: Sichuang Zhongce Flow Measurement Technology Co., Ltd.
    Inventor: Fan LUO
  • Publication number: 20150082915
    Abstract: A coriolis flow sensor is disclosed. The coriolis flow sensors comprises a first substrate layer, a second substrate layer, and a third substrate layer. The first substrate layer comprises a first wall. The second substrate layer comprises a second wall. The third substrate layer is disposed between the first and second substrate layers in a stacked configuration. The third substrate layer defines a flow path. The first and second walls of the respective first and second substrates and the flow path defined by the third substrate layer define a first flow channel configured to receive a fluid therethrough. A first actuator is configured to generate vibrations in the first flow channel. The first flow channel is mechanically moveable.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: Teledyne Instruments, Inc. d/b/a Teledyne Hastings
    Inventors: Tong Chen, William J. Alvesteffer, James M. Camper
  • Patent number: 8972207
    Abstract: A control and measurement system for a coriolis flowmeter having a flowtube, a driver adapted to vibrate the flowtube, and a pair of sensors adapted to generate signals indicative of movement of the flowtube when it is being vibrated by the driver, wherein the sensors are positioned relative to one another so the signals from the sensors are indicative of a mass flow rate of fluid through the flowtube. A digital drive signal generator is adapted to generate a variable digital drive signal for controlling operation of the driver. The digital drive signal generator can be adapted to cause the driver to resist motion of the flowtube during a first time period and amplify motion of the flowtube during a second time period. The digital drive signal generator can also be adapted to initiate motion of the flowtube by sending one or more square wave signals to the driver.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: March 3, 2015
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, David W. Clarke, James H. Vignos
  • Publication number: 20150053021
    Abstract: A method of manufacturing a Coriolis mass flowmeter from a polymeric material is described, in which a dynamically responsive manifold is fabricated from the same material as the flow sensor's flow-sensitive elements. The flowmeter is free of mechanical joints and adhesives. The manifold and flow-sensitive elements therefore do not slip or change their location relative one another, nor are they subject to differing degrees of thermal expansion that would otherwise undermine integrity, reliability, and/or accuracy of the boundary condition at the ends of the vibrating flow-sensitive elements.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Inventor: Alan M. Young
  • Patent number: 8965715
    Abstract: A control and measurement system for a coriolis flowmeter having a flowtube, a driver adapted to vibrate the flowtube, and a pair of sensors adapted to generate signals indicative of movement of the flowtube when it is being vibrated by the driver, wherein the sensors are positioned relative to one another so the signals from the sensors are indicative of a mass flow rate of fluid through the flowtube. A digital drive signal generator is adapted to generate a variable digital drive signal for controlling operation of the driver. The digital drive signal generator can be adapted to cause the driver to resist motion of the flowtube during a first time period and amplify motion of the flowtube during a second time period. The digital drive signal generator can also be adapted to initiate motion of the flowtube by sending one or more square wave signals to the driver.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: February 24, 2015
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, David W. Clarke, James H. Vignos
  • Patent number: 8950274
    Abstract: A method for monitoring oscillation characteristics in a Coriolis, flow measuring device and to a correspondingly formed, Coriolis, flow measuring device in the case of which an excited oscillatory system is simulated with a digital model, which has at least one fittable parameter. The simulating includes, in such case, excitating the digital model in the same manner as the oscillatory system, calculating a simulation response variable of the simulated oscillations according to the digital model, and, performed over a plurality of signal modulations, iterative conforming of the at least one, fittable parameter in such a manner that the simulation response variable interatively approaches the response variable. Furthermore, it is ascertained whether a corresponding limit value is exceeded by the at least one, interatively ascertained parameter value for the at least one, fittable parameter or by at least one variable derived from the at least one, iteratively ascertained parameter value.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: February 10, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventor: Remy Scherrer
  • Publication number: 20150033874
    Abstract: The present invention relates to a Coriolis mass flow meter, a vibrating tube density meter and a vibrating sheet used therein, and more particularly, to a vibrating sheet for use in a Coriolis mass flow meter or a vibrating tube density meter, the vibrating sheet having at least one welded connecting portion that is fixedly welded to the flow tube of the Coriolis mass flow meter or the vibrating tube density meter, the flow tube being excited to vibrate around a revolving axis at the welded junction of the vibrating sheet and the flow tube. The welded connecting portions of the vibrating sheet are only formed in the stress insensitive region of the vibrating sheet, wherein the stress insensitive region is the region of the vibrating sheet which has an angle of not more than 45 degrees with respect to the revolving axis. In addition, the present invention also provides a Coriolis mass flow meter and a vibrating tube density meter using the vibrating sheet.
    Type: Application
    Filed: March 8, 2012
    Publication date: February 5, 2015
    Applicant: QINGDAO ADD VALUE FLOW METERING CO., LTD
    Inventors: Fahui Wang, Xinwang Cui, Tingxu Zhang, Junbao Wu
  • Patent number: 8931346
    Abstract: A measuring transducer having exactly four flow openings, and an outlet-side housing end formed by means of an outlet-side flow divider having exactly four flow openings. A tube arrangement has exactly four curved or bent measuring tubes connected to the flow dividers for guiding flowing medium along flow paths connected in parallel. Each of the four measuring tubes opens with an inlet-side measuring tube end into one of the flow openings of the inlet-side flow divider, and with an outlet-side measuring tube end into one of the flow openings of the outlet-side flow divider. A first coupling element for adjusting eigenfrequencies of natural oscillation modes of the tube arrangement. An electro-mechanical exciter mechanism of the measuring transducer serves for producing and/or maintaining mechanical oscillations of the four measuring tubes.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: January 13, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Christof Huber, Ennio Bitto, Christian Schutze, Marcel Braun
  • Patent number: 8931354
    Abstract: The invention relates to a Coriolis mass flow meter with improved zero point stability. The Coriolis mass flow meter has a pair of U-shaped measuring tubes. According to one embodiment of the invention, the Coriolis mass flow meter comprises a special housing for vibration compensation or vibration suppression in the region of the process connectors. Additionally or alternatively, a specific mass distribution of the vibration exciter and/or vibration sensor is provided, in order to neutralize unwanted vibrations by actively causing vibration.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: January 13, 2015
    Assignee: Rota Yokogawa GmbH & Co. KG
    Inventors: Martin Ricken, Matthias Amann, Peter Reinshaus
  • Publication number: 20140373639
    Abstract: A multi-phase process fluid is passed through a vibratable flowtube. Motion is induced in the vibratable flowtube. A first apparent property of the multi-phase process fluid based on the motion of the vibratable flowtube is determined, and an apparent intermediate value associated with the multi-phase process fluid based on the first apparent property is determined. A corrected intermediate value is determined based on a mapping between the intermediate value and the corrected intermediate value. A phase-specific property of a phase of the multi-phase process fluid is determined based on the corrected intermediate value.
    Type: Application
    Filed: September 9, 2014
    Publication date: December 25, 2014
    Inventors: Manus P. Henry, Michael S. Tombs
  • Patent number: 8915147
    Abstract: A method for operating a Coriolis mass flowmeter in which a simple and reliable detection of a multi-phase flow is implemented by determining at least one first measured value for at least one state variable that is dependent on the amplitude in a multi-phase medium, exciting the measuring tube with the oscillation generator to oscillate at a predetermined oscillation frequency and a first amplitude, and to oscillate with the excitation frequency and a second amplitude, detecting the resulting oscillation of the measuring tube and determining at least a second measured value for the state variable that is dependent on the amplitude in a multi-phase medium from the determined resulting oscillation, and using the deviation of at least one of the first measured value from at least a corresponding second value as an indicator for the presence of a multi-phase flow.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: December 23, 2014
    Assignee: KROHNE Messtechnik GmbH
    Inventors: Kourosh Kolahi, Ralf Storm
  • Publication number: 20140366644
    Abstract: A first apparent property of a multi-phase process fluid is determined based on the motion of the vibratable flowtube. One or more apparent intermediate values associated with the multi-phase process fluid are determined based on the first apparent property. A measure of wetness of the multi-phase process fluid is determined based on a mapping between one or more of the apparent intermediate values and the measure of wetness. A second apparent property of the multi-phase process fluid is determined using the differential pressure flowmeter. One or more phase-specific properties of the multi-phase process fluid is determined based on the measure of wetness and the second apparent property.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Manus P. Henry, Michael S. Tombs
  • Patent number: 8892370
    Abstract: A control and measurement system for a coriolis flowmeter having a flowtube, a driver adapted to vibrate the flowtube, and a pair of sensors adapted to generate signals indicative of movement of the flowtube when it is being vibrated by the driver, wherein the sensors are positioned relative to one another so the signals from the sensors are indicative of a mass flow rate of fluid through the flowtube. A digital drive signal generator is adapted to generate a variable digital drive signal for controlling operation of the driver. The digital drive signal generator can be adapted to cause the driver to resist motion of the flowtube during a first time period and amplify motion of the flowtube during a second time period. The digital drive signal generator can also be adapted to initiate motion of the flowtube by sending one or more square wave signals to the driver.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: November 18, 2014
    Assignee: Invensys Systems, Inc.
    Inventors: Manus P. Henry, David W. Clarke, James H. Vignos
  • Patent number: 8881605
    Abstract: A Coriolis flow sensor including a loop-shaped Coriolis tube mounted in a housing with two ends lying next to one another, the ends being fixed in a fixation element, while the portion of the tube located between the ends lies free from the housing, which flow sensor includes an excitation element for causing the tube to oscillate about an excitation axis as well as a detection element for detecting displacements of portions of the tube during operation. The tube is connected through the fixation element to a balancing member, the assembly of the balancing member and the tube being resiliently arranged with respect to the housing, while the excitation element are arranged to rotate the tube and the balancing member with counter-phase about the excitation axis.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: November 11, 2014
    Assignee: Berkin B.V
    Inventors: Wouter Hagedoorn, Christian Johan Nieuwenhuis, Andre Johannes Maria Hilderink, Marcel Ronald Katerberg, Jan Wouter van de Geest
  • Publication number: 20140326076
    Abstract: The direct-flow Coriolis mass flowmeter comprises a tensioned section of string, along which a substance to be measured flows, a device for tensioning the section of string, a device for exciting a transverse circular oscillatory movement in the string, two sensors which are spaced apart along the string and which convert the magnitude of a transverse deflection of the string in two mutually perpendicular directions into electrical signals, wherein these signals are coupled to inputs of a microprocessor device which calculates the flowrate as a function of the difference in phases of the signals from the sensors.
    Type: Application
    Filed: October 30, 2012
    Publication date: November 6, 2014
    Inventor: Jurijs KOSHELEVS
  • Patent number: 8863589
    Abstract: A measuring transducer comprises a transducer housing, of which an inlet-side housing end is formed by means of an inlet-side flow divider having eight, mutually spaced flow openings and an outlet-side housing end is formed by means of an outlet-side flow divider having eight, mutually spaced flow openings as well as a tube arrangement with eight bent measuring tubes for the conveying flowing medium, which, forming flow paths connected for parallel flow, are connected to the flow dividers, wherein each of the eight measuring tubes in each case opens with an inlet-side measuring tube end into one of the flow openings of the flow divider, and in each case opens with an outlet-side measuring tube end into one of the flow openings of the flow divider. An electro-mechanical exciter mechanism of the measuring transducer serves for producing and/or maintaining mechanical oscillations of the measuring tubes.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: October 21, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Peter Tschabold, Dieter Mundschin, Christian Schutze, Martin Anklin
  • Patent number: 8857270
    Abstract: A method for detecting plugging of a measuring tube. Heat is supplied to a medium conveyed in a first measuring tube by means of at least one heating element, or heat is removed from the medium conveyed in a first measuring tube by means of at least one cooling element. At least one temperature sensor, which is thermally coupled to the medium conveyed in the first measuring tube, temperature is registered. Additionally, a first comparison variable, which is characteristic for heat transport by the medium in the first measuring tube, is determined based on the supplying of heat or removing of heat, as well as on the temperature registering, and this comparison variable is compared with a reference variable. Plugging of at least one measuring tube of the measuring transducer is detected if the first comparison variable deviates from the reference variable by more than a limit value.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: October 14, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Hao Zhu, Wolfgang Drahm, Alfred Rieder
  • Patent number: 8855958
    Abstract: A method for determining at least one characteristic for the correction of measurements of a Coriolis mass flowmeter which is characterized by an increased accuracy and a low error rate while determining the characteristic is implemented by detecting values of a measurand during constant flow with the reading sensors, calculating at least one location parameter from the detected values, an calculating at least one dispersion parameter from the detected values and the location parameter. The detection of additional values and the calculation of the location parameter and dispersion parameter from the existing and additional values is carried out until the dispersion parameter reaches a threshold value, and then, the location parameter corresponding to the dispersion parameter is used as the characteristic for the correction of the reading of the Coriolis mass flowmeter.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: October 7, 2014
    Assignee: Krohne AG
    Inventors: Xue Wang, Yousif Hussain
  • Publication number: 20140251026
    Abstract: A Coriolis flow meter for measuring a liquid volume fraction of a multiphase flow. The Coriolis meter includes a vibrating measurement conduit through which the multiphase flow, a wet gas flow or the like, is flowed and measured and/or analyzed. Operation of the Coriolis flow meter includes obtaining a measure of the input energy required to vibrate the conduit and a measure of the vibrational energy of the conduit, and determining the liquid volume fraction of the wet gas flow from the input energy and the vibrational energy. The liquid volume fraction may be used to correct other measurements made by the Coriolis flow meter such as density or mass flow rate.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 11, 2014
    Applicant: Schlumberger Technology Corporation
    Inventor: Gary Martin Oddie
  • Patent number: 8826746
    Abstract: A flowmeter having an inlet through which the medium can flow into a measurement zone and having an outlet through which the medium can flow out, wherein a damping device is provided in front of the inlet, and has a first mass which can be flowed through having a first inlet and a first outlet for the medium, a second mass which can be flowed through having a second inlet and a second outlet for the medium as well as a flow connection which is capable of vibration and which connects the first outlet to the second inlet, wherein a minimal flow cross-section (d) of the flow connection is smaller than the inlet cross-section (E) at the first inlet or smaller than the outlet cross-section (A) at the second outlet.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: September 9, 2014
    Assignee: Levitronix GmbH
    Inventors: Mario Haefliger, Natale Barletta
  • Patent number: 8826744
    Abstract: A measuring transducer comprises a housing, and a tube arrangement formed by means of at least two tubes extending within the housing. At least one tube is embodied as a measuring tube serving for conveying flowing medium and another tube is mechanically connected with the tube by means of a coupling element to form an inlet-side coupling zone and by means of a coupling element. The coupling element is arranged equally far removed from the housing end. One coupling element has, about an imaginary longitudinal axis of the tube arrangement imaginarily connecting a center of mass of the coupling element and a center of mass of the other coupling element, with an angle of intersection equal to that with the other coupling element, a bending stiffness, which deviates from a bending stiffness of the other coupling element about said imaginary longitudinal axis of the tube arrangement.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: September 9, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Wolfgang Drahm, Michael Wiesmann, Christof Huber, Martin Anklin
  • Patent number: 8813576
    Abstract: A new type of coriolis mass flow meter is disclosed. In one embodiment, the coriolis mass flow meter comprises two or more flow splitters, each flow splitter being connected to two or more flow tubes; and one or more supporting pipes connecting the flow splitters. The one or more of the flow splitters have a smooth round corner with a 65° turning angle. The distance between the centers of the two or more splitter tubes is about 1.1 to 1.2 times dT, where dT is the inner diameter of each splitter tube. The splitting turning radius RT is about 1 to 2.5 times DN; where DN is inner diameter of the flange portion of the flow splitter. The inner diameter of each splitter tube is about 0.8 to 0.85 times DN/?2.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: August 26, 2014
    Assignee: Golden Promise Equipment Inc.
    Inventor: Guannan Li
  • Patent number: 8806959
    Abstract: A Coriolis mass flowmeter with at least one measurement tube (2) for forming a flow channel, at least one vibration generator and at least one vibration pick-up, the measurement tube (2) having one inlet end (4), two vibration sections (3a, 3b) and one outlet end (5) and being bent at least in sections such that two U-shaped or V-shaped vibration sections (3a, 3b) which run in essentially parallel planes are formed, and the vibration sections (3a, 3b) can be excited to vibrations by the vibration generator. The flow channel, except for the inlet end (4), the vibration sections (3a, 3b) and the outlet end (5), runs within a solid base (6).
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: August 19, 2014
    Assignee: Krohne AG
    Inventors: Yousif Hussain, Tao Wang
  • Publication number: 20140208871
    Abstract: A vibratory flowmeter (5) for determining an average flow rate of a pulsating flow is provided. The vibratory flowmeter (5) includes a flowmeter assembly (10) including at least two pickoff sensors (170L, 170R) and configured to generate at least two vibrational signals and meter electronics (20) configured to receive the at least two vibrational signals and generate a flow rate measurement signal, divide the flow rate measurement signal into a series of time periods, with each time period including a single flow peak that is substantially centered in the time period, totalize flow rate measurements of each time period to generate a period sum, and divide the period sum by a time period length to generate a period average flow rate, wherein the meter electronics (20) outputs a sequence of period average flow rates as an average flow rate signal.
    Type: Application
    Filed: September 19, 2011
    Publication date: July 31, 2014
    Applicant: Micro Motion, Inc.
    Inventor: Paul J Hays
  • Patent number: 8789428
    Abstract: A measuring transducer comprises at least one measuring tube for carrying a flowing medium as well as a transducer housing mechanically coupled with the at least one measuring tube. The transducer housing includes: an inner shell forming a cavity accommodating the at least one measuring tube; and an outer cladding formed at least partially by means of yarn, namely cladding placed outside of the cavity and surrounding the inner shell.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 29, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventor: Michael Schuker
  • Publication number: 20140202228
    Abstract: Motion is induced in a conduit that contains a fluid. The motion is induced such that the conduit oscillates in a first mode of vibration and a second mode of vibration. The first mode of vibration has a corresponding first frequency of vibration and the second mode of vibration has a corresponding second frequency of vibration. At least one of the first frequency of vibration or the second frequency of vibration is determined. A phase difference between the motion of the conduit at a first point of the conduit and the motion of the conduit at a second point of the conduit is determined. A quantity based on the phase difference and the determined frequency is determined. The quantity includes a ratio between the first frequency during a zero-flow condition and the second frequency during the zero-flow condition. A property of the fluid is determined based on the quantity.
    Type: Application
    Filed: February 12, 2014
    Publication date: July 24, 2014
    Applicant: Invensys Systems, Inc.
    Inventor: Michael S. Tombs
  • Publication number: 20140190238
    Abstract: A vibratory meter (5) is provided, including one or more flow conduits (103), one or more pickoff sensors (105, 105?), and a driver (104). Meter electronics (20) is configured to vibrate the one or more flow conduits (103) using a drive signal including an initial vibration frequency and to receive a pickoff sensor signal from the one or more pickoff sensors (105, 105?) in response, iteratively offset a phase difference between the drive signal and the pickoff sensor signal by a predetermined phase increment and measure a resulting vibrational frequency and amplitude, with the offsetting operatively sweeping the vibration frequency over a predetermined vibration frequency range and therefore generating a plurality of vibration amplitudes and a corresponding plurality of vibration frequencies, and determine a substantially maximum amplitude response in the plurality of vibration amplitudes and designate the corresponding vibration frequency as comprising the resonant frequency.
    Type: Application
    Filed: July 13, 2011
    Publication date: July 10, 2014
    Applicant: Micro Motion, Inc.
    Inventors: Craig B. Mcanally, Andrew S. Kravitz
  • Patent number: 8757007
    Abstract: The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes: At least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube; as well as at least a first oscillation sensor for registering vibrations at least of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: June 24, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Martin Anklin, Vivek Kumar
  • Publication number: 20140144250
    Abstract: A new type of coriolis mass flow meter is disclosed. In one embodiment, the coriolis mass flow meter comprises two or more flow splitters, each flow splitter being connected to two or more flow tubes; and one or more supporting pipes connecting the flow splitters. The one or more of the flow splitters have a smooth round corner with a 65° turning angle. The distance between the centers of the two or more splitter tubes is about 1.1 to 1.2 times dT, where dT is the inner diameter of each splitter tube. The splitting turning radius RT is about 1 to 2.5 times DN; where DN is inner diameter of the flange portion of the flow splitter. The inner diameter of each splitter tube is about 0.8 to 0.85 times DN/?2.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: GOLDEN PROMISE EQUIPMENT INC.
    Inventor: GUANNAN LI
  • Publication number: 20140137666
    Abstract: A sensor assembly (200) for a vibrating meter (50) is provided. The sensor assembly (200) includes one or more conduits (103A, 103B). The sensor assembly (200) also includes one or more sensor components including one or more of a driver (104), a first pick-off sensor (105), and a second pick-off sensor (105?) coupled to the one or more conduits (103A, 103B). A flexible circuit (201) can be provided that includes a body (202) and one or more sensor component flexures (210-212?). The one or more sensor component flexures can extend from the body (202) and be coupled to a sensor component (104, 105, 105?) of the one or more sensor components.
    Type: Application
    Filed: July 7, 2011
    Publication date: May 22, 2014
    Applicant: Micro Motion, Inc.
    Inventors: Christopher A. Werbach, Allan L. Samson